Skip to main content

07.11.2024 | Engine and Emissions, Fuels and Lubricants, Heat Transfer, Fluid and Thermal Engineering

Application of Hybrid Engine Modeling Method Based on Neural Network Group and PSO with Adaptive Inertia Factor in Engine Calibration

verfasst von: Xiuyong Shi, Jiande Wei, Haoyu Wang, Hua Liu, Degang Jiang

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The traditional hybrid engine calibration method has low efficiency and high cost of manpower and material resources, which can not meet the calibration requirements of complex engine electronic control system. The calibration method based on a mathematical model can greatly reduce the test workload and improve efficiency. Therefore, the black-box model of the engine is constructed by using the results of Spearman correlation analysis, and nine variables are selected as input, at the same time five variables are used as outputs. The improved RSR-BPNNG neural network group method is used to construct the hybrid engine economy and emission model. The model prediction results show that the R2 value of fuel consumption prediction reaches 0.9975, and the R2 value of NOx emission prediction reaches 0.9933, which achieves high precision modeling. On this basis, the performance of the engine under the WHSC cycle is simulated and optimized by the improved adaptive PSO algorithm. The optimization results show that the NOx emission of the engine is reduced by 8.16%, and the fuel consumption is reduced by 4.55%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Dipankar Kakati, S. R., & Banerjee, R. (2019). Development of an artificial neural network based virtual sensing platform for the simultaneous prediction of emission-performance-stability parameters of a diesel engine operating in dual fuel mode with port injected methanol. Energy Convers Manag, 184, 488–509. https://doi.org/10.1016/j.enconman.2019.01.087CrossRef Dipankar Kakati, S. R., & Banerjee, R. (2019). Development of an artificial neural network based virtual sensing platform for the simultaneous prediction of emission-performance-stability parameters of a diesel engine operating in dual fuel mode with port injected methanol. Energy Convers Manag, 184, 488–509. https://​doi.​org/​10.​1016/​j.​enconman.​2019.​01.​087CrossRef
Zurück zum Zitat Hossein, A., & Hassan, M. A. A. (2009). A method for pre-calibration of DI diesel engine emissions and performance using neural network and multi-objective genetic algorithm. Iranian Journal of Chemistry & Chemical Engineering, 28, 61–70. Hossein, A., & Hassan, M. A. A. (2009). A method for pre-calibration of DI diesel engine emissions and performance using neural network and multi-objective genetic algorithm. Iranian Journal of Chemistry & Chemical Engineering, 28, 61–70.
Zurück zum Zitat Ma, H. (2013). Control oriented engine modelling and engine multi-objective optimal feedback control. Birmingham: University of Birmingham. Ma, H. (2013). Control oriented engine modelling and engine multi-objective optimal feedback control. Birmingham: University of Birmingham.
Zurück zum Zitat Tong, H., Pei, J., Zhang, Q., Liu, J., Feng, X., & Wu, F. (2021). Learning boosts optimisation. Surrogate-Assisted Real Engine Calibration 2021 IEEE Symposium Series on Computational Intelligence (SSCI) Tong, H., Pei, J., Zhang, Q., Liu, J., Feng, X., & Wu, F. (2021). Learning boosts optimisation. Surrogate-Assisted Real Engine Calibration 2021 IEEE Symposium Series on Computational Intelligence (SSCI)
Metadaten
Titel
Application of Hybrid Engine Modeling Method Based on Neural Network Group and PSO with Adaptive Inertia Factor in Engine Calibration
verfasst von
Xiuyong Shi
Jiande Wei
Haoyu Wang
Hua Liu
Degang Jiang
Publikationsdatum
07.11.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00186-5