Skip to main content
Erschienen in: Environmental Earth Sciences 8/2014

01.04.2014 | Original Article

Application of genetic algorithm technique to inverse modeling of tide–aquifer interaction

verfasst von: Madan K. Jha, Amanpreet Singh

Erschienen in: Environmental Earth Sciences | Ausgabe 8/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modeling of tide–aquifer interaction plays a vital role in the management of coastal aquifer systems. A novel and robust methodology is presented in this paper for estimating aquifer parameters of coastal aquifers from tide–aquifer interaction data using tide–aquifer interaction model and genetic algorithm (GA). Two stand-alone computer programs were developed to optimize hydraulic diffusivities of unconfined and confined coastal aquifers at multiple sites using GA technique and tide–aquifer interaction model and considering two approaches (‘lumped tidal component approach’ and ‘multi-tidal component approach’). Five sets of real-world tide–aquifer interaction data at two sites of an unconfined aquifer and one set of tide–aquifer interaction data at three sites of a confined aquifer were used to demonstrate the efficacy of the methodology. The analysis of the GA-based inverse modeling results indicated that the ‘multi-tidal component approach’ yields more accurate and reliable hydraulic diffusivities for the unconfined aquifer (RMSE = 0.0129–0.0521 m, NSE = 0.70–0.97, and d1 = 0.91–0.99) as well as for the confined aquifer (RMSE = 0.0204–0.0545 m, NSE = 0.95–0.97, and d1 = 0.99) compared with the ‘lumped tidal component approach’. A comparative evaluation of data-size revealed that the short-duration datasets of the unconfined aquifer provide more reliable estimate of hydraulic diffusivity than the long-duration datasets. Further, it was found that the spring and neap tidal data yield unreasonable values of hydraulic diffusivity with considerably high values of RMSE and very low values of r 2, NSE, and d1, thereby suggesting that spring and neap tidal data are not suitable for aquifer parameter estimation. Overall, it is concluded that the GA-based tide–aquifer interaction model following ‘multi-tidal component approach’ is the most efficient tool for estimating aquifer parameters of unconfined and confined aquifers from tide–aquifer interaction data. The developed methodology is also applicable to other coastal basins of the world irrespective of hydrogeological settings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amarasinghe SR, Watanabe K, Ishiyama K (2011) Study on the selection of unsaturated flow model for the different types of soil and soft rock. Environ Earth Sci 64(7):1795–1805CrossRef Amarasinghe SR, Watanabe K, Ishiyama K (2011) Study on the selection of unsaturated flow model for the different types of soil and soft rock. Environ Earth Sci 64(7):1795–1805CrossRef
Zurück zum Zitat ASCE Task Committee (1993) Criteria for evaluation of watershed models. J Irrigation Drainage Eng ASCE 119(3):429–442 ASCE Task Committee (1993) Criteria for evaluation of watershed models. J Irrigation Drainage Eng ASCE 119(3):429–442
Zurück zum Zitat Bear J, Cheng AH-D, Sorek S, Ouazar D, Herrera I (1999) Seawater intrusion in coastal aquifers: concepts, methods and practices. Kluwer Academic Publishers, DordrechtCrossRef Bear J, Cheng AH-D, Sorek S, Ouazar D, Herrera I (1999) Seawater intrusion in coastal aquifers: concepts, methods and practices. Kluwer Academic Publishers, DordrechtCrossRef
Zurück zum Zitat Cheng AH-D, Ouazar D (eds) (2003) Coastal aquifer management: monitoring, modeling and case studies. Lewis Publishers, Boca Raton Cheng AH-D, Ouazar D (eds) (2003) Coastal aquifer management: monitoring, modeling and case studies. Lewis Publishers, Boca Raton
Zurück zum Zitat Davis L (1991) A handbook of genetic algorithms. Van Nostrand, Reinhold Davis L (1991) A handbook of genetic algorithms. Van Nostrand, Reinhold
Zurück zum Zitat Deb K (2000) Optimization for engineering design. PHI Private Ltd., New Delhi, pp 290–320 Deb K (2000) Optimization for engineering design. PHI Private Ltd., New Delhi, pp 290–320
Zurück zum Zitat Erskine AD (1991) The effect of tidal fluctuation on a coastal aquifer in the UK. Ground Water 29(4):556–562CrossRef Erskine AD (1991) The effect of tidal fluctuation on a coastal aquifer in the UK. Ground Water 29(4):556–562CrossRef
Zurück zum Zitat Fakir Y, Razack M (2003) Hydrodynamic characterization of a Sahelian coastal aquifer using the ocean tide effect. Hydrol Sci J 48(3):441–454CrossRef Fakir Y, Razack M (2003) Hydrodynamic characterization of a Sahelian coastal aquifer using the ocean tide effect. Hydrol Sci J 48(3):441–454CrossRef
Zurück zum Zitat Ferris, J.G. (1951). Cyclic Fluctuations of Water Level as a Basis for Determining Aquifer Transmissibility, vol 33. IAHS Publication, Wallingford, pp 148–155 Ferris, J.G. (1951). Cyclic Fluctuations of Water Level as a Basis for Determining Aquifer Transmissibility, vol 33. IAHS Publication, Wallingford, pp 148–155
Zurück zum Zitat Foreman MGG, Henry RF (1989) The harmonic analysis of tidal model time series. Adv Water Resour 12:109–121CrossRef Foreman MGG, Henry RF (1989) The harmonic analysis of tidal model time series. Adv Water Resour 12:109–121CrossRef
Zurück zum Zitat Goldberg DE (1989) Genetic algorithms in search. Optimization and machine learning. Addison-Wesley Publishing Company Inc., New York Goldberg DE (1989) Genetic algorithms in search. Optimization and machine learning. Addison-Wesley Publishing Company Inc., New York
Zurück zum Zitat Holland JH (1992) Adaptation in natural and artificial systems, 2nd edn. MIT Press, Cambridge Holland JH (1992) Adaptation in natural and artificial systems, 2nd edn. MIT Press, Cambridge
Zurück zum Zitat Jacob CE (1950) Flow of groundwater. In: Rouse H (ed) Engineering hydraulics. John Wiley, New York, pp 321–386 Jacob CE (1950) Flow of groundwater. In: Rouse H (ed) Engineering hydraulics. John Wiley, New York, pp 321–386
Zurück zum Zitat Jha MK, Chikamori K, Kamii Y, Yamasaki Y (1999) Field investigations for sustainable groundwater utilization in the Konan basin. Water Resour Manage 13(6):443–470CrossRef Jha MK, Chikamori K, Kamii Y, Yamasaki Y (1999) Field investigations for sustainable groundwater utilization in the Konan basin. Water Resour Manage 13(6):443–470CrossRef
Zurück zum Zitat Jha MK, Kamii Y, Chikamori K (2003) On the estimation of phreatic aquifer parameters by the tidal response technique. Water Resour Manage 17(1):68–83CrossRef Jha MK, Kamii Y, Chikamori K (2003) On the estimation of phreatic aquifer parameters by the tidal response technique. Water Resour Manage 17(1):68–83CrossRef
Zurück zum Zitat Jha MK, Jayalekshmi K, Machiwal D, Kamii Y, Chikamori K (2004) Determination of hydraulic parameters of an unconfined alluvial aquifer by the floodwave-response technique. Hydrogeol J 12(6):628–642CrossRef Jha MK, Jayalekshmi K, Machiwal D, Kamii Y, Chikamori K (2004) Determination of hydraulic parameters of an unconfined alluvial aquifer by the floodwave-response technique. Hydrogeol J 12(6):628–642CrossRef
Zurück zum Zitat Jha MK, Kumar A, Nanda G, Bhatt G (2006) Evaluation of traditional and non-traditional optimization techniques for determining well parameters from step-drawdown test data. J Hydrol Eng ASCE 11(6):617–630CrossRef Jha MK, Kumar A, Nanda G, Bhatt G (2006) Evaluation of traditional and non-traditional optimization techniques for determining well parameters from step-drawdown test data. J Hydrol Eng ASCE 11(6):617–630CrossRef
Zurück zum Zitat Jha MK, Namgial D, Kamii Y, Peiffer S (2008) Hydraulic parameters of coastal aquifer systems by direct methods and an extended tide–aquifer interaction technique. Water Resour Manage 22(12):1899–1923CrossRef Jha MK, Namgial D, Kamii Y, Peiffer S (2008) Hydraulic parameters of coastal aquifer systems by direct methods and an extended tide–aquifer interaction technique. Water Resour Manage 22(12):1899–1923CrossRef
Zurück zum Zitat Kaplan W (1973) Advanced calculus. Addison-Wesley Publishing Co., Massachusetts, pp 461–499 Kaplan W (1973) Advanced calculus. Addison-Wesley Publishing Co., Massachusetts, pp 461–499
Zurück zum Zitat Kumar P, Tsujimura M, Nakano T, Minoru T (2012) The effect of tidal fluctuation on ground water quality in coastal aquifer of Saijo plain, Ehime prefecture, Japan. Desalination 286:166–175CrossRef Kumar P, Tsujimura M, Nakano T, Minoru T (2012) The effect of tidal fluctuation on ground water quality in coastal aquifer of Saijo plain, Ehime prefecture, Japan. Desalination 286:166–175CrossRef
Zurück zum Zitat Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241CrossRef Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241CrossRef
Zurück zum Zitat Li H, Jiao JJ, Luk M, Cheung K (2002) Tide-induced groundwater level fluctuation in coastal aquifers bounded by L-shaped coastlines. Water Resour Res 38(3):1024. doi:10.1029/2001WR000556 Li H, Jiao JJ, Luk M, Cheung K (2002) Tide-induced groundwater level fluctuation in coastal aquifers bounded by L-shaped coastlines. Water Resour Res 38(3):1024. doi:10.​1029/​2001WR000556
Zurück zum Zitat Li H, Jiao JJ, Tang Z (2006) Semi-numerical simulation of groundwater flow induced by periodic forcing with a case-study at an island aquifer. J Hydrol 327:438–446CrossRef Li H, Jiao JJ, Tang Z (2006) Semi-numerical simulation of groundwater flow induced by periodic forcing with a case-study at an island aquifer. J Hydrol 327:438–446CrossRef
Zurück zum Zitat Lu CP, Shu LC, Chen XH, Cheng C (2011) Parameter estimation for a karst aquifer with unknown thickness using the genetic algorithm method. Environ Earth Sci 63(4):797–807CrossRef Lu CP, Shu LC, Chen XH, Cheng C (2011) Parameter estimation for a karst aquifer with unknown thickness using the genetic algorithm method. Environ Earth Sci 63(4):797–807CrossRef
Zurück zum Zitat Millham NP, Howes BL (1995) A comparison of methods to determine K in a shallow coastal aquifer. Ground Water 33(1):49–57CrossRef Millham NP, Howes BL (1995) A comparison of methods to determine K in a shallow coastal aquifer. Ground Water 33(1):49–57CrossRef
Zurück zum Zitat Pandit A, El-Khazen CC, Sivaramapillai SP (1991) Estimation of hydraulic conductivity values in a coastal aquifer. Ground Water 29(2):175–180CrossRef Pandit A, El-Khazen CC, Sivaramapillai SP (1991) Estimation of hydraulic conductivity values in a coastal aquifer. Ground Water 29(2):175–180CrossRef
Zurück zum Zitat Reed P, Minsker B, Goldberg DE (2000) Designing a competent simple genetic algorithm for search and optimization. Water Resour Res 36(12):3757–3761CrossRef Reed P, Minsker B, Goldberg DE (2000) Designing a competent simple genetic algorithm for search and optimization. Water Resour Res 36(12):3757–3761CrossRef
Zurück zum Zitat Samuel MP, Jha MK (2003) Estimation of aquifer parameters from pumping test data by genetic algorithm optimization technique. J Irrigation Drainage Eng ASCE 129(5):348–359CrossRef Samuel MP, Jha MK (2003) Estimation of aquifer parameters from pumping test data by genetic algorithm optimization technique. J Irrigation Drainage Eng ASCE 129(5):348–359CrossRef
Zurück zum Zitat Sen MK, Stoffa PL (1995) Global optimization Methods in geophysical inversions. Elsevier Science Publisher, Amsterdam Sen MK, Stoffa PL (1995) Global optimization Methods in geophysical inversions. Elsevier Science Publisher, Amsterdam
Zurück zum Zitat Shahin N, Van Oorschot HJL, De Lange SJ (1993) Statistical analysis in water resources engineering. A. A. Balkema, The Netherlands, pp 280–322 Shahin N, Van Oorschot HJL, De Lange SJ (1993) Statistical analysis in water resources engineering. A. A. Balkema, The Netherlands, pp 280–322
Zurück zum Zitat Shih DC-F (1999) Inverse solution of hydraulic diffusivity determined by water level fluctuation. J Am Water Resour Assoc 35(1):37–47CrossRef Shih DC-F (1999) Inverse solution of hydraulic diffusivity determined by water level fluctuation. J Am Water Resour Assoc 35(1):37–47CrossRef
Zurück zum Zitat Singh A, Jha MK (2012) A data-driven approach for analyzing dynamics of tide–aquifer interaction in coastal aquifer systems. Environ Earth Sci 65(4):1333–1355CrossRef Singh A, Jha MK (2012) A data-driven approach for analyzing dynamics of tide–aquifer interaction in coastal aquifer systems. Environ Earth Sci 65(4):1333–1355CrossRef
Zurück zum Zitat Song S, Zemansky G (2013) Groundwater level fluctuation in the Waimea Plains, New Zealand: changes in a coastal aquifer within the last 30 years. Environ Earth Sci. doi:10.1007/s12665-013-2359-2 Song S, Zemansky G (2013) Groundwater level fluctuation in the Waimea Plains, New Zealand: changes in a coastal aquifer within the last 30 years. Environ Earth Sci. doi:10.​1007/​s12665-013-2359-2
Zurück zum Zitat Sophiya MS, Syed TH (2013) Assessment of vulnerability to seawater intrusion and potential remediation measures for coastal aquifers: a case study from eastern India. Environ Earth Sci. doi:10.1007/s12665-012-2206-x Sophiya MS, Syed TH (2013) Assessment of vulnerability to seawater intrusion and potential remediation measures for coastal aquifers: a case study from eastern India. Environ Earth Sci. doi:10.​1007/​s12665-012-2206-x
Zurück zum Zitat Tang Z, Jiao JJ (1999) An analytical solution of groundwater response to tidal fluctuations in a leaky confined aquifer. Water Resour Res 35:747–751CrossRef Tang Z, Jiao JJ (1999) An analytical solution of groundwater response to tidal fluctuations in a leaky confined aquifer. Water Resour Res 35:747–751CrossRef
Zurück zum Zitat Todd DK (1980) Groundwater hydrology. John Wiley & Sons, New York Todd DK (1980) Groundwater hydrology. John Wiley & Sons, New York
Zurück zum Zitat Trefry MG, Johnston CD (1998) Pumping test analysis for a tidal forced aquifer. Ground Water 36(3):427–433CrossRef Trefry MG, Johnston CD (1998) Pumping test analysis for a tidal forced aquifer. Ground Water 36(3):427–433CrossRef
Zurück zum Zitat Wang J, Tsay T-K (2001) Tidal effects on groundwater motions. Transp Porous Media 43(1):159–178CrossRef Wang J, Tsay T-K (2001) Tidal effects on groundwater motions. Transp Porous Media 43(1):159–178CrossRef
Zurück zum Zitat Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194 Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194
Metadaten
Titel
Application of genetic algorithm technique to inverse modeling of tide–aquifer interaction
verfasst von
Madan K. Jha
Amanpreet Singh
Publikationsdatum
01.04.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 8/2014
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-013-2758-4

Weitere Artikel der Ausgabe 8/2014

Environmental Earth Sciences 8/2014 Zur Ausgabe