Skip to main content
Erschienen in: Neural Computing and Applications 2/2018

11.07.2016 | Original Article

Application of ELM–Hammerstein model to the identification of solid oxide fuel cells

verfasst von: Yinggan Tang, Chunning Bu, Minmin Liu, LinLin Zhang, Qiusheng Lian

Erschienen in: Neural Computing and Applications | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a new method is proposed to identify solid oxide fuel cell using extreme learning machine–Hammerstein model (ELM–Hammerstein). The ELM–Hammerstein model consists of a static ELM neural network followed by a linear dynamic subsystem. First, the structure of ELM–Hammerstein model is determined by Lipschitz quotient criterion from input–output data. Then, a generalized ELM algorithm is proposed to estimate the parameters of ELM–Hammerstein model, including the parameters of linear dynamic part and the output weights of ELM. The proposed method can obtain accurate identification results and its computation is more efficient. Simulation results demonstrate its effectiveness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abonyi J, Babuška R, Botto MA, Szeifert F, Nagy L (2000) Identification and control of nonlinear systems using fuzzy Hammerstein models. Ind Eng Chem Res 39(11):4302–4314CrossRef Abonyi J, Babuška R, Botto MA, Szeifert F, Nagy L (2000) Identification and control of nonlinear systems using fuzzy Hammerstein models. Ind Eng Chem Res 39(11):4302–4314CrossRef
3.
Zurück zum Zitat Arriagada J, Olausson P, Selimovic A (2002) Artificial neural network simulator for SOFC performance prediction. J Power Sources 112(1):54–60CrossRef Arriagada J, Olausson P, Selimovic A (2002) Artificial neural network simulator for SOFC performance prediction. J Power Sources 112(1):54–60CrossRef
4.
Zurück zum Zitat Cui M, Liu H, Li Z, Tang Y, Guan X (2014) Identification of Hammerstein model using functional link artificial neural network. Neurocomputing 142:419–428CrossRef Cui M, Liu H, Li Z, Tang Y, Guan X (2014) Identification of Hammerstein model using functional link artificial neural network. Neurocomputing 142:419–428CrossRef
5.
Zurück zum Zitat Deng J, Li K, Irwin GW (2011) Fast automatic two-stage nonlinear model identification based on the extreme learning machine. Neurocomputing 74(16):2422–2429CrossRef Deng J, Li K, Irwin GW (2011) Fast automatic two-stage nonlinear model identification based on the extreme learning machine. Neurocomputing 74(16):2422–2429CrossRef
6.
Zurück zum Zitat Fink A, Nelles O (2001) Nonlinear internal model control based on local linear neural networks. In: 2001 IEEE international conference on systems, man, and cybernetics, vol 1, pp 117–122 Fink A, Nelles O (2001) Nonlinear internal model control based on local linear neural networks. In: 2001 IEEE international conference on systems, man, and cybernetics, vol 1, pp 117–122
7.
Zurück zum Zitat Hajimolana S, Hussain M, Daud WW (2011) Mathematical modeling of solid oxide fuel cells: a review. Renew Sustain Energy Rev 15:1893–1917CrossRef Hajimolana S, Hussain M, Daud WW (2011) Mathematical modeling of solid oxide fuel cells: a review. Renew Sustain Energy Rev 15:1893–1917CrossRef
8.
Zurück zum Zitat He X, Asada H (1993) A new method for identifying orders of input–output models for nonlinear dynamic systems. In: American control conference, pp 2520–2523 He X, Asada H (1993) A new method for identifying orders of input–output models for nonlinear dynamic systems. In: American control conference, pp 2520–2523
9.
Zurück zum Zitat Hong X, Chen S (2012) The system identification and control of Hammerstein system using non-uniform rational B-spline neural network and particle swarm optimization. Neurocomputing 82:216–223CrossRef Hong X, Chen S (2012) The system identification and control of Hammerstein system using non-uniform rational B-spline neural network and particle swarm optimization. Neurocomputing 82:216–223CrossRef
10.
Zurück zum Zitat Huang G, Huang GB, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48CrossRefMATH Huang G, Huang GB, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48CrossRefMATH
11.
Zurück zum Zitat Huang GB (2015) What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput 7(3):263–278CrossRef Huang GB (2015) What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput 7(3):263–278CrossRef
12.
Zurück zum Zitat Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE international joint conference on neural networks, vol 2, pp 985–990 Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE international joint conference on neural networks, vol 2, pp 985–990
13.
Zurück zum Zitat Huo HB, Zhu XJ, Tu HY (2007) Iterative learning control of SOFC based on ARX identification model. J Zhejiang Univ Sci A 8:1921–1927CrossRefMATH Huo HB, Zhu XJ, Tu HY (2007) Iterative learning control of SOFC based on ARX identification model. J Zhejiang Univ Sci A 8:1921–1927CrossRefMATH
14.
Zurück zum Zitat Huo H, Kuang X, Huo H, Zhu X (2012) Dynamic modeling of SOFC stack using ARX identification algorithm. In: Proceedings of international conference on modelling, identification & control (ICMIC), 2012 Huo H, Kuang X, Huo H, Zhu X (2012) Dynamic modeling of SOFC stack using ARX identification algorithm. In: Proceedings of international conference on modelling, identification & control (ICMIC), 2012
15.
Zurück zum Zitat Huo HB, Zhong ZD, Zhu XJ, Tu HY (2008) Nonlinear dynamic modeling for a SOFC stack by using a Hammerstein model. J. Power Sources 175(1):441–446CrossRef Huo HB, Zhong ZD, Zhu XJ, Tu HY (2008) Nonlinear dynamic modeling for a SOFC stack by using a Hammerstein model. J. Power Sources 175(1):441–446CrossRef
16.
Zurück zum Zitat Iora P, Aguiar P, Adjiman C, Brandon N (2005) Comparison of two IT DIR-SOFC models: impact of variable thermodynamic, physical, and flow properties. Steady-state and dynamic analysis. Chem Eng Sci 60(11):2963–2975CrossRef Iora P, Aguiar P, Adjiman C, Brandon N (2005) Comparison of two IT DIR-SOFC models: impact of variable thermodynamic, physical, and flow properties. Steady-state and dynamic analysis. Chem Eng Sci 60(11):2963–2975CrossRef
17.
Zurück zum Zitat Jia L, Chiu MS, Ge SS (2005) A noniterative neuro-fuzzy based identification method for Hammerstein processes. J Process Control 15(7):749–761CrossRef Jia L, Chiu MS, Ge SS (2005) A noniterative neuro-fuzzy based identification method for Hammerstein processes. J Process Control 15(7):749–761CrossRef
18.
Zurück zum Zitat Jia L, Chiu MS, Ge SS (2005) Iterative identification of neuro-fuzzy-based Hammerstein model with global convergence. Ind Eng Chem Res 44(6):1823–1831CrossRef Jia L, Chiu MS, Ge SS (2005) Iterative identification of neuro-fuzzy-based Hammerstein model with global convergence. Ind Eng Chem Res 44(6):1823–1831CrossRef
19.
Zurück zum Zitat Padullés J, Ault GW, McDonald JR (2000) An integrated SOFC plant dynamic model for power system simulation. J Power Sources 86:495–500CrossRef Padullés J, Ault GW, McDonald JR (2000) An integrated SOFC plant dynamic model for power system simulation. J Power Sources 86:495–500CrossRef
20.
Zurück zum Zitat Jurado F (2004) Modeling SOFC plants on the distribution system using identification algorithms. J Power Sources 129(2):205–215CrossRef Jurado F (2004) Modeling SOFC plants on the distribution system using identification algorithms. J Power Sources 129(2):205–215CrossRef
21.
Zurück zum Zitat Jurado F (2006) A method for the identification of solid oxide fuel cells using a Hammerstein model. J Power Sources 154(1):145–152CrossRef Jurado F (2006) A method for the identification of solid oxide fuel cells using a Hammerstein model. J Power Sources 154(1):145–152CrossRef
22.
Zurück zum Zitat Le F, Markovsky I, Freeman CT, Rogers E (2012) Recursive identification of Hammerstein systems with application to electrically stimulated muscle. Control Eng Pract 20:386–396CrossRef Le F, Markovsky I, Freeman CT, Rogers E (2012) Recursive identification of Hammerstein systems with application to electrically stimulated muscle. Control Eng Pract 20:386–396CrossRef
23.
Zurück zum Zitat Li Y, Rajakaruna S, Choi SS (2007) Control of a solid oxide fuel cell power plant in a grid-connected system. IEEE Trans Energy Convers 22:405–413CrossRef Li Y, Rajakaruna S, Choi SS (2007) Control of a solid oxide fuel cell power plant in a grid-connected system. IEEE Trans Energy Convers 22:405–413CrossRef
24.
Zurück zum Zitat Li Y, Shen J, Lu J (2011) Constrained model predictive control of a solid oxide fuel cell based on genetic optimization. J Power Sources 196:5873–5880CrossRef Li Y, Shen J, Lu J (2011) Constrained model predictive control of a solid oxide fuel cell based on genetic optimization. J Power Sources 196:5873–5880CrossRef
25.
Zurück zum Zitat Lunghi P, Ubertini U (2001) Solid oxide fuel cells and regenerated gas turbines hybrid systems: a feasible solution for future ultra high efficiency power plants. In: Proceedings of the seventh international symposium on solid oxide fuel cells (SOFC-VII) Lunghi P, Ubertini U (2001) Solid oxide fuel cells and regenerated gas turbines hybrid systems: a feasible solution for future ultra high efficiency power plants. In: Proceedings of the seventh international symposium on solid oxide fuel cells (SOFC-VII)
26.
Zurück zum Zitat Nehter P (2006) Two-dimensional transient model of a cascaded micro-tubular solid oxide fuel cell fed with methane. J Power Sources 157(1):325–334CrossRef Nehter P (2006) Two-dimensional transient model of a cascaded micro-tubular solid oxide fuel cell fed with methane. J Power Sources 157(1):325–334CrossRef
27.
Zurück zum Zitat Ota T, Koyama M, Ju Wen C, Yamada K, Takahashi H (2003) Object-based modeling of SOFC system: dynamic behavior of micro-tube SOFC. J Power Sources 118:430–439CrossRef Ota T, Koyama M, Ju Wen C, Yamada K, Takahashi H (2003) Object-based modeling of SOFC system: dynamic behavior of micro-tube SOFC. J Power Sources 118:430–439CrossRef
28.
Zurück zum Zitat Razbani O, Assadi M (2014) Artificial neural network model of a short stack solid oxide fuel cell based on experimental data. J Power Sources 246:581–586CrossRef Razbani O, Assadi M (2014) Artificial neural network model of a short stack solid oxide fuel cell based on experimental data. J Power Sources 246:581–586CrossRef
29.
Zurück zum Zitat Recknagle K, Williford R, Chick L, Rector D, Khaleel M (2003) Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks. J Power Sources 113(1):109–114CrossRef Recknagle K, Williford R, Chick L, Rector D, Khaleel M (2003) Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks. J Power Sources 113(1):109–114CrossRef
30.
Zurück zum Zitat Adachi S, Murakami H (1995) Generalized predictive control system design based on non-linear identification by using Hammerstein. Trans Inst Syst Control Inf Eng 8:115–121 (in Japanese) Adachi S, Murakami H (1995) Generalized predictive control system design based on non-linear identification by using Hammerstein. Trans Inst Syst Control Inf Eng 8:115–121 (in Japanese)
32.
Zurück zum Zitat Shi J, XU X, Dai Y (2011) Identification of Hammerstein LSSVM–ARMA systems and its application in continuous stirred tank rector. Energy Proc 13:5359–5365CrossRef Shi J, XU X, Dai Y (2011) Identification of Hammerstein LSSVM–ARMA systems and its application in continuous stirred tank rector. Energy Proc 13:5359–5365CrossRef
33.
Zurück zum Zitat Su HT, McAvoy TJ (1993) Integration of multilayer perceptron networks and linear dynamic models: a Hammerstein modeling approach. Ind Eng Chem Res 32:1927–1936CrossRef Su HT, McAvoy TJ (1993) Integration of multilayer perceptron networks and linear dynamic models: a Hammerstein modeling approach. Ind Eng Chem Res 32:1927–1936CrossRef
34.
Zurück zum Zitat Tang Y, Li Z, Guan X (2014) Identification of nonlinear system using extreme learning machine based Hammerstein model. Commun Nonlinear Sci Numer Simul 19(9):3171–3183MathSciNetCrossRef Tang Y, Li Z, Guan X (2014) Identification of nonlinear system using extreme learning machine based Hammerstein model. Commun Nonlinear Sci Numer Simul 19(9):3171–3183MathSciNetCrossRef
35.
Zurück zum Zitat Togun N, Baysec S, Kara T (2012) Nonlinear modeling and identification of a spark ignition engine torque. Mech Syst Sig Process 26:294–304CrossRef Togun N, Baysec S, Kara T (2012) Nonlinear modeling and identification of a spark ignition engine torque. Mech Syst Sig Process 26:294–304CrossRef
36.
Zurück zum Zitat Wang S, Wang W, Liu F, Tang Y, Guan X (2015) Identification of chaotic system using Hammerstein–ELM model. Nonlinear Dyn 81(3):1081–1095MathSciNetCrossRefMATH Wang S, Wang W, Liu F, Tang Y, Guan X (2015) Identification of chaotic system using Hammerstein–ELM model. Nonlinear Dyn 81(3):1081–1095MathSciNetCrossRefMATH
37.
Zurück zum Zitat Wu W, Jhao DW (2012) Identification and control of a fuel cell system using wavelet network-based Hammerstein models. In: the 8th IFAC symposium on advanced control of chemical processes, Singapore, pp 10–13 Wu W, Jhao DW (2012) Identification and control of a fuel cell system using wavelet network-based Hammerstein models. In: the 8th IFAC symposium on advanced control of chemical processes, Singapore, pp 10–13
38.
Zurück zum Zitat Wu XJ, Zhu XJ, Cao GY, Tu HY (2007) Modeling a SOFC stack based on GA-RBF neural networks identification. J Power Sources 167(1):145–150CrossRef Wu XJ, Zhu XJ, Cao GY, Tu HY (2007) Modeling a SOFC stack based on GA-RBF neural networks identification. J Power Sources 167(1):145–150CrossRef
39.
Zurück zum Zitat Wu XJ, Zhu XJ, Cao GY, Tu HY (2008) Nonlinear modeling of SOFC stack based on ANFIS identificaiton. Simul Model Parct Theor 16:399–409CrossRef Wu XJ, Zhu XJ, Cao GY, Tu HY (2008) Nonlinear modeling of SOFC stack based on ANFIS identificaiton. Simul Model Parct Theor 16:399–409CrossRef
40.
Zurück zum Zitat Yokoo M, Take T (2004) Simulation analysis of a system combining solid oxide and polymer electrolyte fuel cells. J Power Sources 137(2):206–215CrossRef Yokoo M, Take T (2004) Simulation analysis of a system combining solid oxide and polymer electrolyte fuel cells. J Power Sources 137(2):206–215CrossRef
41.
Zurück zum Zitat Zhu QY, Qin A, Suganthan P, Huang GB (2005) Evolutionary extreme learning machine. Pattern Recognit 38:1759–1763CrossRefMATH Zhu QY, Qin A, Suganthan P, Huang GB (2005) Evolutionary extreme learning machine. Pattern Recognit 38:1759–1763CrossRefMATH
Metadaten
Titel
Application of ELM–Hammerstein model to the identification of solid oxide fuel cells
verfasst von
Yinggan Tang
Chunning Bu
Minmin Liu
LinLin Zhang
Qiusheng Lian
Publikationsdatum
11.07.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 2/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2453-y

Weitere Artikel der Ausgabe 2/2018

Neural Computing and Applications 2/2018 Zur Ausgabe