Skip to main content
Erschienen in: Wireless Personal Communications 1/2019

01.04.2019

Applicability of Wireless Sensor Networks in Precision Agriculture: A Review

verfasst von: Divyansh Thakur, Yugal Kumar, Arvind Kumar, Pradeep Kumar Singh

Erschienen in: Wireless Personal Communications | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Presently, wireless sensor network (WSN) plays important role in engineering, science, agriculture and many other field like surveillance, military applications, smart cars etc. Precision agriculture (PA) is one of the field in which WSN is widely adopted. The aim of the adoption of WSNs in PA is to measure the different environmental parameters such as humidity, temperature, soil moisture, PH value of soil etc., for enhancing the quantity and quality of crops. Further, the WSNs are also helped to reduce the consumptions of the natural resources used in farming. Hence, the aim of this review is to identify the various WSNs technologies adopted for precision agriculture and impact of these technologies to achieve smart agriculture. This review also focuses on the different environmental parameters like irrigation, monitoring, soil properties, temperature for achieving precision agriculture. Further, a detailed study is also carried out on different crops which are covered using WSNs technologies. This review also highlights on the different communication technologies and sensors available for PA. To analyze the impact of the WSNs in agriculture field, several research questions are designed and through this review, we are tried to find the solutions of these research questions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef
2.
Zurück zum Zitat Baronti, P., Pillai, P., Chook, V. W., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: A survey on the state of the art and the and the 802.15.4 ZigBee standards. Computer Communications, 30(7), 1655–1695.CrossRef Baronti, P., Pillai, P., Chook, V. W., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: A survey on the state of the art and the and the 802.15.4 ZigBee standards. Computer Communications, 30(7), 1655–1695.CrossRef
3.
Zurück zum Zitat Kutter, T., Tiemann, S., Siebert, R., & Fountas, S. (2011). The role of communication and co-operation in the adoption of precision farming. Precision Agriculture, 12(1), 2–17.CrossRef Kutter, T., Tiemann, S., Siebert, R., & Fountas, S. (2011). The role of communication and co-operation in the adoption of precision farming. Precision Agriculture, 12(1), 2–17.CrossRef
4.
Zurück zum Zitat Polo, J., Hornero, G., Duijneveld, C., García, A., & Casas, O. (2015). Design of a low-cost wireless sensor network with UAV mobile node for agricultural applications. Computers and Electronics in Agriculture, 119, 19–32.CrossRef Polo, J., Hornero, G., Duijneveld, C., García, A., & Casas, O. (2015). Design of a low-cost wireless sensor network with UAV mobile node for agricultural applications. Computers and Electronics in Agriculture, 119, 19–32.CrossRef
5.
Zurück zum Zitat Abbasi, A. Z., Islam, N., & Shaikh, Z. A. (2014). A review of wireless sensors and networks’ applications in agriculture. Computer Standards & Interfaces, 36(2), 263–270.CrossRef Abbasi, A. Z., Islam, N., & Shaikh, Z. A. (2014). A review of wireless sensors and networks’ applications in agriculture. Computer Standards & Interfaces, 36(2), 263–270.CrossRef
6.
Zurück zum Zitat Garcia-Sanchez, A. J., Garcia-Sanchez, F., & Garcia-Haro, J. (2011). Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and Electronics in Agriculture, 75(2), 288–303.CrossRef Garcia-Sanchez, A. J., Garcia-Sanchez, F., & Garcia-Haro, J. (2011). Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and Electronics in Agriculture, 75(2), 288–303.CrossRef
7.
Zurück zum Zitat Zhang, R., Ren, Z., Sun, J., Tang, W., Ning, D., & Qian, Y. (2017). Method for monitoring the cotton plant vigor based on the WSN technology. Computers and Electronics in Agriculture, 133, 68–79.CrossRef Zhang, R., Ren, Z., Sun, J., Tang, W., Ning, D., & Qian, Y. (2017). Method for monitoring the cotton plant vigor based on the WSN technology. Computers and Electronics in Agriculture, 133, 68–79.CrossRef
8.
Zurück zum Zitat Sai, Z., Fan, Y., Yuliang, T., Lei, X., & Yifong, Z. (2016). Optimized algorithm of sensor node deployment for intelligent agricultural monitoring. Computers and Electronics in Agriculture, 127, 76–86.CrossRef Sai, Z., Fan, Y., Yuliang, T., Lei, X., & Yifong, Z. (2016). Optimized algorithm of sensor node deployment for intelligent agricultural monitoring. Computers and Electronics in Agriculture, 127, 76–86.CrossRef
9.
Zurück zum Zitat Jiang, J. A., Wang, C. H., Liao, M. S., Zheng, X. Y., Liu, J. H., Chuang, C. L., et al. (2016). A wireless sensor network-based monitoring system with dynamic convergecast tree algorithm for precision cultivation management in orchid greenhouses. Precision Agriculture, 17(6), 766–785.CrossRef Jiang, J. A., Wang, C. H., Liao, M. S., Zheng, X. Y., Liu, J. H., Chuang, C. L., et al. (2016). A wireless sensor network-based monitoring system with dynamic convergecast tree algorithm for precision cultivation management in orchid greenhouses. Precision Agriculture, 17(6), 766–785.CrossRef
10.
Zurück zum Zitat Kim, Y. D., Yang, Y. M., Kang, W. S., & Kim, D. K. (2014). On the design of beacon based wireless sensor network for agricultural emergency monitoring systems. Computer Standards & Interfaces, 36(2), 288–299.CrossRef Kim, Y. D., Yang, Y. M., Kang, W. S., & Kim, D. K. (2014). On the design of beacon based wireless sensor network for agricultural emergency monitoring systems. Computer Standards & Interfaces, 36(2), 288–299.CrossRef
11.
Zurück zum Zitat Bapat, V., Kale, P., Shinde, V., Deshpande, N., & Shaligram, A. (2017). WSN application for crop protection to divert animal intrusions in the agricultural land. Computers and Electronics in Agriculture, 133, 88–96.CrossRef Bapat, V., Kale, P., Shinde, V., Deshpande, N., & Shaligram, A. (2017). WSN application for crop protection to divert animal intrusions in the agricultural land. Computers and Electronics in Agriculture, 133, 88–96.CrossRef
12.
Zurück zum Zitat Portz, G., Molin, J. P., & Jasper, J. (2012). Active crop sensor to detect variability of nitrogen supply and biomass on sugarcane fields. Precision Agriculture, 13(1), 33–44.CrossRef Portz, G., Molin, J. P., & Jasper, J. (2012). Active crop sensor to detect variability of nitrogen supply and biomass on sugarcane fields. Precision Agriculture, 13(1), 33–44.CrossRef
13.
Zurück zum Zitat Reiser, D., Paraforos, D. S., Khan, M. T., Griepentrog, H. W., & Vázquez-Arellano, M. (2017). Autonomous field navigation, data acquisition and node location in wireless sensor networks. Precision Agriculture, 18(3), 279–292.CrossRef Reiser, D., Paraforos, D. S., Khan, M. T., Griepentrog, H. W., & Vázquez-Arellano, M. (2017). Autonomous field navigation, data acquisition and node location in wireless sensor networks. Precision Agriculture, 18(3), 279–292.CrossRef
14.
Zurück zum Zitat Smiljkovikj, K., & Gavrilovska, L. (2014). SmartWine: Intelligent end-to-end cloud-based monitoring system. Wireless Personal Communications, 78(3), 1777–1788.CrossRef Smiljkovikj, K., & Gavrilovska, L. (2014). SmartWine: Intelligent end-to-end cloud-based monitoring system. Wireless Personal Communications, 78(3), 1777–1788.CrossRef
15.
Zurück zum Zitat Díaz, S. E., Pérez, J. C., Mateos, A. C., Marinescu, M. C., & Guerra, B. B. (2011). A novel methodology for the monitoring of the agricultural production process based on wireless sensor networks. Computers and Electronics in Agriculture, 76(2), 252–265.CrossRef Díaz, S. E., Pérez, J. C., Mateos, A. C., Marinescu, M. C., & Guerra, B. B. (2011). A novel methodology for the monitoring of the agricultural production process based on wireless sensor networks. Computers and Electronics in Agriculture, 76(2), 252–265.CrossRef
16.
Zurück zum Zitat Zhu, B., Han, W., Wang, Y., Wang, N., Chen, Y., & Guo, C. (2014). Development and evaluation of a wireless sensor network monitoring system in various agricultural environments. Journal of Microwave Power and Electromagnetic Energy, 48(3), 170–183.CrossRef Zhu, B., Han, W., Wang, Y., Wang, N., Chen, Y., & Guo, C. (2014). Development and evaluation of a wireless sensor network monitoring system in various agricultural environments. Journal of Microwave Power and Electromagnetic Energy, 48(3), 170–183.CrossRef
17.
Zurück zum Zitat Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297–307.CrossRef Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297–307.CrossRef
18.
Zurück zum Zitat Yu, X., Wu, P., Han, W., & Zhang, Z. (2013). A survey on wireless sensor network infrastructure for agriculture. Computer Standards & Interfaces, 35(1), 59–64.CrossRef Yu, X., Wu, P., Han, W., & Zhang, Z. (2013). A survey on wireless sensor network infrastructure for agriculture. Computer Standards & Interfaces, 35(1), 59–64.CrossRef
19.
Zurück zum Zitat Abouzar, P., Michelson, D. G., & Hamdi, M. (2016). RSSI-based distributed self-localization for wireless sensor networks used in precision agriculture. IEEE Transactions on Wireless Communications, 15(10), 6638–6650.CrossRef Abouzar, P., Michelson, D. G., & Hamdi, M. (2016). RSSI-based distributed self-localization for wireless sensor networks used in precision agriculture. IEEE Transactions on Wireless Communications, 15(10), 6638–6650.CrossRef
20.
Zurück zum Zitat El-Kader, S. M. A., & El-Basioni, B. M. M. (2013). Precision farming solution in Egypt using the wireless sensor network technology. Egyptian Informatics Journal, 14(3), 221–233.CrossRef El-Kader, S. M. A., & El-Basioni, B. M. M. (2013). Precision farming solution in Egypt using the wireless sensor network technology. Egyptian Informatics Journal, 14(3), 221–233.CrossRef
21.
Zurück zum Zitat Georgieva, T., Paskova, N., Gaazi, B., Todorov, G., & Daskalov, P. (2016). Design of wireless sensor network for monitoring of soil quality parameters. Agriculture and Agricultural Science Procedia, 10, 431–437.CrossRef Georgieva, T., Paskova, N., Gaazi, B., Todorov, G., & Daskalov, P. (2016). Design of wireless sensor network for monitoring of soil quality parameters. Agriculture and Agricultural Science Procedia, 10, 431–437.CrossRef
22.
Zurück zum Zitat Kaiwartya, O., Abdullah, A. H., Cao, Y., Raw, R. S., Kumar, S., Lobiyal, D. K., et al. (2016). T-MQM: Testbed-based multi-metric quality measurement of sensor deployment for precision agriculture—A case study. IEEE Sensors Journal, 16(23), 8649–8664. Kaiwartya, O., Abdullah, A. H., Cao, Y., Raw, R. S., Kumar, S., Lobiyal, D. K., et al. (2016). T-MQM: Testbed-based multi-metric quality measurement of sensor deployment for precision agriculture—A case study. IEEE Sensors Journal, 16(23), 8649–8664.
23.
Zurück zum Zitat Tan Lam, P., Le Quang, T., Le Nguyen, N., & Dat Nguyen, S. (2018). Wireless sensing modules for rural monitoring and precision agriculture applications. Journal of Information and Telecommunication, 2(1), 107–123.CrossRef Tan Lam, P., Le Quang, T., Le Nguyen, N., & Dat Nguyen, S. (2018). Wireless sensing modules for rural monitoring and precision agriculture applications. Journal of Information and Telecommunication, 2(1), 107–123.CrossRef
24.
Zurück zum Zitat An, W., Ci, S., Luo, H., Wu, D., Adamchuk, V., Sharif, H., et al. (2015). Effective sensor deployment based on field information coverage in precision agriculture. Wireless Communications and Mobile Computing, 15(12), 1606–1620.CrossRef An, W., Ci, S., Luo, H., Wu, D., Adamchuk, V., Sharif, H., et al. (2015). Effective sensor deployment based on field information coverage in precision agriculture. Wireless Communications and Mobile Computing, 15(12), 1606–1620.CrossRef
25.
Zurück zum Zitat Lee, W. S., & Ehsani, R. (2015). Sensing systems for precision agriculture in Florida. Computers and Electronics in Agriculture, 112, 2–9.CrossRef Lee, W. S., & Ehsani, R. (2015). Sensing systems for precision agriculture in Florida. Computers and Electronics in Agriculture, 112, 2–9.CrossRef
26.
Zurück zum Zitat Valente, J., Sanz, D., Barrientos, A., Cerro, J. D., Ribeiro, Á., & Rossi, C. (2011). An air-ground wireless sensor network for crop monitoring. Sensors, 11(6), 6088–6108.CrossRef Valente, J., Sanz, D., Barrientos, A., Cerro, J. D., Ribeiro, Á., & Rossi, C. (2011). An air-ground wireless sensor network for crop monitoring. Sensors, 11(6), 6088–6108.CrossRef
27.
Zurück zum Zitat Zhang, Z., Wu, P., Han, W., & Yu, X. (2017). Remote monitoring system for agricultural information based on wireless sensor network. Journal of the Chinese Institute of Engineers, 40(1), 75–81.CrossRef Zhang, Z., Wu, P., Han, W., & Yu, X. (2017). Remote monitoring system for agricultural information based on wireless sensor network. Journal of the Chinese Institute of Engineers, 40(1), 75–81.CrossRef
28.
Zurück zum Zitat Li, X. H., Cheng, X., Yan, K., & Gong, P. (2010). A monitoring system for vegetable greenhouses based on a wireless sensor network. Sensors, 10(10), 8963–8980.CrossRef Li, X. H., Cheng, X., Yan, K., & Gong, P. (2010). A monitoring system for vegetable greenhouses based on a wireless sensor network. Sensors, 10(10), 8963–8980.CrossRef
29.
Zurück zum Zitat Park, D. H., & Park, J. W. (2011). Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention. Sensors, 11(4), 3640–3651.CrossRef Park, D. H., & Park, J. W. (2011). Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention. Sensors, 11(4), 3640–3651.CrossRef
30.
Zurück zum Zitat Mesas-Carrascosa, F. J., Santano, D. V., Meroño, J. E., de la Orden, M. S., & García-Ferrer, A. (2015). Open source hardware to monitor environmental parameters in precision agriculture. Biosystems Engineering, 137, 73–83.CrossRef Mesas-Carrascosa, F. J., Santano, D. V., Meroño, J. E., de la Orden, M. S., & García-Ferrer, A. (2015). Open source hardware to monitor environmental parameters in precision agriculture. Biosystems Engineering, 137, 73–83.CrossRef
31.
Zurück zum Zitat Gutiérrez, J., Villa-Medina, J. F., Nieto-Garibay, A., & Porta-Gándara, M. Á. (2014). Automated irrigation system using a wireless sensor network and GPRS module. IEEE Transactions on Instrumentation and Measurement, 63(1), 166–176.CrossRef Gutiérrez, J., Villa-Medina, J. F., Nieto-Garibay, A., & Porta-Gándara, M. Á. (2014). Automated irrigation system using a wireless sensor network and GPRS module. IEEE Transactions on Instrumentation and Measurement, 63(1), 166–176.CrossRef
32.
Zurück zum Zitat Levy, D., Coleman, W. K., & Veilleux, R. E. (2013). Adaptation of potato to water shortage: irrigation management and enhancement of tolerance to drought and salinity. American Journal of Potato Research, 90(2), 186–206.CrossRef Levy, D., Coleman, W. K., & Veilleux, R. E. (2013). Adaptation of potato to water shortage: irrigation management and enhancement of tolerance to drought and salinity. American Journal of Potato Research, 90(2), 186–206.CrossRef
33.
Zurück zum Zitat Hedley, C. B., Roudier, P., Yule, I. J., Ekanayake, J., & Bradbury, S. (2013). Soil water status and water table depth modelling using electromagnetic surveys for precision irrigation scheduling. Geoderma, 199, 22–29.CrossRef Hedley, C. B., Roudier, P., Yule, I. J., Ekanayake, J., & Bradbury, S. (2013). Soil water status and water table depth modelling using electromagnetic surveys for precision irrigation scheduling. Geoderma, 199, 22–29.CrossRef
34.
Zurück zum Zitat Navarro-Hellín, H., Torres-Sánchez, R., Soto-Valles, F., Albaladejo-Pérez, C., López-Riquelme, J. A., & Domingo-Miguel, R. (2015). A wireless sensors architecture for efficient irrigation water management. Agricultural Water Management, 151, 64–74.CrossRef Navarro-Hellín, H., Torres-Sánchez, R., Soto-Valles, F., Albaladejo-Pérez, C., López-Riquelme, J. A., & Domingo-Miguel, R. (2015). A wireless sensors architecture for efficient irrigation water management. Agricultural Water Management, 151, 64–74.CrossRef
35.
Zurück zum Zitat Nolz, R., Kammerer, G., & Cepuder, P. (2013). Calibrating soil water potential sensors integrated into a wireless monitoring network. Agricultural Water Management, 116, 12–20.CrossRef Nolz, R., Kammerer, G., & Cepuder, P. (2013). Calibrating soil water potential sensors integrated into a wireless monitoring network. Agricultural Water Management, 116, 12–20.CrossRef
36.
Zurück zum Zitat Viani, F., Bertolli, M., Salucci, M., & Polo, A. (2017). Low-cost wireless monitoring and decision support for water saving in agriculture. IEEE Sensors Journal, 17(13), 4299–4309.CrossRef Viani, F., Bertolli, M., Salucci, M., & Polo, A. (2017). Low-cost wireless monitoring and decision support for water saving in agriculture. IEEE Sensors Journal, 17(13), 4299–4309.CrossRef
37.
Zurück zum Zitat Kim, Y., Evans, R. G., & Iversen, W. M. (2008). Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Transactions on Instrumentation and Measurement, 57(7), 1379–1387.CrossRef Kim, Y., Evans, R. G., & Iversen, W. M. (2008). Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Transactions on Instrumentation and Measurement, 57(7), 1379–1387.CrossRef
38.
Zurück zum Zitat Zhao, W., Li, J., Yang, R., & Li, Y. (2018). Determining placement criteria of moisture sensors through temporal stability analysis of soil water contents for a variable rate irrigation system. Precision Agriculture, 19(4), 648–665.CrossRef Zhao, W., Li, J., Yang, R., & Li, Y. (2018). Determining placement criteria of moisture sensors through temporal stability analysis of soil water contents for a variable rate irrigation system. Precision Agriculture, 19(4), 648–665.CrossRef
39.
Zurück zum Zitat Chávez, J. L., Pierce, F. J., Elliott, T. V., Evans, R. G., Kim, Y., & Iversen, W. M. (2010). A remote irrigation monitoring and control system (RIMCS) for continuous move systems. Part B: Field testing and results. Precision Agriculture, 11(1), 11–26.CrossRef Chávez, J. L., Pierce, F. J., Elliott, T. V., Evans, R. G., Kim, Y., & Iversen, W. M. (2010). A remote irrigation monitoring and control system (RIMCS) for continuous move systems. Part B: Field testing and results. Precision Agriculture, 11(1), 11–26.CrossRef
40.
Zurück zum Zitat Maurya, S., & Jain, V. K. (2016). Fuzzy based energy efficient sensor network protocol for precision agriculture. Computers and Electronics in Agriculture, 130, 20–37.CrossRef Maurya, S., & Jain, V. K. (2016). Fuzzy based energy efficient sensor network protocol for precision agriculture. Computers and Electronics in Agriculture, 130, 20–37.CrossRef
41.
Zurück zum Zitat Sawant, S., Durbha, S. S., & Jagarlapudi, A. (2017). Interoperable agro-meteorological observation and analysis platform for precision agriculture: A case study in citrus crop water requirement estimation. Computers and Electronics in Agriculture, 138, 175–187.CrossRef Sawant, S., Durbha, S. S., & Jagarlapudi, A. (2017). Interoperable agro-meteorological observation and analysis platform for precision agriculture: A case study in citrus crop water requirement estimation. Computers and Electronics in Agriculture, 138, 175–187.CrossRef
42.
Zurück zum Zitat Kim, Y., & Evans, R. G. (2009). Software design for wireless sensor-based site-specific irrigation. Computers and Electronics in Agriculture, 66(2), 159–165.CrossRef Kim, Y., & Evans, R. G. (2009). Software design for wireless sensor-based site-specific irrigation. Computers and Electronics in Agriculture, 66(2), 159–165.CrossRef
43.
Zurück zum Zitat Coates, R. W., Delwiche, M. J., Broad, A., & Holler, M. (2013). Wireless sensor network with irrigation valve control. Computers and Electronics in Agriculture, 96, 13–22.CrossRef Coates, R. W., Delwiche, M. J., Broad, A., & Holler, M. (2013). Wireless sensor network with irrigation valve control. Computers and Electronics in Agriculture, 96, 13–22.CrossRef
44.
Zurück zum Zitat Nikolidakis, S. A., Kandris, D., Vergados, D. D., & Douligeris, C. (2015). Energy efficient automated control of irrigation in agriculture by using wireless sensor networks. Computers and Electronics in Agriculture, 113, 154–163.MATHCrossRef Nikolidakis, S. A., Kandris, D., Vergados, D. D., & Douligeris, C. (2015). Energy efficient automated control of irrigation in agriculture by using wireless sensor networks. Computers and Electronics in Agriculture, 113, 154–163.MATHCrossRef
45.
Zurück zum Zitat Nagarajan, G., & Minu, R. I. (2018). Wireless soil monitoring sensor for sprinkler irrigation automation system. Wireless Personal Communications, 98(2), 1835–1851.CrossRef Nagarajan, G., & Minu, R. I. (2018). Wireless soil monitoring sensor for sprinkler irrigation automation system. Wireless Personal Communications, 98(2), 1835–1851.CrossRef
46.
Zurück zum Zitat Goumopoulos, C., O’Flynn, B., & Kameas, A. (2014). Automated zone-specific irrigation with wireless sensor/actuator network and adaptable decision support. Computers and Electronics in Agriculture, 105, 20–33.CrossRef Goumopoulos, C., O’Flynn, B., & Kameas, A. (2014). Automated zone-specific irrigation with wireless sensor/actuator network and adaptable decision support. Computers and Electronics in Agriculture, 105, 20–33.CrossRef
47.
Zurück zum Zitat Kim, Y., Schmid, T., Charbiwala, Z. M., Friedman, J., & Srivastava, M. B. (2008). NAWMS: Nonintrusive autonomous water monitoring system. In Proceedings of the 6th ACM conference on embedded network sensor systems (pp. 309–322). ACM. Kim, Y., Schmid, T., Charbiwala, Z. M., Friedman, J., & Srivastava, M. B. (2008). NAWMS: Nonintrusive autonomous water monitoring system. In Proceedings of the 6th ACM conference on embedded network sensor systems (pp. 309–322). ACM.
48.
Zurück zum Zitat Masseroni, D., Facchi, A., Depoli, E. V., Renga, F. M., & Gandolfi, C. (2016). Irrig-OH: An open-hardware device for soil water potential monitoring and irrigation management. Irrigation and Drainage, 65(5), 750–761.CrossRef Masseroni, D., Facchi, A., Depoli, E. V., Renga, F. M., & Gandolfi, C. (2016). Irrig-OH: An open-hardware device for soil water potential monitoring and irrigation management. Irrigation and Drainage, 65(5), 750–761.CrossRef
49.
Zurück zum Zitat Wong, B. P., & Kerkez, B. (2016). Real-time environmental sensor data: An application to water quality using web services. Environmental Modelling and Software, 84, 505–517.CrossRef Wong, B. P., & Kerkez, B. (2016). Real-time environmental sensor data: An application to water quality using web services. Environmental Modelling and Software, 84, 505–517.CrossRef
51.
Zurück zum Zitat Rossel, R. A. V., & Bouma, J. (2016). Soil sensing: A new paradigm for agriculture. Agricultural Systems, 148, 71–74.CrossRef Rossel, R. A. V., & Bouma, J. (2016). Soil sensing: A new paradigm for agriculture. Agricultural Systems, 148, 71–74.CrossRef
52.
Zurück zum Zitat Bernardi, A. D. C., Bettiol, G. M., Ferreira, R. D. P., Santos, K. E. L., Rabello, L. M., & Inamasu, R. Y. (2016). Spatial variability of soil properties and yield of a grazed alfalfa pasture in Brazil. Precision Agriculture, 17(6), 737–752.CrossRef Bernardi, A. D. C., Bettiol, G. M., Ferreira, R. D. P., Santos, K. E. L., Rabello, L. M., & Inamasu, R. Y. (2016). Spatial variability of soil properties and yield of a grazed alfalfa pasture in Brazil. Precision Agriculture, 17(6), 737–752.CrossRef
53.
Zurück zum Zitat Kuang, B., & Mouazen, A. M. (2013). Effect of spiking strategy and ratio on calibration of on-line visible and near infrared soil sensor for measurement in European farms. Soil and Tillage Research, 128, 125–136.CrossRef Kuang, B., & Mouazen, A. M. (2013). Effect of spiking strategy and ratio on calibration of on-line visible and near infrared soil sensor for measurement in European farms. Soil and Tillage Research, 128, 125–136.CrossRef
54.
Zurück zum Zitat Pedrera-Parrilla, A., Van De Vijver, E., Van Meirvenne, M., Espejo-Pérez, A. J., Giráldez, J. V., & Vanderlinden, K. (2016). Apparent electrical conductivity measurements in an olive orchard under wet and dry soil conditions: significance for clay and soil water content mapping. Precision Agriculture, 17(5), 531–545.CrossRef Pedrera-Parrilla, A., Van De Vijver, E., Van Meirvenne, M., Espejo-Pérez, A. J., Giráldez, J. V., & Vanderlinden, K. (2016). Apparent electrical conductivity measurements in an olive orchard under wet and dry soil conditions: significance for clay and soil water content mapping. Precision Agriculture, 17(5), 531–545.CrossRef
55.
Zurück zum Zitat Fu, W., Tunney, H., & Zhang, C. (2010). Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil and Tillage Research, 106(2), 185–193.CrossRef Fu, W., Tunney, H., & Zhang, C. (2010). Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil and Tillage Research, 106(2), 185–193.CrossRef
56.
Zurück zum Zitat Bogena, H. R., Huisman, J. A., Oberdörster, C., & Vereecken, H. (2007). Evaluation of a low-cost soil water content sensor for wireless network applications. Journal of Hydrology, 344(1–2), 32–42.CrossRef Bogena, H. R., Huisman, J. A., Oberdörster, C., & Vereecken, H. (2007). Evaluation of a low-cost soil water content sensor for wireless network applications. Journal of Hydrology, 344(1–2), 32–42.CrossRef
57.
Zurück zum Zitat Knadel, M., Thomsen, A., Schelde, K., & Greve, M. H. (2015). Soil organic carbon and particle sizes mapping using vis–NIR, EC and temperature mobile sensor platform. Computers and Electronics in Agriculture, 114, 134–144.CrossRef Knadel, M., Thomsen, A., Schelde, K., & Greve, M. H. (2015). Soil organic carbon and particle sizes mapping using vis–NIR, EC and temperature mobile sensor platform. Computers and Electronics in Agriculture, 114, 134–144.CrossRef
58.
Zurück zum Zitat Li, Z., Wang, N., Franzen, A., Taher, P., Godsey, C., Zhang, H., et al. (2014). Practical deployment of an in-field soil property wireless sensor network. Computer Standards & Interfaces, 36(2), 278–287.CrossRef Li, Z., Wang, N., Franzen, A., Taher, P., Godsey, C., Zhang, H., et al. (2014). Practical deployment of an in-field soil property wireless sensor network. Computer Standards & Interfaces, 36(2), 278–287.CrossRef
59.
Zurück zum Zitat Ritsema, C. J., Kuipers, H., Kleiboer, L., Van Den Elsen, E., Oostindie, K., Wesseling, J. G., et al. (2009). A new wireless underground network system for continuous monitoring of soil water contents. Water resources research, 45(4), 1–9.CrossRef Ritsema, C. J., Kuipers, H., Kleiboer, L., Van Den Elsen, E., Oostindie, K., Wesseling, J. G., et al. (2009). A new wireless underground network system for continuous monitoring of soil water contents. Water resources research, 45(4), 1–9.CrossRef
60.
Zurück zum Zitat Majone, B., Viani, F., Filippi, E., Bellin, A., Massa, A., Toller, G., et al. (2013). Wireless sensor network deployment for monitoring soil moisture dynamics at the field scale. Procedia Environmental Sciences, 19, 426–435.CrossRef Majone, B., Viani, F., Filippi, E., Bellin, A., Massa, A., Toller, G., et al. (2013). Wireless sensor network deployment for monitoring soil moisture dynamics at the field scale. Procedia Environmental Sciences, 19, 426–435.CrossRef
61.
Zurück zum Zitat Kizito, F., Campbell, C. S., Campbell, G. S., Cobos, D. R., Teare, B. L., Carter, B., et al. (2008). Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. Journal of Hydrology, 352(3–4), 367–378.CrossRef Kizito, F., Campbell, C. S., Campbell, G. S., Cobos, D. R., Teare, B. L., Carter, B., et al. (2008). Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. Journal of Hydrology, 352(3–4), 367–378.CrossRef
62.
Zurück zum Zitat Cardenas-Lailhacar, B., & Dukes, M. D. (2010). Precision of soil moisture sensor irrigation controllers under field conditions. Agricultural Water Management, 97(5), 666–672.CrossRef Cardenas-Lailhacar, B., & Dukes, M. D. (2010). Precision of soil moisture sensor irrigation controllers under field conditions. Agricultural Water Management, 97(5), 666–672.CrossRef
63.
Zurück zum Zitat Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., et al. (2011). Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sensing of Environment, 115(12), 3390–3408.CrossRef Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., et al. (2011). Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sensing of Environment, 115(12), 3390–3408.CrossRef
64.
Zurück zum Zitat Ge, Y., Thomasson, J. A., & Sui, R. (2011). Remote sensing of soil properties in precision agriculture: A review. Frontiers of Earth Science, 5(3), 229–238. Ge, Y., Thomasson, J. A., & Sui, R. (2011). Remote sensing of soil properties in precision agriculture: A review. Frontiers of Earth Science, 5(3), 229–238.
65.
Zurück zum Zitat Vuran, M. C., & Akyildiz, I. F. (2010). Channel model and analysis for wireless underground sensor networks in soil medium. Physical Communication, 3(4), 245–254.CrossRef Vuran, M. C., & Akyildiz, I. F. (2010). Channel model and analysis for wireless underground sensor networks in soil medium. Physical Communication, 3(4), 245–254.CrossRef
66.
Zurück zum Zitat Badia-Melis, R., Garcia-Hierro, J., Ruiz-Garcia, L., Jiménez-Ariza, T., Villalba, J. I. R., & Barreiro, P. (2014). Assessing the dynamic behavior of WSN motes and RFID semi-passive tags for temperature monitoring. Computers and Electronics in Agriculture, 103, 11–16.CrossRef Badia-Melis, R., Garcia-Hierro, J., Ruiz-Garcia, L., Jiménez-Ariza, T., Villalba, J. I. R., & Barreiro, P. (2014). Assessing the dynamic behavior of WSN motes and RFID semi-passive tags for temperature monitoring. Computers and Electronics in Agriculture, 103, 11–16.CrossRef
67.
Zurück zum Zitat Green, O., Nadimi, E. S., Blanes-Vidal, V., Jørgensen, R. N., Storm, I. M. D., & Sørensen, C. G. (2009). Monitoring and modeling temperature variations inside silage stacks using novel wireless sensor networks. Computers and Electronics in Agriculture, 69(2), 149–157.CrossRef Green, O., Nadimi, E. S., Blanes-Vidal, V., Jørgensen, R. N., Storm, I. M. D., & Sørensen, C. G. (2009). Monitoring and modeling temperature variations inside silage stacks using novel wireless sensor networks. Computers and Electronics in Agriculture, 69(2), 149–157.CrossRef
68.
Zurück zum Zitat Jahnavi, V. S., & Ahamed, S. F. (2015). Smart wireless sensor network for automated greenhouse. IETE Journal of Research, 61(2), 180–185.CrossRef Jahnavi, V. S., & Ahamed, S. F. (2015). Smart wireless sensor network for automated greenhouse. IETE Journal of Research, 61(2), 180–185.CrossRef
69.
Zurück zum Zitat Jackson, T., Mansfield, K., Saafi, M., Colman, T., & Romine, P. (2008). Measuring soil temperature and moisture using wireless MEMS sensors. Measurement, 41(4), 381–390.CrossRef Jackson, T., Mansfield, K., Saafi, M., Colman, T., & Romine, P. (2008). Measuring soil temperature and moisture using wireless MEMS sensors. Measurement, 41(4), 381–390.CrossRef
70.
Zurück zum Zitat Martínez, J., Egea, G., Agüera, J., & Pérez-Ruiz, M. (2017). A cost-effective canopy temperature measurement system for precision agriculture: a case study on sugar beet. Precision Agriculture, 18(1), 95–110.CrossRef Martínez, J., Egea, G., Agüera, J., & Pérez-Ruiz, M. (2017). A cost-effective canopy temperature measurement system for precision agriculture: a case study on sugar beet. Precision Agriculture, 18(1), 95–110.CrossRef
71.
Zurück zum Zitat Pierce, F. J., & Elliott, T. V. (2008). Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington. Computers and Electronics in Agriculture, 61(1), 32–43.CrossRef Pierce, F. J., & Elliott, T. V. (2008). Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington. Computers and Electronics in Agriculture, 61(1), 32–43.CrossRef
72.
Zurück zum Zitat Mahan, J. R., Conaty, W., Neilsen, J., Payton, P., & Cox, S. B. (2010). Field performance in agricultural settings of a wireless temperature monitoring system based on a low-cost infrared sensor. Computers and Electronics in Agriculture, 71(2), 176–181.CrossRef Mahan, J. R., Conaty, W., Neilsen, J., Payton, P., & Cox, S. B. (2010). Field performance in agricultural settings of a wireless temperature monitoring system based on a low-cost infrared sensor. Computers and Electronics in Agriculture, 71(2), 176–181.CrossRef
73.
Zurück zum Zitat Mendez, G. R., & Mukhopadhyay, S. C. (2013). A Wi-Fi based smart wireless sensor network for an agricultural environment. In Wireless sensor networks and ecological monitoring (pp. 247–268). Springer, Berlin. Mendez, G. R., & Mukhopadhyay, S. C. (2013). A Wi-Fi based smart wireless sensor network for an agricultural environment. In Wireless sensor networks and ecological monitoring (pp. 247–268). Springer, Berlin.
74.
Zurück zum Zitat Zhang, J., Li, W., Han, N., & Kan, J. (2008). Forest fire detection system based on a ZigBee wireless sensor network. Frontiers of Forestry in China, 3(3), 369–374.CrossRef Zhang, J., Li, W., Han, N., & Kan, J. (2008). Forest fire detection system based on a ZigBee wireless sensor network. Frontiers of Forestry in China, 3(3), 369–374.CrossRef
75.
Zurück zum Zitat Versichele, M., Neutens, T., Delafontaine, M., & Van de Weghe, N. (2012). The use of Bluetooth for analysing spatiotemporal dynamics of human movement at mass events: A case study of the Ghent Festivities. Applied Geography, 32(2), 208–220.CrossRef Versichele, M., Neutens, T., Delafontaine, M., & Van de Weghe, N. (2012). The use of Bluetooth for analysing spatiotemporal dynamics of human movement at mass events: A case study of the Ghent Festivities. Applied Geography, 32(2), 208–220.CrossRef
76.
Zurück zum Zitat Leroy, D., Detal, G., Cathalo, J., Manulis, M., Koeune, F., & Bonaventure, O. (2011). SWISH: Secure WiFi sharing. Computer Networks, 55(7), 1614–1630.CrossRef Leroy, D., Detal, G., Cathalo, J., Manulis, M., Koeune, F., & Bonaventure, O. (2011). SWISH: Secure WiFi sharing. Computer Networks, 55(7), 1614–1630.CrossRef
77.
Zurück zum Zitat Gu, Q. H., Lu, C. W., Li, F. B., & Wan, C. Y. (2008). Monitoring dispatch information system of trucks and shovels in an open pit based on GIS/GPS/GPRS. Journal of China University of Mining and Technology, 18(2), 288–292.CrossRef Gu, Q. H., Lu, C. W., Li, F. B., & Wan, C. Y. (2008). Monitoring dispatch information system of trucks and shovels in an open pit based on GIS/GPS/GPRS. Journal of China University of Mining and Technology, 18(2), 288–292.CrossRef
78.
Zurück zum Zitat Gungor, V. C., & Lambert, F. C. (2006). A survey on communication networks for electric system automation. Computer Networks, 50(7), 877–897.CrossRef Gungor, V. C., & Lambert, F. C. (2006). A survey on communication networks for electric system automation. Computer Networks, 50(7), 877–897.CrossRef
Metadaten
Titel
Applicability of Wireless Sensor Networks in Precision Agriculture: A Review
verfasst von
Divyansh Thakur
Yugal Kumar
Arvind Kumar
Pradeep Kumar Singh
Publikationsdatum
01.04.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2019
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06285-2

Weitere Artikel der Ausgabe 1/2019

Wireless Personal Communications 1/2019 Zur Ausgabe

Neuer Inhalt