Skip to main content
Erschienen in: Computational Mechanics 5/2018

20.02.2018 | Original Paper

Application of an enriched FEM technique in thermo-mechanical contact problems

verfasst von: A. R. Khoei, B. Bahmani

Erschienen in: Computational Mechanics | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, an enriched FEM technique is employed for thermo-mechanical contact problem based on the extended finite element method. A fully coupled thermo-mechanical contact formulation is presented in the framework of X-FEM technique that takes into account the deformable continuum mechanics and the transient heat transfer analysis. The Coulomb frictional law is applied for the mechanical contact problem and a pressure dependent thermal contact model is employed through an explicit formulation in the weak form of X-FEM method. The equilibrium equations are discretized by the Newmark time splitting method and the final set of non-linear equations are solved based on the Newton–Raphson method using a staggered algorithm. Finally, in order to illustrate the capability of the proposed computational model several numerical examples are solved and the results are compared with those reported in literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Khoei AR, Shamloo A, Azami AR (2006) Extended finite element method in plasticity forming of powder compaction with contact friction. Int J Solids Struct 43:5421–5448CrossRef Khoei AR, Shamloo A, Azami AR (2006) Extended finite element method in plasticity forming of powder compaction with contact friction. Int J Solids Struct 43:5421–5448CrossRef
2.
Zurück zum Zitat Khoei AR, Mohammadnejad T (2011) Numerical modeling of multiphase fluid flow in deforming porous media: a comparison between two- and three-phase models for seismic analysis of earth and rockfill dams. Comp Geotech 38:142–166CrossRef Khoei AR, Mohammadnejad T (2011) Numerical modeling of multiphase fluid flow in deforming porous media: a comparison between two- and three-phase models for seismic analysis of earth and rockfill dams. Comp Geotech 38:142–166CrossRef
3.
Zurück zum Zitat Khoei AR, Hirmand M, Vahab M, Bazargan M (2015) An enriched FEM technique for modeling hydraulically-driven cohesive fracture propagation in impermeable media with frictional natural faults; Numerical and experimental investigations. Int J Numer Methods Eng 104:439–468MathSciNetCrossRef Khoei AR, Hirmand M, Vahab M, Bazargan M (2015) An enriched FEM technique for modeling hydraulically-driven cohesive fracture propagation in impermeable media with frictional natural faults; Numerical and experimental investigations. Int J Numer Methods Eng 104:439–468MathSciNetCrossRef
4.
Zurück zum Zitat Khoei AR, Vahab M, Hirmand M (2016) Modeling the interaction between fluid-driven fracture and natural fault using an enriched-FEM technique. Int J Fract 197:1–24CrossRef Khoei AR, Vahab M, Hirmand M (2016) Modeling the interaction between fluid-driven fracture and natural fault using an enriched-FEM technique. Int J Fract 197:1–24CrossRef
5.
Zurück zum Zitat Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620CrossRef Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620CrossRef
6.
Zurück zum Zitat Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50:993–1013CrossRef Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50:993–1013CrossRef
7.
8.
Zurück zum Zitat Khoei AR, Haghighat E (2011) Extended finite element modeling of deformable porous media with arbitrary interfaces. Appl Math Model 35:5426–5441MathSciNetCrossRef Khoei AR, Haghighat E (2011) Extended finite element modeling of deformable porous media with arbitrary interfaces. Appl Math Model 35:5426–5441MathSciNetCrossRef
9.
Zurück zum Zitat Dolbow JE, Moës N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Comput Methods Appl Mech Eng 190:6825–6846MathSciNetCrossRef Dolbow JE, Moës N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Comput Methods Appl Mech Eng 190:6825–6846MathSciNetCrossRef
10.
Zurück zum Zitat Khoei AR, Nikbakht M (2007) An enriched finite element algorithm for numerical computation of contact friction problems. Int J Mech Sci 49:183–199CrossRef Khoei AR, Nikbakht M (2007) An enriched finite element algorithm for numerical computation of contact friction problems. Int J Mech Sci 49:183–199CrossRef
11.
Zurück zum Zitat Liu F, Borja RI (2008) A contact algorithm for frictional crack propagation with the extended finite element method. Int J Numer Meth Eng 76:1489–1512MathSciNetCrossRef Liu F, Borja RI (2008) A contact algorithm for frictional crack propagation with the extended finite element method. Int J Numer Meth Eng 76:1489–1512MathSciNetCrossRef
12.
Zurück zum Zitat Khoei AR, Vahab M (2014) A numerical contact algorithm in saturated porous media with the extended finite element method. Comput Mech 54:1089–1110MathSciNetCrossRef Khoei AR, Vahab M (2014) A numerical contact algorithm in saturated porous media with the extended finite element method. Comput Mech 54:1089–1110MathSciNetCrossRef
13.
Zurück zum Zitat Béchet E, Moës N, Wohlmuth B (2009) A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Methods Eng 78:931–954MathSciNetCrossRef Béchet E, Moës N, Wohlmuth B (2009) A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Methods Eng 78:931–954MathSciNetCrossRef
14.
Zurück zum Zitat Hautefeuille M, Annavarapu C, Dolbow JE (2012) Robust imposition of Dirichlet boundary conditions on embedded surfaces. Int J Numer Methods Eng 90:40–64MathSciNetCrossRef Hautefeuille M, Annavarapu C, Dolbow JE (2012) Robust imposition of Dirichlet boundary conditions on embedded surfaces. Int J Numer Methods Eng 90:40–64MathSciNetCrossRef
15.
Zurück zum Zitat Annavarapu C, Hautefeuille M, Dolbow JE (2014) A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface. Comp Methods Appl Mech Eng 268:417–436MathSciNetCrossRef Annavarapu C, Hautefeuille M, Dolbow JE (2014) A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface. Comp Methods Appl Mech Eng 268:417–436MathSciNetCrossRef
16.
Zurück zum Zitat Hirmand M, Vahab M, Khoei AR (2015) An augmented Lagrangian contact formulation for frictional discontinuities with the extended finite element method. Finite Elem Anal Des 107:28–43CrossRef Hirmand M, Vahab M, Khoei AR (2015) An augmented Lagrangian contact formulation for frictional discontinuities with the extended finite element method. Finite Elem Anal Des 107:28–43CrossRef
17.
Zurück zum Zitat Duflot M (2008) The extended finite element method in thermoelastic fracture mechanics. Int J Numer Methods Eng 74:827–847MathSciNetCrossRef Duflot M (2008) The extended finite element method in thermoelastic fracture mechanics. Int J Numer Methods Eng 74:827–847MathSciNetCrossRef
18.
Zurück zum Zitat Zamani A, Eslami MR (2010) Implementation of the extended finite element method for dynamic thermoelastic fracture initiation. Int J Solids Struct 47:1392–1404CrossRef Zamani A, Eslami MR (2010) Implementation of the extended finite element method for dynamic thermoelastic fracture initiation. Int J Solids Struct 47:1392–1404CrossRef
19.
Zurück zum Zitat Khoei AR, Moallemi S, Haghighat E (2012) Thermo-hydro-mechanical modeling of impermeable discontinuity in saturated porous media with X-FEM technique. Eng Fract Mech 96:701–723CrossRef Khoei AR, Moallemi S, Haghighat E (2012) Thermo-hydro-mechanical modeling of impermeable discontinuity in saturated porous media with X-FEM technique. Eng Fract Mech 96:701–723CrossRef
20.
Zurück zum Zitat Shao Q, Bouhala L, Younes A, Núñez P, Makradi A, Belouettar S (2014) An XFEM model for cracked porous media: effects of fluid flow and heat transfer. Int J Fract 185:155–169CrossRef Shao Q, Bouhala L, Younes A, Núñez P, Makradi A, Belouettar S (2014) An XFEM model for cracked porous media: effects of fluid flow and heat transfer. Int J Fract 185:155–169CrossRef
21.
Zurück zum Zitat Gill P, Davey K (2014) A thermomechanical finite element tool for Leak-before-Break analysis. Int J Numer Methods Eng 98:678–702MathSciNetCrossRef Gill P, Davey K (2014) A thermomechanical finite element tool for Leak-before-Break analysis. Int J Numer Methods Eng 98:678–702MathSciNetCrossRef
22.
Zurück zum Zitat Yvonnet J, He QC, Toulemonde C (2008) Numerical modelling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface. Compos Sci Technol 68:2818–2825CrossRef Yvonnet J, He QC, Toulemonde C (2008) Numerical modelling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface. Compos Sci Technol 68:2818–2825CrossRef
23.
Zurück zum Zitat Yvonnet J, He QC, Zhu QZ, Shao JF (2011) A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM. Comput Mat Sci 50:1220–1224CrossRef Yvonnet J, He QC, Zhu QZ, Shao JF (2011) A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM. Comput Mat Sci 50:1220–1224CrossRef
24.
Zurück zum Zitat Gu ST, Monteiro E, He QC (2011) Coordinate-free derivation and weak formulation of a general imperfect interface model for thermal conduction in composites. Compos Sci Technol 71:1209–1216CrossRef Gu ST, Monteiro E, He QC (2011) Coordinate-free derivation and weak formulation of a general imperfect interface model for thermal conduction in composites. Compos Sci Technol 71:1209–1216CrossRef
25.
Zurück zum Zitat Liu JT, Gu ST, Monteiro E, He QC (2014) A versatile interface model for thermal conduction phenomena and its numerical implementation by XFEM. Comput Mech 53:825–843MathSciNetCrossRef Liu JT, Gu ST, Monteiro E, He QC (2014) A versatile interface model for thermal conduction phenomena and its numerical implementation by XFEM. Comput Mech 53:825–843MathSciNetCrossRef
26.
Zurück zum Zitat Javili A, McBride A, Steinmann P (2012) Numerical modelling of thermomechanical solids with mechanically energetic (generalised) Kapitza interfaces. Comput Mat Sci 65:542–551CrossRef Javili A, McBride A, Steinmann P (2012) Numerical modelling of thermomechanical solids with mechanically energetic (generalised) Kapitza interfaces. Comput Mat Sci 65:542–551CrossRef
27.
Zurück zum Zitat Javili A, Kaessmair S, Steinmann P (2014) General imperfect interfaces. Comp Methods Appl Mech Eng 275:76–97MathSciNetCrossRef Javili A, Kaessmair S, Steinmann P (2014) General imperfect interfaces. Comp Methods Appl Mech Eng 275:76–97MathSciNetCrossRef
28.
Zurück zum Zitat Jain A, Tamma KK (2010) Parabolic heat conduction specialized applications involving imperfect contact surfaces: local discontinuous Galerkin finite element method—Part 2. J Therm Stresses 33:344–355CrossRef Jain A, Tamma KK (2010) Parabolic heat conduction specialized applications involving imperfect contact surfaces: local discontinuous Galerkin finite element method—Part 2. J Therm Stresses 33:344–355CrossRef
29.
Zurück zum Zitat Gu ST, Liu JT, He QC (2014) The strong and weak forms of a general imperfect interface model for linear coupled multifield phenomena. Int J Eng Sci 85:31–46MathSciNetCrossRef Gu ST, Liu JT, He QC (2014) The strong and weak forms of a general imperfect interface model for linear coupled multifield phenomena. Int J Eng Sci 85:31–46MathSciNetCrossRef
30.
Zurück zum Zitat Curnier AR, Taylor RL (1982) A thermomechanical formulation and solution of lubricated contacts between deformable solids. J Lubrication Technol 104:109–117CrossRef Curnier AR, Taylor RL (1982) A thermomechanical formulation and solution of lubricated contacts between deformable solids. J Lubrication Technol 104:109–117CrossRef
31.
Zurück zum Zitat Zavarise G, Wriggers P, Stein E, Schrefler BA (1992) Real contact mechanisms and finite element formulation–a coupled thermomechanical approach. Int J Numer Methods Eng 35:767–785CrossRef Zavarise G, Wriggers P, Stein E, Schrefler BA (1992) Real contact mechanisms and finite element formulation–a coupled thermomechanical approach. Int J Numer Methods Eng 35:767–785CrossRef
32.
Zurück zum Zitat Wriggers P, Miehe C (1994) Contact constraints within coupled thermomechanical analysis—a finite element model. Comp Methods Appl Mech Eng 113:301–319MathSciNetCrossRef Wriggers P, Miehe C (1994) Contact constraints within coupled thermomechanical analysis—a finite element model. Comp Methods Appl Mech Eng 113:301–319MathSciNetCrossRef
33.
Zurück zum Zitat Zavarise G, Wriggers P, Schrefler B (1995) On augmented Lagrangian algorithms for thermomechanical contact problems with friction. Int J Numer Methods Eng 38:2929–2949CrossRef Zavarise G, Wriggers P, Schrefler B (1995) On augmented Lagrangian algorithms for thermomechanical contact problems with friction. Int J Numer Methods Eng 38:2929–2949CrossRef
34.
Zurück zum Zitat Pantuso D, Bathe KJ, Bouzinov PA (2000) A finite element procedure for the analysis of thermo-mechanical solids in contact. Comput Struct 75:551–573CrossRef Pantuso D, Bathe KJ, Bouzinov PA (2000) A finite element procedure for the analysis of thermo-mechanical solids in contact. Comput Struct 75:551–573CrossRef
35.
Zurück zum Zitat Rieger A, Wriggers P (2004) Adaptive methods for thermomechanical coupled contact problems. Int J Numer Methods Eng 59:871–894CrossRef Rieger A, Wriggers P (2004) Adaptive methods for thermomechanical coupled contact problems. Int J Numer Methods Eng 59:871–894CrossRef
36.
Zurück zum Zitat Zavarise G, Bacchetto A, Gänser HP (2005) Frictional heating in contact mechanics—a methodology to deal with high temperature gradients. Comput Mech 35:418–429CrossRef Zavarise G, Bacchetto A, Gänser HP (2005) Frictional heating in contact mechanics—a methodology to deal with high temperature gradients. Comput Mech 35:418–429CrossRef
37.
Zurück zum Zitat Hansen G (2011) A Jacobian-free Newton Krylov method for mortar-discretized thermo-mechanical contact problems. J Comput Phys 230:6546–6562MathSciNetCrossRef Hansen G (2011) A Jacobian-free Newton Krylov method for mortar-discretized thermo-mechanical contact problems. J Comput Phys 230:6546–6562MathSciNetCrossRef
38.
Zurück zum Zitat Hesch C, Franke M, Dittmann M, Temizer I (2016) Hierarchical NURBS and a higher-order phase-field approach to fracture for finite-deformation contact prblems. Comp Methods Appl Mech Eng 301:242–258CrossRef Hesch C, Franke M, Dittmann M, Temizer I (2016) Hierarchical NURBS and a higher-order phase-field approach to fracture for finite-deformation contact prblems. Comp Methods Appl Mech Eng 301:242–258CrossRef
39.
Zurück zum Zitat Belghith S, Mezlini S, Belhadjsalah H, Ligier JL (2013) Thermo-mechanical modelling of the contact between rough surfaces using homogenisation technique. Mech Res Commun 53:57–62CrossRef Belghith S, Mezlini S, Belhadjsalah H, Ligier JL (2013) Thermo-mechanical modelling of the contact between rough surfaces using homogenisation technique. Mech Res Commun 53:57–62CrossRef
40.
Zurück zum Zitat Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeometric analysis and thermomechanical Mortar contact problems. Comp Methods Appl Mech Eng 274:192–212MathSciNetCrossRef Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeometric analysis and thermomechanical Mortar contact problems. Comp Methods Appl Mech Eng 274:192–212MathSciNetCrossRef
41.
Zurück zum Zitat Murashov MV, Panin SD (2015) Numerical modelling of contact heat transfer problem with work hardened rough surfaces. Int J Heat Mass Trans 90:72–80CrossRef Murashov MV, Panin SD (2015) Numerical modelling of contact heat transfer problem with work hardened rough surfaces. Int J Heat Mass Trans 90:72–80CrossRef
42.
Zurück zum Zitat Grisvard P (2011) Elliptic problems in nonsmooth domains. Vol 69: classics in applied mathematics. SIAM, PhiladelphiaCrossRef Grisvard P (2011) Elliptic problems in nonsmooth domains. Vol 69: classics in applied mathematics. SIAM, PhiladelphiaCrossRef
43.
Zurück zum Zitat Khoei AR (2015) Extended finite element method: theory and applications. Wiley, New YorkMATH Khoei AR (2015) Extended finite element method: theory and applications. Wiley, New YorkMATH
44.
Zurück zum Zitat Le-Quang H, Bonnet G, He QC (2010) Size-dependent Eshelby tensor fields and effective conductivity of composites made of anisotropic phases with highly conducting imperfect interfaces. Phys Rev B 81:064203CrossRef Le-Quang H, Bonnet G, He QC (2010) Size-dependent Eshelby tensor fields and effective conductivity of composites made of anisotropic phases with highly conducting imperfect interfaces. Phys Rev B 81:064203CrossRef
45.
Zurück zum Zitat Benveniste Y, Miloh T (1986) The effective conductivity of composites with imperfect thermal contact at constituent interfaces. Int J Eng Sci 24:1537–1552CrossRef Benveniste Y, Miloh T (1986) The effective conductivity of composites with imperfect thermal contact at constituent interfaces. Int J Eng Sci 24:1537–1552CrossRef
47.
Zurück zum Zitat Hashin Z (2001) Thin interphase/imperfect interface in conduction. J Appl Phys 89:2261–2267CrossRef Hashin Z (2001) Thin interphase/imperfect interface in conduction. J Appl Phys 89:2261–2267CrossRef
48.
Zurück zum Zitat Benveniste Y, Miloh T (1999) Neutral inhomogeneities in conduction phenomena. J Mech Phys Solids 47:1873–1892MathSciNetCrossRef Benveniste Y, Miloh T (1999) Neutral inhomogeneities in conduction phenomena. J Mech Phys Solids 47:1873–1892MathSciNetCrossRef
50.
Zurück zum Zitat Grosch KA (1963) The relation between the friction and visco-elastic properties of rubber. Proc R Soc Lond A 274:21–39CrossRef Grosch KA (1963) The relation between the friction and visco-elastic properties of rubber. Proc R Soc Lond A 274:21–39CrossRef
51.
Zurück zum Zitat Mase CW, Smith L (1987) Effect of frictional heating on the thermal, hydrologic, and mechanical response of a fault. J Geophys Res 92:6249–6272CrossRef Mase CW, Smith L (1987) Effect of frictional heating on the thermal, hydrologic, and mechanical response of a fault. J Geophys Res 92:6249–6272CrossRef
52.
Zurück zum Zitat Braun OM, Steenwyk B, Warhadpande A, Persson BNJ (2016) On the dependency of friction on load: theory and experiment. Europhys Lett 113:56002CrossRef Braun OM, Steenwyk B, Warhadpande A, Persson BNJ (2016) On the dependency of friction on load: theory and experiment. Europhys Lett 113:56002CrossRef
53.
Zurück zum Zitat Farhat C, Park KC, Yves DP (1991) An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems. Comput Methods Appl Mech Eng 85:349–365CrossRef Farhat C, Park KC, Yves DP (1991) An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems. Comput Methods Appl Mech Eng 85:349–365CrossRef
54.
Zurück zum Zitat Turska E, Schrefler BA (1993) On convergence conditions of partitioned solution procedures for consolidation problems. Comput Methods Appl Mech Eng 106:51–63MathSciNetCrossRef Turska E, Schrefler BA (1993) On convergence conditions of partitioned solution procedures for consolidation problems. Comput Methods Appl Mech Eng 106:51–63MathSciNetCrossRef
55.
Zurück zum Zitat Danowski C, Gravemeier V, Yoshihara L, Wall WA (2013) A monolithic computational approach to thermo-structure interaction. Int J Numer Methods Eng 95:1053–1078MathSciNetCrossRef Danowski C, Gravemeier V, Yoshihara L, Wall WA (2013) A monolithic computational approach to thermo-structure interaction. Int J Numer Methods Eng 95:1053–1078MathSciNetCrossRef
56.
Zurück zum Zitat Nguyen MN, Bui TQ, Nguyen NT, Truong TT, Lich LV (2017) Simulation of dynamic and static thermoelastic fracture problems by extended nodal gradient finite elements. Int J Mech Sci 134:370–386CrossRef Nguyen MN, Bui TQ, Nguyen NT, Truong TT, Lich LV (2017) Simulation of dynamic and static thermoelastic fracture problems by extended nodal gradient finite elements. Int J Mech Sci 134:370–386CrossRef
57.
Zurück zum Zitat Zienkiewicz OC, Chan AHC, Pastor M, Schrefler BA, Shiomi T (1999) Computational geomechanics with special reference to earthquake engineering. Wiley, New YorkMATH Zienkiewicz OC, Chan AHC, Pastor M, Schrefler BA, Shiomi T (1999) Computational geomechanics with special reference to earthquake engineering. Wiley, New YorkMATH
Metadaten
Titel
Application of an enriched FEM technique in thermo-mechanical contact problems
verfasst von
A. R. Khoei
B. Bahmani
Publikationsdatum
20.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2018
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1555-z

Weitere Artikel der Ausgabe 5/2018

Computational Mechanics 5/2018 Zur Ausgabe

Neuer Inhalt