Skip to main content

2018 | OriginalPaper | Buchkapitel

12. Application of Acoustic Metamaterials to Finite Amplitude Sound Wave

verfasst von : Woon Siong Gan

Erschienen in: New Acoustics Based on Metamaterials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

First, the application of finite amplitude wave to acoustical cloaking is given. This is an extension of coordinate transformations from the linear acoustic field equation to nonlinear acoustic field equation which also shows form invariance. Then, metamaterial is applied to two examples of nonlinear acoustics. First to acoustic radiation force. Metamaterial enables a negative radiation force. Previous work on negative acoustic radiation force has the limitation only to Bessel beam. The second example is to apply to force of levitation. Metamaterial enables the control and manipulation of the force of levitation and allows for the levitation and suspension of larger objects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gan, W.S.: Gauge invariance approach to acoustic fields. In: Akiyama, I. (ed.) Acoustical Imaging, vol. 29, pp. 389–394. Springer, Berlin (2007) Gan, W.S.: Gauge invariance approach to acoustic fields. In: Akiyama, I. (ed.) Acoustical Imaging, vol. 29, pp. 389–394. Springer, Berlin (2007)
2.
Zurück zum Zitat Fink, M.: Time reversal of ultrasonic fields—Part I. Basic principles. IEEE Trans. Ultrasons. Ferroelectr. Freq. Control 39(5), 1–12 (2006) Fink, M.: Time reversal of ultrasonic fields—Part I. Basic principles. IEEE Trans. Ultrasons. Ferroelectr. Freq. Control 39(5), 1–12 (2006)
3.
Zurück zum Zitat Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers. Proc. USSR Acad. Sci. 30, 299–303 (1941) Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers. Proc. USSR Acad. Sci. 30, 299–303 (1941)
4.
Zurück zum Zitat Goldstone, J.: Field theories with superconductor solutions. Nuoco Cimento 19, 154–164 (1961) Goldstone, J.: Field theories with superconductor solutions. Nuoco Cimento 19, 154–164 (1961)
5.
Zurück zum Zitat Veselago, V.G.: The electrodynamics of substance with simultaneous negative values of ε and μ. Sov. Phys. Uspekhi 10(4), 509–514 (1968)CrossRef Veselago, V.G.: The electrodynamics of substance with simultaneous negative values of ε and μ. Sov. Phys. Uspekhi 10(4), 509–514 (1968)CrossRef
6.
Zurück zum Zitat Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic field. Science 312, 1780–1782 (2006)CrossRef Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic field. Science 312, 1780–1782 (2006)CrossRef
7.
Zurück zum Zitat Goffaux, C., Maseri, F., Vasseur, J.O., Djafari-Rouhani, B., Lambin, Ph: Measurements and calculation of the sound attenuation by a phononic band gap structure suitable for an insulation partition application. Appl. Phys. Lett. 83, 281 (2003)CrossRef Goffaux, C., Maseri, F., Vasseur, J.O., Djafari-Rouhani, B., Lambin, Ph: Measurements and calculation of the sound attenuation by a phononic band gap structure suitable for an insulation partition application. Appl. Phys. Lett. 83, 281 (2003)CrossRef
8.
Zurück zum Zitat Gan, W.S.: Acoustical Imaging: Techniques and Applications for Engineers, Wiley, USA, pp. 397–398 (2012) Gan, W.S.: Acoustical Imaging: Techniques and Applications for Engineers, Wiley, USA, pp. 397–398 (2012)
9.
Zurück zum Zitat Wu, J.: Acoustical tweezers. J. Acoust. Soc. Am. 89, 2140–2143 (1991)CrossRef Wu, J.: Acoustical tweezers. J. Acoust. Soc. Am. 89, 2140–2143 (1991)CrossRef
10.
Zurück zum Zitat Lenshof, A., Magnusson, C., Laurell, T.: Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. Lab Chip 12, 1210–1223 (2012)CrossRef Lenshof, A., Magnusson, C., Laurell, T.: Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. Lab Chip 12, 1210–1223 (2012)CrossRef
11.
Zurück zum Zitat Shi, J.,. Ahmed, D., Mao, X., Lin, S., Lawit, A., Huang, T.: Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9, 2890–2895 (2009) Shi, J.,. Ahmed, D., Mao, X., Lin, S., Lawit, A., Huang, T.: Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9, 2890–2895 (2009)
12.
Zurück zum Zitat Courtney, C.R.P., Ong, C.K., Drinkwater, B.W., Wilcox, P.D.: Manipulation of microparticles using phase controllable ultrasonic standing waves (EL). J. Acoust. Soc. Am. 128, 195–199 (2010) Courtney, C.R.P., Ong, C.K., Drinkwater, B.W., Wilcox, P.D.: Manipulation of microparticles using phase controllable ultrasonic standing waves (EL). J. Acoust. Soc. Am. 128, 195–199 (2010)
13.
Zurück zum Zitat Lee, J., Teh, S., Lee, A., Kim, H., Lee, C., Shung, K.: Single beam acoustic trapping. Appl. Phys. Lett. 95, 073701 (2009) Lee, J., Teh, S., Lee, A., Kim, H., Lee, C., Shung, K.: Single beam acoustic trapping. Appl. Phys. Lett. 95, 073701 (2009)
14.
Zurück zum Zitat King, L.V.: On the acoustic radiation pressure on spheres. Proc. R. Soc. A. 147(861), 212–240 (1934)CrossRef King, L.V.: On the acoustic radiation pressure on spheres. Proc. R. Soc. A. 147(861), 212–240 (1934)CrossRef
15.
Zurück zum Zitat EmbletonT, F.W.: Mean force on a sphere in a spherical sound field. I. (Theoretical). J. Acoust. Soc. Am. 26, 40–45 (1954)CrossRef EmbletonT, F.W.: Mean force on a sphere in a spherical sound field. I. (Theoretical). J. Acoust. Soc. Am. 26, 40–45 (1954)CrossRef
16.
Zurück zum Zitat Yosioka, K., Kawasima, Y.: Acoustic radiation pressure on a compressible sphere. Acustica 5, 167–173 (1955) Yosioka, K., Kawasima, Y.: Acoustic radiation pressure on a compressible sphere. Acustica 5, 167–173 (1955)
17.
Zurück zum Zitat Westervelt, P.J.: Acoustic radiation pressure. J. Acoust. Soc. Am. 29, 26–29 (1957)CrossRef Westervelt, P.J.: Acoustic radiation pressure. J. Acoust. Soc. Am. 29, 26–29 (1957)CrossRef
18.
Zurück zum Zitat Gorkov, L.P.: On the forces acting on a small particle in an acoustic field in an ideal fluid. Sov. Phys. Dokl. 6, 773–775 (1962) Gorkov, L.P.: On the forces acting on a small particle in an acoustic field in an ideal fluid. Sov. Phys. Dokl. 6, 773–775 (1962)
19.
Zurück zum Zitat Nyborg, W.L.: Radiation pressure on a small rigid sphere. J. Acoust. Soc. Am. 42, 947–952 (1967)CrossRef Nyborg, W.L.: Radiation pressure on a small rigid sphere. J. Acoust. Soc. Am. 42, 947–952 (1967)CrossRef
20.
Zurück zum Zitat Hasegawa, T., Yosioka, K.: Acoustic-radiation force on a solid elastic sphere. J. Acoust. Soc. Am. 46, 1139–1143 (1969)CrossRef Hasegawa, T., Yosioka, K.: Acoustic-radiation force on a solid elastic sphere. J. Acoust. Soc. Am. 46, 1139–1143 (1969)CrossRef
21.
Zurück zum Zitat Hasegawa, T., Kido, T., Takeda, S., Inoue, N., Matsuzawa, K.: Acoustic radiation force on a rigid sphere in the near field of a circular piston vibrator. J. Acoust. Soc. Am. 88(3), 1578–1583 (1990)CrossRef Hasegawa, T., Kido, T., Takeda, S., Inoue, N., Matsuzawa, K.: Acoustic radiation force on a rigid sphere in the near field of a circular piston vibrator. J. Acoust. Soc. Am. 88(3), 1578–1583 (1990)CrossRef
22.
Zurück zum Zitat Mitri, F.G.: Near-field single tractor-beam acoustical tweezers. Appl. Phys. Lett. 103(11), 114102 (2013) Mitri, F.G.: Near-field single tractor-beam acoustical tweezers. Appl. Phys. Lett. 103(11), 114102 (2013)
23.
Zurück zum Zitat Chen, X., Apfe, R.: Radiation force on a spherical object in an axisymmetric wave field and its application to the calibration of high-frequency transducers. J. Acoust. Soc. Am. 99, 713–724 (1996)CrossRef Chen, X., Apfe, R.: Radiation force on a spherical object in an axisymmetric wave field and its application to the calibration of high-frequency transducers. J. Acoust. Soc. Am. 99, 713–724 (1996)CrossRef
24.
Zurück zum Zitat Marston, P.L.: Axial radiation force of a Bessel beam on a sphere and direction reversal of the force. J. Acoust. Soc. Am. 120, 3518–3524 (2006)CrossRef Marston, P.L.: Axial radiation force of a Bessel beam on a sphere and direction reversal of the force. J. Acoust. Soc. Am. 120, 3518–3524 (2006)CrossRef
25.
Zurück zum Zitat Mitri, F.G.: Acoustic scattering of a high-order Bessel beam by an elastic sphere. Ann. Phys. 323, 2840–2850 (2008)CrossRef Mitri, F.G.: Acoustic scattering of a high-order Bessel beam by an elastic sphere. Ann. Phys. 323, 2840–2850 (2008)CrossRef
26.
Zurück zum Zitat Mitri, F.G.: Langevin acoustic radiation force of a high-order Bessel beam on a rigid sphere. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1059–1064 (2009)CrossRef Mitri, F.G.: Langevin acoustic radiation force of a high-order Bessel beam on a rigid sphere. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1059–1064 (2009)CrossRef
27.
Zurück zum Zitat Azarpeyvand, M.: Acoustic radiation force of a Bessel beam on a porous sphere. J. Acoust. Soc. Am. 131, 4337–4348 (2012)CrossRef Azarpeyvand, M.: Acoustic radiation force of a Bessel beam on a porous sphere. J. Acoust. Soc. Am. 131, 4337–4348 (2012)CrossRef
28.
Zurück zum Zitat Zhang, X., Zhang, G.: Acoustic radiation force of a Gaussian beam incident on spherical particles in water. Ultras. Med. Biol. 38, 2007–2017 (2012)CrossRef Zhang, X., Zhang, G.: Acoustic radiation force of a Gaussian beam incident on spherical particles in water. Ultras. Med. Biol. 38, 2007–2017 (2012)CrossRef
29.
Zurück zum Zitat Lee, J., Shung, K.K.: Radiation forces exerted on arbitrarily located sphere by acoustic tweezer. J. Acoust. Soc. Am. 120, 1084–1094 (2006)CrossRef Lee, J., Shung, K.K.: Radiation forces exerted on arbitrarily located sphere by acoustic tweezer. J. Acoust. Soc. Am. 120, 1084–1094 (2006)CrossRef
30.
Zurück zum Zitat Silva, G.T.: An expression for the radiation force exerted by an acoustic beam with arbitrary wavefront. J. Acoust. Soc. Am. 130, 3541–3545 (2011)CrossRef Silva, G.T.: An expression for the radiation force exerted by an acoustic beam with arbitrary wavefront. J. Acoust. Soc. Am. 130, 3541–3545 (2011)CrossRef
31.
Zurück zum Zitat Silva, G.T.: Off-axis scattering of an ultrasound Bessel beam by a sphere. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 298–304 (2011)CrossRef Silva, G.T.: Off-axis scattering of an ultrasound Bessel beam by a sphere. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 298–304 (2011)CrossRef
32.
Zurück zum Zitat Mitri, F.G., Silva, G.T.: Off-axial acoustic scattering of a high-order Bessel vortex beam by a rigid sphere. Wave Motion 48, 392–400 (2011)CrossRef Mitri, F.G., Silva, G.T.: Off-axial acoustic scattering of a high-order Bessel vortex beam by a rigid sphere. Wave Motion 48, 392–400 (2011)CrossRef
33.
Zurück zum Zitat Silva, G.T., Lobo, T.P., Mitri, F.G.: Radiation torque produced by an arbitrary acoustic wave. Europhys. Phys. Lett. 97, 54003 (2012) Silva, G.T., Lobo, T.P., Mitri, F.G.: Radiation torque produced by an arbitrary acoustic wave. Europhys. Phys. Lett. 97, 54003 (2012)
34.
Zurück zum Zitat Silva, G.T., Lopes, J.H., Mitri, F.G.: Off-axial acoustic radiation force of repulsor and tractor Bessel beams on a sphere. IEEE Trans. Ultras. Ferroel. Freq. Control 60, 1207–1212 (2012) Silva, G.T., Lopes, J.H., Mitri, F.G.: Off-axial acoustic radiation force of repulsor and tractor Bessel beams on a sphere. IEEE Trans. Ultras. Ferroel. Freq. Control 60, 1207–1212 (2012)
35.
Zurück zum Zitat Gouesbet, G., Letellier, C., Ren, K.F., Gréhan, G.: Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz-Mie theory. Appl. Opt. 35, 1537–1542 (1996) Gouesbet, G., Letellier, C., Ren, K.F., Gréhan, G.: Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz-Mie theory. Appl. Opt. 35, 1537–1542 (1996)
36.
Zurück zum Zitat Martin, P.A.: Multiple Scattering Interaction of Time-Harmonic Waves with N Obstacles, Chap. 3. Cambridge University Press, Cambridge, UK (2006) Martin, P.A.: Multiple Scattering Interaction of Time-Harmonic Waves with N Obstacles, Chap. 3. Cambridge University Press, Cambridge, UK (2006)
37.
Zurück zum Zitat Moine, O., Stout, B.: Optical force calculations in arbitrary beams by use of the vector addition theorem. J. Opt. Soc. Am. B 22, 1620–1631 (2005) Moine, O., Stout, B.: Optical force calculations in arbitrary beams by use of the vector addition theorem. J. Opt. Soc. Am. B 22, 1620–1631 (2005)
38.
Zurück zum Zitat Edwards, P.L., Jarzynski, J.: Scattering of focused ultrasound by spherical microparticles. J. Acoust. Soc. Am. 74, 1006–1012 (1983)CrossRef Edwards, P.L., Jarzynski, J.: Scattering of focused ultrasound by spherical microparticles. J. Acoust. Soc. Am. 74, 1006–1012 (1983)CrossRef
39.
Zurück zum Zitat Williams, E.G.: Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography, Chap. 6. Academic Press Inc., San Diego, CA (1999) Williams, E.G.: Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography, Chap. 6. Academic Press Inc., San Diego, CA (1999)
40.
Zurück zum Zitat Magnusson, A., Laurell, T.: Acoustofluidics 8: Applications of acoustophoresis in continuous flow microsystems. Lab Chip 12, 1210–1223 (2012) Magnusson, A., Laurell, T.: Acoustofluidics 8: Applications of acoustophoresis in continuous flow microsystems. Lab Chip 12, 1210–1223 (2012)
41.
Zurück zum Zitat Zhao, S., Wallaschek, J.: A standing wave acoustic levitation system for large planar objects. Arch. Appl. Mech. 81(2), 123–139 (2014) Zhao, S., Wallaschek, J.: A standing wave acoustic levitation system for large planar objects. Arch. Appl. Mech. 81(2), 123–139 (2014)
42.
Zurück zum Zitat Marston, P.L.: Axial radiation force of a Bessel beam on a sphere and direction reversal of the force. J. Acoust. Soc. Am. 120, 3518–3524 (2006)CrossRef Marston, P.L.: Axial radiation force of a Bessel beam on a sphere and direction reversal of the force. J. Acoust. Soc. Am. 120, 3518–3524 (2006)CrossRef
Metadaten
Titel
Application of Acoustic Metamaterials to Finite Amplitude Sound Wave
verfasst von
Woon Siong Gan
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6376-3_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.