Skip to main content

2018 | OriginalPaper | Buchkapitel

9. Application of Lead-Free Piezoelectric Materials

verfasst von : Jiagang Wu

Erschienen in: Advances in Lead-Free Piezoelectric Materials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

After twenty years of enthusiastic researches into lead-free piezoelectric materials, the most eager prospects are transforming into the real applications. This chapter reviews the recent application progresses for lead-free piezoelectric materials, including piezoelectric energy harvesting devices, ultrasonic transducers, piezoelectric actuators, pyroelectric IR detectors, piezoelectric transformers and ultrasonic motors. The electrical parameters of active elements and devices performance are systematically discussed, which are almost compared with lead-based ones. Additionally, those challenges in lead-free piezoelectric materials and suggestions for the next research requirements for practical applications are also proposed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gao LS, Guo HZ, Zhang SJ, Randall CA (2016) Base metal co-fired multilayer piezoelectrics. Actuators 5:8–28CrossRef Gao LS, Guo HZ, Zhang SJ, Randall CA (2016) Base metal co-fired multilayer piezoelectrics. Actuators 5:8–28CrossRef
2.
Zurück zum Zitat Hong C-H, Kim H-P, Choi B-Y, Han H-S, Son J-S, Ahn C-W, Jo W (2016) Lead-free piezoceramics-where to move on? J Materiom 2:1–24CrossRef Hong C-H, Kim H-P, Choi B-Y, Han H-S, Son J-S, Ahn C-W, Jo W (2016) Lead-free piezoceramics-where to move on? J Materiom 2:1–24CrossRef
3.
Zurück zum Zitat Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246CrossRef Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246CrossRef
4.
Zurück zum Zitat Jung JH, Chen CY, Yun BK, Lee N, Zhou YS, Jo W, Chou LJ, Wang ZL (2012) Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors. Nanotechnology 23:37540 Jung JH, Chen CY, Yun BK, Lee N, Zhou YS, Jo W, Chou LJ, Wang ZL (2012) Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors. Nanotechnology 23:37540
5.
Zurück zum Zitat Kim S, Lee JH, Lee J, Kim SW, Kim MH, Park S, Chung H, Kim Y, Kim W (2013) Synthesis of monoclinic potassium niobate nanowires that are stable at room temperature. J Am Chem Soc 135:6–9CrossRef Kim S, Lee JH, Lee J, Kim SW, Kim MH, Park S, Chung H, Kim Y, Kim W (2013) Synthesis of monoclinic potassium niobate nanowires that are stable at room temperature. J Am Chem Soc 135:6–9CrossRef
6.
Zurück zum Zitat Joung MR, Xu HB, Seo IT, Kim DH, Hur J, Nahm S, Kang CY, Yoon SJ, Park HM (2014) Piezoelectric nanogenerators synthesized using KNbO3 nanowires with various crystal structures. J Mater Chem A 2:18547–18553CrossRef Joung MR, Xu HB, Seo IT, Kim DH, Hur J, Nahm S, Kang CY, Yoon SJ, Park HM (2014) Piezoelectric nanogenerators synthesized using KNbO3 nanowires with various crystal structures. J Mater Chem A 2:18547–18553CrossRef
7.
Zurück zum Zitat Ganeshkumar R, Cheah CW, Xu R, Kim SG, Zhao R (2017) A high output voltage flexible piezoelectric nanogenerator using porous lead-free KNbO3 nanofibers. Appl Phys Lett 111:013905CrossRef Ganeshkumar R, Cheah CW, Xu R, Kim SG, Zhao R (2017) A high output voltage flexible piezoelectric nanogenerator using porous lead-free KNbO3 nanofibers. Appl Phys Lett 111:013905CrossRef
8.
Zurück zum Zitat Jung JH, Lee M, Hong J, Ding Y, Chen CY, Chou LJ, Wang ZL (2011) Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano 5:10041–10046CrossRef Jung JH, Lee M, Hong J, Ding Y, Chen CY, Chou LJ, Wang ZL (2011) Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano 5:10041–10046CrossRef
9.
Zurück zum Zitat Xue QT, Wang Z, Tian H, Huan Y, Xie QY, Yang Y, Xie D, Li C, Shu Y, Wang XH, Ren TL (2015) A record flexible piezoelectric KNN ultrafine-grained nanopowder-based nanogenerator. AIP Adv 5:017102CrossRef Xue QT, Wang Z, Tian H, Huan Y, Xie QY, Yang Y, Xie D, Li C, Shu Y, Wang XH, Ren TL (2015) A record flexible piezoelectric KNN ultrafine-grained nanopowder-based nanogenerator. AIP Adv 5:017102CrossRef
10.
Zurück zum Zitat Kang HB, Chang JY, Koh K, Lin LW, Cho YS (2014) High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. ACS Appl Mater Interfaces 6:10576–10582CrossRef Kang HB, Chang JY, Koh K, Lin LW, Cho YS (2014) High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. ACS Appl Mater Interfaces 6:10576–10582CrossRef
11.
Zurück zum Zitat Zhu RJ, Jiang JY, Wang ZM, Cheng ZX, Kimura H (2016) High output power density nanogenerator based on lead-free 0.96(K0.48Na0.52)(Nb0.95Sb0.05)O3–0.04Bi0.5(Na0.82K0.18)0.5ZrO3 piezoelectric nanofibers. RSC Adv 6:66451CrossRef Zhu RJ, Jiang JY, Wang ZM, Cheng ZX, Kimura H (2016) High output power density nanogenerator based on lead-free 0.96(K0.48Na0.52)(Nb0.95Sb0.05)O3–0.04Bi0.5(Na0.82K0.18)0.5ZrO3 piezoelectric nanofibers. RSC Adv 6:66451CrossRef
12.
Zurück zum Zitat Jeong CK, Park K, Ryu J, Hwang GT, Lee KJ (2014) Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Adv Funct Mater 24:2620–2629CrossRef Jeong CK, Park K, Ryu J, Hwang GT, Lee KJ (2014) Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Adv Funct Mater 24:2620–2629CrossRef
13.
Zurück zum Zitat Yan J, Jeong YG (2016) High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes. ACS Appl Mater Interfaces 8:15700–15709CrossRef Yan J, Jeong YG (2016) High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes. ACS Appl Mater Interfaces 8:15700–15709CrossRef
14.
Zurück zum Zitat Park KI, Xu S, Liu Y, Hwang GT, Kang SJ, Wang ZL, Lee KJ (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10:4939–4943CrossRef Park KI, Xu S, Liu Y, Hwang GT, Kang SJ, Wang ZL, Lee KJ (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10:4939–4943CrossRef
15.
Zurück zum Zitat Gao T, Liao J, Wang J, Qiu Y, Yang Q, Zhang MQ, Zhao Y, Qin L, Xue H, Xiong Z, Chen L, Wang Q (2015) Highly oriented BaTiO3 film self-assembled using an interfacial strategy and its application as a flexible piezoelectric generator for wind energy harvesting. J Mater Chem A 3:9965–9971CrossRef Gao T, Liao J, Wang J, Qiu Y, Yang Q, Zhang MQ, Zhao Y, Qin L, Xue H, Xiong Z, Chen L, Wang Q (2015) Highly oriented BaTiO3 film self-assembled using an interfacial strategy and its application as a flexible piezoelectric generator for wind energy harvesting. J Mater Chem A 3:9965–9971CrossRef
16.
Zurück zum Zitat Park KI, Lee M, Liu Y, Moon S, Hwang GT, Zhu G, Kim JE, Kim SO, Kim DK, Wang ZL, Lee KJ (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24:2999–3004CrossRef Park KI, Lee M, Liu Y, Moon S, Hwang GT, Zhu G, Kim JE, Kim SO, Kim DK, Wang ZL, Lee KJ (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24:2999–3004CrossRef
17.
Zurück zum Zitat Lin ZH, Yang Y, Wu JM, Liu Y, Zhang F, Wang ZL (2012) BaTiO3 Nanotubes-based flexible and transparent nanogenerators. J Phys Chem Lett 3:3599–3604CrossRef Lin ZH, Yang Y, Wu JM, Liu Y, Zhang F, Wang ZL (2012) BaTiO3 Nanotubes-based flexible and transparent nanogenerators. J Phys Chem Lett 3:3599–3604CrossRef
18.
Zurück zum Zitat Shin SH, Kim YH, Lee MH, Jung JY, Nah J (2014) Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano 8:2766–2773CrossRef Shin SH, Kim YH, Lee MH, Jung JY, Nah J (2014) Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano 8:2766–2773CrossRef
19.
Zurück zum Zitat Zhou Z, Zhou Z, Sodano HA (2014) Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ Sci 7:288–296CrossRef Zhou Z, Zhou Z, Sodano HA (2014) Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ Sci 7:288–296CrossRef
20.
Zurück zum Zitat Ni X, Wang F, Lin A, Xu Q, Yang Z, Qin Y (2013) Flexible nanogenerator based on single BaTiO3 nanowire. Sci Adv Mater 5:1781–1787CrossRef Ni X, Wang F, Lin A, Xu Q, Yang Z, Qin Y (2013) Flexible nanogenerator based on single BaTiO3 nanowire. Sci Adv Mater 5:1781–1787CrossRef
21.
Zurück zum Zitat Jeong CK, Kim I, Park K, Oh MH, Paik H, Hwang GT, No K, Nam YS, Lee KJ (2013) Flexible nanogenerator based on single BaTiO3 nanowire flexible nanogenerator based on single BaTiO3 nanowire. Sci Adv Mater 7:11016–11025 Jeong CK, Kim I, Park K, Oh MH, Paik H, Hwang GT, No K, Nam YS, Lee KJ (2013) Flexible nanogenerator based on single BaTiO3 nanowire flexible nanogenerator based on single BaTiO3 nanowire. Sci Adv Mater 7:11016–11025
22.
Zurück zum Zitat Siddiqui S, Kim D, Duy LT, Nguyen MT, Muhammad S, Yoon WS, Lee NF (2015) High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 15:177–185CrossRef Siddiqui S, Kim D, Duy LT, Nguyen MT, Muhammad S, Yoon WS, Lee NF (2015) High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 15:177–185CrossRef
23.
Zurück zum Zitat Zhang G, Liao QL, Zhang Z, Liang QJ, Zhao YL, Zheng X, Zhang Y (2016) Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose. Adv Sci 3:1500257CrossRef Zhang G, Liao QL, Zhang Z, Liang QJ, Zhao YL, Zheng X, Zhang Y (2016) Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose. Adv Sci 3:1500257CrossRef
24.
Zurück zum Zitat Zhao YL, Liao QL, Zhang GJ, Zhang Z, Liang Q, Liao XQ, Zhang Y (2015) High output piezoelectric nanocomposite generators composed of oriented BaTiO3 Ps@PVDF. Nano Energy 11:719–727CrossRef Zhao YL, Liao QL, Zhang GJ, Zhang Z, Liang Q, Liao XQ, Zhang Y (2015) High output piezoelectric nanocomposite generators composed of oriented BaTiO3 Ps@PVDF. Nano Energy 11:719–727CrossRef
25.
Zurück zum Zitat Wu WW, Cheng L, Bai S, Dou W, Xu Q, Wei ZY, Qin Y (2013) Electrospinning lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanowires and their application in energy harvesting. J Mater Chem A 1:7332–7338CrossRef Wu WW, Cheng L, Bai S, Dou W, Xu Q, Wei ZY, Qin Y (2013) Electrospinning lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanowires and their application in energy harvesting. J Mater Chem A 1:7332–7338CrossRef
26.
Zurück zum Zitat Lee KY, Kumar B, Seo JS, Kim KH, Sohn JI, Cha SN, Choi D, Wang ZL, Kim SW (2012) P-type polymer-hybridized high-performance piezoelectric nanogenerators. Nano Lett 12:1959–1964CrossRef Lee KY, Kumar B, Seo JS, Kim KH, Sohn JI, Cha SN, Choi D, Wang ZL, Kim SW (2012) P-type polymer-hybridized high-performance piezoelectric nanogenerators. Nano Lett 12:1959–1964CrossRef
27.
Zurück zum Zitat Karanth D, Fu H (2005) Large electromechanical response in ZnO and its microscopic origin. Phys Rev B 72:064116CrossRef Karanth D, Fu H (2005) Large electromechanical response in ZnO and its microscopic origin. Phys Rev B 72:064116CrossRef
28.
Zurück zum Zitat Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103:257602CrossRef Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103:257602CrossRef
29.
Zurück zum Zitat Yang Q, Wang D, Zhang M, Gao T, Xue H, Wang Z, Xiong ZX (2016) Lead-free (Na0.83K0.17)0.5Bi0.5TiO3 nanofibers for wearable piezoelectric nanogenerators. J Alloy Compd 688:1066–1071CrossRef Yang Q, Wang D, Zhang M, Gao T, Xue H, Wang Z, Xiong ZX (2016) Lead-free (Na0.83K0.17)0.5Bi0.5TiO3 nanofibers for wearable piezoelectric nanogenerators. J Alloy Compd 688:1066–1071CrossRef
30.
Zurück zum Zitat Alam MM, Ghosh SK, Sultana A, Mandal D (2015) Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation. Nanotechnology 26:165403CrossRef Alam MM, Ghosh SK, Sultana A, Mandal D (2015) Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation. Nanotechnology 26:165403CrossRef
31.
Zurück zum Zitat Wu JM, Xu C, Zhang Y, Yang Y, Zhou Y, Wang ZL (2012) Flexible and transparent nanogenerators based on a composite of lead-free ZnSnO3 triangular-belts. Adv Mater 24:6094–6099CrossRef Wu JM, Xu C, Zhang Y, Yang Y, Zhou Y, Wang ZL (2012) Flexible and transparent nanogenerators based on a composite of lead-free ZnSnO3 triangular-belts. Adv Mater 24:6094–6099CrossRef
32.
Zurück zum Zitat Lee KY, Kim D, Lee JH, Kim TY, Gupta MK, Kim SW (2014) Unidirectional high-power generation via stress-induced dipole alignment from ZnSnO3 nanocubes/polymer hybrid piezoelectric nanogenerator. Adv Funct Mater 24:37–43CrossRef Lee KY, Kim D, Lee JH, Kim TY, Gupta MK, Kim SW (2014) Unidirectional high-power generation via stress-induced dipole alignment from ZnSnO3 nanocubes/polymer hybrid piezoelectric nanogenerator. Adv Funct Mater 24:37–43CrossRef
33.
Zurück zum Zitat Zhu G, Wang AC, Liu Y, Zhou YS, Wang ZL (2012) Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett 12:3086–3090CrossRef Zhu G, Wang AC, Liu Y, Zhou YS, Wang ZL (2012) Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett 12:3086–3090CrossRef
34.
Zurück zum Zitat Wang G, Xin Y, Xuan HX, Liu RC, Chen X, Cheng L (2015) Hybrid nanogenerators based on triboelectrification of a dielectric composite made of lead-free ZnSnO3 nanocubes. Nano Energy 18:28–36CrossRef Wang G, Xin Y, Xuan HX, Liu RC, Chen X, Cheng L (2015) Hybrid nanogenerators based on triboelectrification of a dielectric composite made of lead-free ZnSnO3 nanocubes. Nano Energy 18:28–36CrossRef
35.
Zurück zum Zitat Chen X, Xu SY, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10:2133–2137CrossRef Chen X, Xu SY, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10:2133–2137CrossRef
36.
Zurück zum Zitat Wu W, Bai S, Yuan M, Qin Y, Wang ZL, Jing T (2012) Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 6:6231–6235CrossRef Wu W, Bai S, Yuan M, Qin Y, Wang ZL, Jing T (2012) Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 6:6231–6235CrossRef
37.
Zurück zum Zitat Kwon J, Seung W, Sharma BK, Kim SW, Ahn JH (2012) A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energ Environ Sci 5:8970CrossRef Kwon J, Seung W, Sharma BK, Kim SW, Ahn JH (2012) A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energ Environ Sci 5:8970CrossRef
38.
Zurück zum Zitat Gu L, Cui NY, Cheng L, Xu Q, Bai S, Yuan M, Wu W, Liu JM, Zhao Y, Ma F, Qin Y, Wang ZL (2013) Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Lett 13:91–94CrossRef Gu L, Cui NY, Cheng L, Xu Q, Bai S, Yuan M, Wu W, Liu JM, Zhao Y, Ma F, Qin Y, Wang ZL (2013) Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Lett 13:91–94CrossRef
39.
Zurück zum Zitat Park K, Son JH, Hwang GT, Jeong CK, Ryu J, Koo M, Choi I, Lee SH, Byun M, Wang ZL, Lee KJ (2014) Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater 26:2514–2520CrossRef Park K, Son JH, Hwang GT, Jeong CK, Ryu J, Koo M, Choi I, Lee SH, Byun M, Wang ZL, Lee KJ (2014) Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater 26:2514–2520CrossRef
40.
Zurück zum Zitat Zhao QL, He GP, Di JJ, Song WL, Hou ZL, Tan PP, Wang DW, Cao MS (2017) Flexible semitransparent energy harvester with high pressure sensitivity and power density based on laterally aligned PZT single crystal nanowires. ACS Appl Mater Interfaces 9:24696–24703CrossRef Zhao QL, He GP, Di JJ, Song WL, Hou ZL, Tan PP, Wang DW, Cao MS (2017) Flexible semitransparent energy harvester with high pressure sensitivity and power density based on laterally aligned PZT single crystal nanowires. ACS Appl Mater Interfaces 9:24696–24703CrossRef
41.
Zurück zum Zitat Chen Y, Lam KH, Zhou D, Yue QW, Yu YX, Wu JC, Qiu WB, Sun L, Zhang C, Luo HS, Chan HLW, Dai JY (2014) High performance relaxor-based ferroelectric single crystals for ultrasonic transducer applications. Sensors 14:13730–13758CrossRef Chen Y, Lam KH, Zhou D, Yue QW, Yu YX, Wu JC, Qiu WB, Sun L, Zhang C, Luo HS, Chan HLW, Dai JY (2014) High performance relaxor-based ferroelectric single crystals for ultrasonic transducer applications. Sensors 14:13730–13758CrossRef
42.
Zurück zum Zitat Chen Y, Mei K, Wong CM, Lin DM, Chan HLW, Dai JY (2015) Ultrasonic transducer fabricated using lead-free BFO-BTO + Mn piezoelectric 1-3 composite. Actuators 4:127–134CrossRef Chen Y, Mei K, Wong CM, Lin DM, Chan HLW, Dai JY (2015) Ultrasonic transducer fabricated using lead-free BFO-BTO + Mn piezoelectric 1-3 composite. Actuators 4:127–134CrossRef
43.
Zurück zum Zitat Edwards GC, Choy SH, Chan HLW, Scott DA, Batten A (2007) Lead-free transducer for non-destructive evaluation. Appl Phys A 88:209–215CrossRef Edwards GC, Choy SH, Chan HLW, Scott DA, Batten A (2007) Lead-free transducer for non-destructive evaluation. Appl Phys A 88:209–215CrossRef
44.
Zurück zum Zitat Hagh NM, Jadidian B, Ashbahian E, Safari A (2008) Lead-free piezoelectric ceramic transducer in the donor-doped K1/2Na1/2NbO3 solid solution system. IEEE Trans Ultrason Ferroelectr Freq Control 55:214–224CrossRef Hagh NM, Jadidian B, Ashbahian E, Safari A (2008) Lead-free piezoelectric ceramic transducer in the donor-doped K1/2Na1/2NbO3 solid solution system. IEEE Trans Ultrason Ferroelectr Freq Control 55:214–224CrossRef
45.
Zurück zum Zitat Bantignies C, Filoux E, Mauchamp P, Dufait R, Thi MP, Rouffaud R, Grégoire JM, Levassort F (2013) Lead-free high-frequency linear-array transducer (30 MHz) for in vivo skin imaging. Ultrasonics Symposium (IUS), IEEE International. IEEE, pp 785–788 Bantignies C, Filoux E, Mauchamp P, Dufait R, Thi MP, Rouffaud R, Grégoire JM, Levassort F (2013) Lead-free high-frequency linear-array transducer (30 MHz) for in vivo skin imaging. Ultrasonics Symposium (IUS), IEEE International. IEEE, pp 785–788
46.
Zurück zum Zitat Shen ZY, Li JF, Chen RM, Zhou QF, Shung KK (2011) Microscale 1-3-type (Na,K)NbO3-Based Pb-free piezocomposites for high-frequency ultrasonic transducer applications. J Am Ceram Soc 94:1346–1349CrossRef Shen ZY, Li JF, Chen RM, Zhou QF, Shung KK (2011) Microscale 1-3-type (Na,K)NbO3-Based Pb-free piezocomposites for high-frequency ultrasonic transducer applications. J Am Ceram Soc 94:1346–1349CrossRef
47.
Zurück zum Zitat Ma JP, Xue SD, Zhao XY, Wang FF, Tang YX, Duan ZH, Wang T, Shi WZ, Yue QW, Zhou HF, Luo HS, Fang BJ (2017) High frequency transducer for vessel imaging based on lead-free Mn-doped (K0.44Na0.56)NbO3 single crystal. Appl Phys Lett 111:092903CrossRef Ma JP, Xue SD, Zhao XY, Wang FF, Tang YX, Duan ZH, Wang T, Shi WZ, Yue QW, Zhou HF, Luo HS, Fang BJ (2017) High frequency transducer for vessel imaging based on lead-free Mn-doped (K0.44Na0.56)NbO3 single crystal. Appl Phys Lett 111:092903CrossRef
48.
Zurück zum Zitat Zeyu Chen ZY, Zheng LM, Cao WW, Chen XY, Chen RM, Li RZ, Shung KK, Zhou QF (2017) High-frequency ultrasonic imaging with lead-free (Na,K)(Nb, Ta)O3 single crystal. Ultrason Imaging 39(6):348–356CrossRef Zeyu Chen ZY, Zheng LM, Cao WW, Chen XY, Chen RM, Li RZ, Shung KK, Zhou QF (2017) High-frequency ultrasonic imaging with lead-free (Na,K)(Nb, Ta)O3 single crystal. Ultrason Imaging 39(6):348–356CrossRef
49.
Zurück zum Zitat Yang JO, Zhu BP, Zhang Y, Chen S, Yang XF, Wei W (2015) New KNN-based lead-free piezoelectric ceramic for high-frequency ultrasound transducer applications. Appl Phys A 118:1177–1181CrossRef Yang JO, Zhu BP, Zhang Y, Chen S, Yang XF, Wei W (2015) New KNN-based lead-free piezoelectric ceramic for high-frequency ultrasound transducer applications. Appl Phys A 118:1177–1181CrossRef
50.
Zurück zum Zitat Hejazi MM, Jadidian B, Safari A (2012) Fabrication and evaluation of a single-element Bi0.5Na0.5TiO3-based ultrasonic transducer. IEEE Trans Ultrason Ferroelectr Freq Control 59:1840–1847CrossRef Hejazi MM, Jadidian B, Safari A (2012) Fabrication and evaluation of a single-element Bi0.5Na0.5TiO3-based ultrasonic transducer. IEEE Trans Ultrason Ferroelectr Freq Control 59:1840–1847CrossRef
51.
Zurück zum Zitat Chen Y, Jiang XP, Luo HS, Dai JY, Chan HIW (2010) High-frequency ultrasonic transducer fabricated with lead-free piezoelectric single crystal. IEEE Trans Ultrason Ferroelectr Freq Control 57:2601–2604CrossRef Chen Y, Jiang XP, Luo HS, Dai JY, Chan HIW (2010) High-frequency ultrasonic transducer fabricated with lead-free piezoelectric single crystal. IEEE Trans Ultrason Ferroelectr Freq Control 57:2601–2604CrossRef
52.
Zurück zum Zitat Yan XW, Lam KH, Li X, Chen RM, Ren W, Ren XB, Zhou QF, Shung KK (2013) Correspondence: lead-free intravascular ultrasound transducer using BZT-50BCT ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 60:1272–1276CrossRef Yan XW, Lam KH, Li X, Chen RM, Ren W, Ren XB, Zhou QF, Shung KK (2013) Correspondence: lead-free intravascular ultrasound transducer using BZT-50BCT ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 60:1272–1276CrossRef
53.
Zurück zum Zitat Lee STF, Lam KH, Zhang XM, Chan HLW (2011) High-frequency ultrasonic transducer based on lead-free BSZT piezoceramics. Ultrasonics 51:811–814CrossRef Lee STF, Lam KH, Zhang XM, Chan HLW (2011) High-frequency ultrasonic transducer based on lead-free BSZT piezoceramics. Ultrasonics 51:811–814CrossRef
54.
Zurück zum Zitat Zhou QF, Xu XC, Gottlieb EJ, Sun L, Cannata JM, Ameri H, Humayun MS, Han PD, Shung KK (2007) PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave doppler application. IEEE Trans Ultrason Ferroelectr Freq Control 54:668–675CrossRef Zhou QF, Xu XC, Gottlieb EJ, Sun L, Cannata JM, Ameri H, Humayun MS, Han PD, Shung KK (2007) PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave doppler application. IEEE Trans Ultrason Ferroelectr Freq Control 54:668–675CrossRef
55.
Zurück zum Zitat Zhou QF, Wu DW, Jin J, Hu CH, Xu XC, Williams J, Cannata JM, Lim L, Shung KK (2008) Design and fabrication of PZN-7%PT single crystal high frequency angled needle ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control 55:1394–1399CrossRef Zhou QF, Wu DW, Jin J, Hu CH, Xu XC, Williams J, Cannata JM, Lim L, Shung KK (2008) Design and fabrication of PZN-7%PT single crystal high frequency angled needle ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control 55:1394–1399CrossRef
56.
Zurück zum Zitat Sun P, Zhou QF, Zhu BP, Wu DW, Hu CH, Cannata JM, Tian J, Han PD, Wang GF, Shung KK (2009) Design and fabrication of PIN-PMN-PT single crystal high-frequency ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control 56:2760–2763CrossRef Sun P, Zhou QF, Zhu BP, Wu DW, Hu CH, Cannata JM, Tian J, Han PD, Wang GF, Shung KK (2009) Design and fabrication of PIN-PMN-PT single crystal high-frequency ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control 56:2760–2763CrossRef
57.
Zurück zum Zitat Lam KH, Ji HF, Zheng F, Ren W, Zhou QF, Shung KK (2013) Development of lead-free single-element ultrahigh frequency (170–320 MHz) ultrasonic transducers. Ultrasonics 53:1033–1038CrossRef Lam KH, Ji HF, Zheng F, Ren W, Zhou QF, Shung KK (2013) Development of lead-free single-element ultrahigh frequency (170–320 MHz) ultrasonic transducers. Ultrasonics 53:1033–1038CrossRef
58.
Zurück zum Zitat Wu DW, Zhou QF, Geng XC, Liu CG, Djuth F, Shung KK (2009) Very high frequency (beyond 100 MHz) PZT kerfless linear arrays. IEEE Trans Ultrason Ferroelectr Freq Control 25:2304–2310CrossRef Wu DW, Zhou QF, Geng XC, Liu CG, Djuth F, Shung KK (2009) Very high frequency (beyond 100 MHz) PZT kerfless linear arrays. IEEE Trans Ultrason Ferroelectr Freq Control 25:2304–2310CrossRef
59.
Zurück zum Zitat Ditas P, Hennig E, Kynast A (2014) Lead-free piezoceramic materials for ultrasonic applications. In: Proceedings of 17. ITG/GMA Symposium on Sensors and Measuring Systems 2014. VDE, pp 1–4 Ditas P, Hennig E, Kynast A (2014) Lead-free piezoceramic materials for ultrasonic applications. In: Proceedings of 17. ITG/GMA Symposium on Sensors and Measuring Systems 2014. VDE, pp 1–4
60.
Zurück zum Zitat Gao J, Xue D, Liu W, Zhou C, Ren X (2017) Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications. Actuators 6:24CrossRef Gao J, Xue D, Liu W, Zhou C, Ren X (2017) Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications. Actuators 6:24CrossRef
61.
Zurück zum Zitat Jaffe B (2012) Piezoelectric ceramics, vol 3. Elsevier, Amsterdam Jaffe B (2012) Piezoelectric ceramics, vol 3. Elsevier, Amsterdam
62.
Zurück zum Zitat Liu X, Tan X (2016) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28:574–578CrossRef Liu X, Tan X (2016) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28:574–578CrossRef
63.
Zurück zum Zitat Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87CrossRef Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87CrossRef
64.
Zurück zum Zitat Choi S-Y, Jeong S-J, Lee D-S, Kim M-S, Lee J-S, Cho JH, Kim BI, Ikuhara Y (2012) Gigantic electrostrain in duplex structured alkaline niobates. Chem Mater 24:3363–3369CrossRef Choi S-Y, Jeong S-J, Lee D-S, Kim M-S, Lee J-S, Cho JH, Kim BI, Ikuhara Y (2012) Gigantic electrostrain in duplex structured alkaline niobates. Chem Mater 24:3363–3369CrossRef
65.
Zurück zum Zitat Yao FZ, Wang K, Jo W, Webber KG, Comyn TP, Ding JX, Xu B, Cheng LQ, Zheng MP, Hou YD (2016) Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv Funct Mater 26:1217–1224CrossRef Yao FZ, Wang K, Jo W, Webber KG, Comyn TP, Ding JX, Xu B, Cheng LQ, Zheng MP, Hou YD (2016) Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv Funct Mater 26:1217–1224CrossRef
66.
Zurück zum Zitat Chaiyo N, Cann DP, Vittayakorn N (2017) Lead-free (Ba,Ca)(Ti,Zr)O3 ceramics within the polymorphic phase region exhibiting large, fatigue-free piezoelectric strains. Mater Design 133:109–121CrossRef Chaiyo N, Cann DP, Vittayakorn N (2017) Lead-free (Ba,Ca)(Ti,Zr)O3 ceramics within the polymorphic phase region exhibiting large, fatigue-free piezoelectric strains. Mater Design 133:109–121CrossRef
67.
Zurück zum Zitat Liu Y, Chang Y, Li F, Yang B, Sun Y, Wu J, Zhang S, Wang R, Cao W (2017) Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-oriented (Ba,Ca)(Ti,Zr)O3 through integrating crystallographic texture and domain engineering. ACS Appl Mater Interfaces 9:29863–29871CrossRef Liu Y, Chang Y, Li F, Yang B, Sun Y, Wu J, Zhang S, Wang R, Cao W (2017) Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-oriented (Ba,Ca)(Ti,Zr)O3 through integrating crystallographic texture and domain engineering. ACS Appl Mater Interfaces 9:29863–29871CrossRef
68.
Zurück zum Zitat Liu X, Tan X (2016) Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics. J Appl Phys 120:034102CrossRef Liu X, Tan X (2016) Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics. J Appl Phys 120:034102CrossRef
69.
Zurück zum Zitat Zhang ST, Kounga AB, Aulbach E, Granzow T, Jo W, Kleebe H-J, Rödel J (2008) Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. I. Structure and room temperature properties. J Appl Phys 103:034108CrossRef Zhang ST, Kounga AB, Aulbach E, Granzow T, Jo W, Kleebe H-J, Rödel J (2008) Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. I. Structure and room temperature properties. J Appl Phys 103:034108CrossRef
70.
Zurück zum Zitat Lee MH, Kim DJ, Park JS, Kim SW, Song TK, Kim MH, Kim WJ, Do D, Jeong IK (2015) High-performance lead-free piezoceramics with high curie temperatures. Adv Mater 27:6976–6982CrossRef Lee MH, Kim DJ, Park JS, Kim SW, Song TK, Kim MH, Kim WJ, Do D, Jeong IK (2015) High-performance lead-free piezoceramics with high curie temperatures. Adv Mater 27:6976–6982CrossRef
71.
Zurück zum Zitat Kim MS, Jeon S, Lee D-S, Jeong S-J, Song J-S (2009) Lead-free NKN-5LT piezoelectric materials for multilayer ceramic actuator. J Electroceram 23:372–375CrossRef Kim MS, Jeon S, Lee D-S, Jeong S-J, Song J-S (2009) Lead-free NKN-5LT piezoelectric materials for multilayer ceramic actuator. J Electroceram 23:372–375CrossRef
72.
Zurück zum Zitat Lee KS, Yoo J, Hwang L (2017) Electrical properties of (Na,K, Li)(Nb, Sb, Ta)O3 ceramics for multilayer-type piezoelectric actuator. Ferroelectrics 515:18–24CrossRef Lee KS, Yoo J, Hwang L (2017) Electrical properties of (Na,K, Li)(Nb, Sb, Ta)O3 ceramics for multilayer-type piezoelectric actuator. Ferroelectrics 515:18–24CrossRef
73.
Zurück zum Zitat Kawada S, Hayashi H, Ishii H, Kimura M, Ando A, Omiya S, Kubodera N (2015) Potassium sodium niobate-based lead-free piezoelectric multilayer ceramics co-fired with nickel electrodes. Materials 8:7423–7438CrossRef Kawada S, Hayashi H, Ishii H, Kimura M, Ando A, Omiya S, Kubodera N (2015) Potassium sodium niobate-based lead-free piezoelectric multilayer ceramics co-fired with nickel electrodes. Materials 8:7423–7438CrossRef
74.
Zurück zum Zitat Kawada S, Kimura M, Higuchi Y, Takagi H (2009) (K,Na)NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes. Appl Phys Express 2:111401CrossRef Kawada S, Kimura M, Higuchi Y, Takagi H (2009) (K,Na)NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes. Appl Phys Express 2:111401CrossRef
75.
Zurück zum Zitat Gao L, Ko SW, Guo H, Hennig E, Randall CA (2016) Demonstration of copper co-fired (Na,K)NbO3 multilayer structures for piezoelectric applications. J Am Ceram Soc 99:2017–2023CrossRef Gao L, Ko SW, Guo H, Hennig E, Randall CA (2016) Demonstration of copper co-fired (Na,K)NbO3 multilayer structures for piezoelectric applications. J Am Ceram Soc 99:2017–2023CrossRef
76.
Zurück zum Zitat Li JF, Wang K, Zhu FY, Cheng LQ, Yao FZ (2013) (K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 96:3677–3696CrossRef Li JF, Wang K, Zhu FY, Cheng LQ, Yao FZ (2013) (K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 96:3677–3696CrossRef
77.
Zurück zum Zitat Zheng T, Wu H, Yuan Y, Lv X, Li Q, Men T, Zhao C, Xiao D, Wu J, Wang K (2017) The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energ Environ Sci 10:528–537CrossRef Zheng T, Wu H, Yuan Y, Lv X, Li Q, Men T, Zhao C, Xiao D, Wu J, Wang K (2017) The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energ Environ Sci 10:528–537CrossRef
78.
Zurück zum Zitat Kang J-K, Han H-S, Jeong S-K, Ahn KK, Jeong S-J, Lee J-S (2013) Microwave and conventional sintering of lead-free (K,Na)NbO3-based piezoelectric ceramic multilayer actuators. J Ceram Process Res 14:230–233 Kang J-K, Han H-S, Jeong S-K, Ahn KK, Jeong S-J, Lee J-S (2013) Microwave and conventional sintering of lead-free (K,Na)NbO3-based piezoelectric ceramic multilayer actuators. J Ceram Process Res 14:230–233
79.
Zurück zum Zitat Gao R, Chu X, Huan Y, Wang X, Li L (2014) Investigation on co-fired multilayer KNN-based lead-free piezoceramics. Phys Status Solidi A 211:2378–2383CrossRef Gao R, Chu X, Huan Y, Wang X, Li L (2014) Investigation on co-fired multilayer KNN-based lead-free piezoceramics. Phys Status Solidi A 211:2378–2383CrossRef
80.
Zurück zum Zitat Liu C, Liu P, Kobayashi K, Randall CA (2014) Base metal co-fired (Na,K)NbO3 structures with enhanced piezoelectric performance. J Electroceram 32:301–306CrossRef Liu C, Liu P, Kobayashi K, Randall CA (2014) Base metal co-fired (Na,K)NbO3 structures with enhanced piezoelectric performance. J Electroceram 32:301–306CrossRef
81.
Zurück zum Zitat Kobayashi K, Doshida Y, Mizuno Y, Randall CA (2013) Possibility of cofiring a nickel inner electrode in a (Na0.5K0.5)NbO3-LiF piezoelectric actuator. Jpn J Appl Phys 52:09KD07CrossRef Kobayashi K, Doshida Y, Mizuno Y, Randall CA (2013) Possibility of cofiring a nickel inner electrode in a (Na0.5K0.5)NbO3-LiF piezoelectric actuator. Jpn J Appl Phys 52:09KD07CrossRef
82.
Zurück zum Zitat Nagata H, Hiruma Y, Takenaka T (2010) Electric-field-induced strain for (Bi1/2Na1/2)TiO3-based lead-free multilayer actuator. J Ceram Soc Jpn 118:726–730CrossRef Nagata H, Hiruma Y, Takenaka T (2010) Electric-field-induced strain for (Bi1/2Na1/2)TiO3-based lead-free multilayer actuator. J Ceram Soc Jpn 118:726–730CrossRef
83.
Zurück zum Zitat Nguyen V-Q, Kang J-K, Han H-S, Lee H-Y, Jeong S-J, Ahn C-W, Kim I-W, Lee J-S (2013) Bi-based lead-free ceramic multilayer actuators using AgPd-(Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3 composite inner electrodes. Sensors Actuat A-Phys 200:107–113CrossRef Nguyen V-Q, Kang J-K, Han H-S, Lee H-Y, Jeong S-J, Ahn C-W, Kim I-W, Lee J-S (2013) Bi-based lead-free ceramic multilayer actuators using AgPd-(Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3 composite inner electrodes. Sensors Actuat A-Phys 200:107–113CrossRef
84.
Zurück zum Zitat Khesro A, Wang D, Hussain F, Sinclair DC, Feteira A, Reaney IM (2016) Temperature stable and fatigue resistant lead-free ceramics for actuators. Appl Phys Lett 109:142907CrossRef Khesro A, Wang D, Hussain F, Sinclair DC, Feteira A, Reaney IM (2016) Temperature stable and fatigue resistant lead-free ceramics for actuators. Appl Phys Lett 109:142907CrossRef
85.
Zurück zum Zitat Ahn CW, Kim HS, Woo WS, Won SS, Seog HJ, Chae SA, Park BC, Jang KB, Ok YP, Chong HH (2015) Low-temperature sintering of Bi0.5(Na,K)0.5TiO3 for multilayer ceramic actuators. J Am Ceram Soc 98:1877–1883CrossRef Ahn CW, Kim HS, Woo WS, Won SS, Seog HJ, Chae SA, Park BC, Jang KB, Ok YP, Chong HH (2015) Low-temperature sintering of Bi0.5(Na,K)0.5TiO3 for multilayer ceramic actuators. J Am Ceram Soc 98:1877–1883CrossRef
86.
Zurück zum Zitat Koruza J, Rojas V, Molina-Luna L, Kunz U, Duerrschnabel M, Kleebe H-J, Acosta M (2016) Formation of the core-shell microstructure in lead-free Bi1/2Na1/2TiO3-SrTiO3 piezoceramics and its influence on the electromechanical properties. J Eur Ceram Soc 36:1009–1016CrossRef Koruza J, Rojas V, Molina-Luna L, Kunz U, Duerrschnabel M, Kleebe H-J, Acosta M (2016) Formation of the core-shell microstructure in lead-free Bi1/2Na1/2TiO3-SrTiO3 piezoceramics and its influence on the electromechanical properties. J Eur Ceram Soc 36:1009–1016CrossRef
87.
Zurück zum Zitat Groh C, Franzbach DJ, Jo W, Webber KG, Kling J, Schmitt LA, Kleebe HJ, Jeong SJ, Lee JS, Rödel J (2014) Relaxor/ferroelectric composites: a solution in the quest for practically viable lead-free incipient piezoceramics. Adv Funct Mater 24:356–362CrossRef Groh C, Franzbach DJ, Jo W, Webber KG, Kling J, Schmitt LA, Kleebe HJ, Jeong SJ, Lee JS, Rödel J (2014) Relaxor/ferroelectric composites: a solution in the quest for practically viable lead-free incipient piezoceramics. Adv Funct Mater 24:356–362CrossRef
88.
Zurück zum Zitat Ahn CW, Choi G, Kim IW, Lee J-S, Wang K, Hwang Y, Jo W (2017) Forced electrostriction by constraining polarization switching enhances the electromechanical strain properties of incipient piezoceramics. NPG Asia Mater 9:e346CrossRef Ahn CW, Choi G, Kim IW, Lee J-S, Wang K, Hwang Y, Jo W (2017) Forced electrostriction by constraining polarization switching enhances the electromechanical strain properties of incipient piezoceramics. NPG Asia Mater 9:e346CrossRef
89.
Zurück zum Zitat Cho J-H, Park J-S, Kim S-W, Jeong Y-H, Yun J-S, Park W-I, Hong Y-W, Paik J-H (2017) Ferroelectric properties and core shell domain structures of Fe-modified 0.77Bi0.5Na0.5TiO3-0.23SrTiO3 ceramics. J Eur Ceram Soc 37:3313–3318CrossRef Cho J-H, Park J-S, Kim S-W, Jeong Y-H, Yun J-S, Park W-I, Hong Y-W, Paik J-H (2017) Ferroelectric properties and core shell domain structures of Fe-modified 0.77Bi0.5Na0.5TiO3-0.23SrTiO3 ceramics. J Eur Ceram Soc 37:3313–3318CrossRef
90.
Zurück zum Zitat Acosta M, Schmitt LA, Molina-Luna L, Scherrer MC, Brilz M, Webber KG, Deluca M, Kleebe HJ, Rödel J, Donner W (2015) Core-shell lead-free piezoelectric ceramics: Current status and advanced characterization of the Bi1/2Na1/2TiO3-SrTiO3 system. J Am Ceram Soc 98:3405–3422CrossRef Acosta M, Schmitt LA, Molina-Luna L, Scherrer MC, Brilz M, Webber KG, Deluca M, Kleebe HJ, Rödel J, Donner W (2015) Core-shell lead-free piezoelectric ceramics: Current status and advanced characterization of the Bi1/2Na1/2TiO3-SrTiO3 system. J Am Ceram Soc 98:3405–3422CrossRef
91.
Zurück zum Zitat Choy S, Jiang X, Kwok K, Chan H (2010) Piezoelectric and dielectric characteristics of lead-free BNKLBT ceramic thick film and multilayered piezoelectric actuators. Ceram Int 36:2345–2350CrossRef Choy S, Jiang X, Kwok K, Chan H (2010) Piezoelectric and dielectric characteristics of lead-free BNKLBT ceramic thick film and multilayered piezoelectric actuators. Ceram Int 36:2345–2350CrossRef
92.
Zurück zum Zitat Tong X-Y, Zhou J-J, Wang K, Liu H, Fang J-Z (2017) Low-temperature sintered Bi0.5Na0.5TiO3-SrTiO3 incipient piezoceramics and the co-fired multilayer piezoactuator thereof. J Eur Ceram Soc 37:4617–4623CrossRef Tong X-Y, Zhou J-J, Wang K, Liu H, Fang J-Z (2017) Low-temperature sintered Bi0.5Na0.5TiO3-SrTiO3 incipient piezoceramics and the co-fired multilayer piezoactuator thereof. J Eur Ceram Soc 37:4617–4623CrossRef
93.
Zurück zum Zitat Sapper E, Gassmann A, Gjødvad L, Jo W, Granzow T, Rödel J (2014) Cycling stability of lead-free BNT-8BT and BNT-6BT-3KNN multilayer actuators and bulk ceramics. J Eur Ceram Soc 34:653–661CrossRef Sapper E, Gassmann A, Gjødvad L, Jo W, Granzow T, Rödel J (2014) Cycling stability of lead-free BNT-8BT and BNT-6BT-3KNN multilayer actuators and bulk ceramics. J Eur Ceram Soc 34:653–661CrossRef
94.
Zurück zum Zitat Krauss W, Schütz D, Naderer M, Orosel D, Reichmann K (2011) BNT-based multilayer device with large and temperature independent strain made by a water-based preparation process. J Eur Ceram Soc 31:1857–1860CrossRef Krauss W, Schütz D, Naderer M, Orosel D, Reichmann K (2011) BNT-based multilayer device with large and temperature independent strain made by a water-based preparation process. J Eur Ceram Soc 31:1857–1860CrossRef
95.
Zurück zum Zitat Nagata H, Tabuchi K, Takenaka T (2013) Fabrication and electrical properties of multilayer ceramic actuator using lead-free (Bi1/2K1/2)TiO3. Jpn J Appl Phys 52:09KD05CrossRef Nagata H, Tabuchi K, Takenaka T (2013) Fabrication and electrical properties of multilayer ceramic actuator using lead-free (Bi1/2K1/2)TiO3. Jpn J Appl Phys 52:09KD05CrossRef
96.
Zurück zum Zitat Malik RA, Hussain A, Maqbool A, Zaman A, Ahn CW, Rahman JU, Song TK, Kim WJ, Kim MH (2015) Temperature-insensitive high strain in lead-free Bi0.5(Na0.84K0.16)0.5TiO3-0.04SrTiO3 ceramics for actuator applications. J Am Ceram Soc 98:3842–3848CrossRef Malik RA, Hussain A, Maqbool A, Zaman A, Ahn CW, Rahman JU, Song TK, Kim WJ, Kim MH (2015) Temperature-insensitive high strain in lead-free Bi0.5(Na0.84K0.16)0.5TiO3-0.04SrTiO3 ceramics for actuator applications. J Am Ceram Soc 98:3842–3848CrossRef
97.
Zurück zum Zitat Kishi H, Mizuno Y, Chazono H (2003) Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn J Appl Phys 42:1CrossRef Kishi H, Mizuno Y, Chazono H (2003) Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn J Appl Phys 42:1CrossRef
98.
Zurück zum Zitat Abe K, Uchino K, Nomura S (1986) Barium titanate-based actuator with ceramic internal electrodes. Ferroelectrics 68:215–223CrossRef Abe K, Uchino K, Nomura S (1986) Barium titanate-based actuator with ceramic internal electrodes. Ferroelectrics 68:215–223CrossRef
99.
Zurück zum Zitat Long P, Liu X, Long X, Yi Z (2017) Dielectric relaxation, impedance spectra, piezoelectric properties of (Ba,Ca)(Ti,Sn)O3 ceramics and their multilayer piezoelectric actuators. J Alloys Compd 706:234–243CrossRef Long P, Liu X, Long X, Yi Z (2017) Dielectric relaxation, impedance spectra, piezoelectric properties of (Ba,Ca)(Ti,Sn)O3 ceramics and their multilayer piezoelectric actuators. J Alloys Compd 706:234–243CrossRef
100.
Zurück zum Zitat Long P, Yi Z (2017) Fabrication and properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ceramics and their multilayer piezoelectric actuators. Int J Appl Ceram Tec 14:16–21CrossRef Long P, Yi Z (2017) Fabrication and properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ceramics and their multilayer piezoelectric actuators. Int J Appl Ceram Tec 14:16–21CrossRef
101.
Zurück zum Zitat Lam K, Wang X, Chan H (2006) Lead-free piezoceramic cymbal actuator. Sensors Actuat A-Phys 125:393–397CrossRef Lam K, Wang X, Chan H (2006) Lead-free piezoceramic cymbal actuator. Sensors Actuat A-Phys 125:393–397CrossRef
102.
Zurück zum Zitat Wang X, Or S, Lam K, Chan H, Choy P, Liu P (2006) Cymbal actuator fabricated using (Na0.46K0.46Li0.08)NbO3 lead-free piezoceramic. J Electroceram 16:385–388CrossRef Wang X, Or S, Lam K, Chan H, Choy P, Liu P (2006) Cymbal actuator fabricated using (Na0.46K0.46Li0.08)NbO3 lead-free piezoceramic. J Electroceram 16:385–388CrossRef
103.
Zurück zum Zitat Yang D, Ge F, Tian M, Ning N, Zhang L, Zhao C, Ito K, Nishi T, Wang H, Luan Y (2015) Dielectric elastomer actuator with excellent electromechanical performance using slide-ring materials/barium titanate composites. J Mater Chem A 3:9468–9479CrossRef Yang D, Ge F, Tian M, Ning N, Zhang L, Zhao C, Ito K, Nishi T, Wang H, Luan Y (2015) Dielectric elastomer actuator with excellent electromechanical performance using slide-ring materials/barium titanate composites. J Mater Chem A 3:9468–9479CrossRef
104.
Zurück zum Zitat Whatmore RW (1986) Pyroelectric devices and materials. Rep Prog Phys 49:1335–1386CrossRef Whatmore RW (1986) Pyroelectric devices and materials. Rep Prog Phys 49:1335–1386CrossRef
105.
Zurück zum Zitat Lee MH, Guo R, Bhalla AS (1998) Pyroelectric sensors. J Electroceram 2:229–242CrossRef Lee MH, Guo R, Bhalla AS (1998) Pyroelectric sensors. J Electroceram 2:229–242CrossRef
106.
Zurück zum Zitat Rogalski A (2003) Infrared detectors: status and trends. Prog Quant Wlectron 27:59–210CrossRef Rogalski A (2003) Infrared detectors: status and trends. Prog Quant Wlectron 27:59–210CrossRef
107.
Zurück zum Zitat Batra AK, Aggarwal MD, Edwards ME, Bhalla A (2008) Present status of polymer: ceramic composites for pyroelectric infrared detectors. Ferroelectrics 366:84–121CrossRef Batra AK, Aggarwal MD, Edwards ME, Bhalla A (2008) Present status of polymer: ceramic composites for pyroelectric infrared detectors. Ferroelectrics 366:84–121CrossRef
108.
Zurück zum Zitat Bowen CR, Taylor J, LeBoulbar E, Zabek D, Chauhan A, Vaish R (2014) Pyroelectric materials and devices for energy harvesting applications. Energ Environ Sci 7:3836–3856CrossRef Bowen CR, Taylor J, LeBoulbar E, Zabek D, Chauhan A, Vaish R (2014) Pyroelectric materials and devices for energy harvesting applications. Energ Environ Sci 7:3836–3856CrossRef
109.
Zurück zum Zitat Li X, Lu SG, Chen XZ, Gu H, Qian XS, Zhang QM (2013) Pyroelectric and electrocaloric materials. J Mater Chem C 1:23–37CrossRef Li X, Lu SG, Chen XZ, Gu H, Qian XS, Zhang QM (2013) Pyroelectric and electrocaloric materials. J Mater Chem C 1:23–37CrossRef
110.
Zurück zum Zitat Lang SB (2005) Pyroelectricity: from ancient curiosity to modern imaging tool. Phys Today 58:31–36CrossRef Lang SB (2005) Pyroelectricity: from ancient curiosity to modern imaging tool. Phys Today 58:31–36CrossRef
111.
Zurück zum Zitat Srikanth KS, Vaish R (2017) Enhanced electrocaloric, pyroelectric and energy storage performance of BaCexTi1-xO3 ceramics. J Eur Ceram Soc 37:3927–3933CrossRef Srikanth KS, Vaish R (2017) Enhanced electrocaloric, pyroelectric and energy storage performance of BaCexTi1-xO3 ceramics. J Eur Ceram Soc 37:3927–3933CrossRef
112.
Zurück zum Zitat Yao S, Ren W, Ji H, Wu X, Shi P, Xue D, Ren X, Ye ZG (2012) High pyroelectricity in lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ceramics. J Phys D: Appl Phys 45:195301CrossRef Yao S, Ren W, Ji H, Wu X, Shi P, Xue D, Ren X, Ye ZG (2012) High pyroelectricity in lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ceramics. J Phys D: Appl Phys 45:195301CrossRef
113.
Zurück zum Zitat Liu X, Chen Z, Wu D, Fang B, Ding J, Zhao X, Xu H, Luo H (2015) Enhancing pyroelectric properties of Li-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics by optimizing calcination temperature. Jpn J Appl Phys 54:071501CrossRef Liu X, Chen Z, Wu D, Fang B, Ding J, Zhao X, Xu H, Luo H (2015) Enhancing pyroelectric properties of Li-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics by optimizing calcination temperature. Jpn J Appl Phys 54:071501CrossRef
114.
Zurück zum Zitat Patel S, Chauhan A, Vaish R (2016) Large pyroelectric figure of merits for Sr-modified Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics. Solid State Sci 52:10–18CrossRef Patel S, Chauhan A, Vaish R (2016) Large pyroelectric figure of merits for Sr-modified Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics. Solid State Sci 52:10–18CrossRef
115.
Zurück zum Zitat Liu X, Wu D, Chen Z, Fang B, Ding J, Zhao X, Luo H (2015) Ferroelectric, dielectric and pyroelectric properties of Sr and Sn codoped BCZT lead free ceramics. Adv Appl Ceram 114:436–441CrossRef Liu X, Wu D, Chen Z, Fang B, Ding J, Zhao X, Luo H (2015) Ferroelectric, dielectric and pyroelectric properties of Sr and Sn codoped BCZT lead free ceramics. Adv Appl Ceram 114:436–441CrossRef
116.
Zurück zum Zitat Zhang G, Jiang S, Zeng Y, Zhang Y, Zhang Q, Yu Y (2009) High pyroelectric properties of porous Ba0.67Sr0.33TiO3 for uncooled infrared detectors. J Am Ceram Soc 92:3132–3134CrossRef Zhang G, Jiang S, Zeng Y, Zhang Y, Zhang Q, Yu Y (2009) High pyroelectric properties of porous Ba0.67Sr0.33TiO3 for uncooled infrared detectors. J Am Ceram Soc 92:3132–3134CrossRef
117.
Zurück zum Zitat Jiang S, Liu P, Zhang X, Zhang L, Li Q, Yao J, Zeng Y, Wang Q, Zhang G (2015) Enhanced pyroelectric properties of porous Ba0.67Sr0.33TiO3 ceramics fabricated with carbon nanotubes. J Alloy Compd 636:93–96CrossRef Jiang S, Liu P, Zhang X, Zhang L, Li Q, Yao J, Zeng Y, Wang Q, Zhang G (2015) Enhanced pyroelectric properties of porous Ba0.67Sr0.33TiO3 ceramics fabricated with carbon nanotubes. J Alloy Compd 636:93–96CrossRef
118.
Zurück zum Zitat Mao C, Yan S, Cao S, Yao C, Cao F, Wang G, Dong X, Hu X, Yang C (2014) Effect of grain size on phase transition, dielectric and pyroelectric properties of BST ceramics. J Eur Ceram Soc 34:2933–2939CrossRef Mao C, Yan S, Cao S, Yao C, Cao F, Wang G, Dong X, Hu X, Yang C (2014) Effect of grain size on phase transition, dielectric and pyroelectric properties of BST ceramics. J Eur Ceram Soc 34:2933–2939CrossRef
119.
Zurück zum Zitat Srikanth KS, Singh VP, Vaish R (2017) Enhanced pyroelectric figure of merits of porous BaSn0.05Ti0.95O3 ceramics. J Eur Ceram Soc 37:3943–3950CrossRef Srikanth KS, Singh VP, Vaish R (2017) Enhanced pyroelectric figure of merits of porous BaSn0.05Ti0.95O3 ceramics. J Eur Ceram Soc 37:3943–3950CrossRef
120.
Zurück zum Zitat Lau ST, Cheng CH, Choy SH, Lin DM, Kwok KW, Chan HL (2008) Lead-free ceramics for pyroelectric applications. J Appl Phys 103:104105CrossRef Lau ST, Cheng CH, Choy SH, Lin DM, Kwok KW, Chan HL (2008) Lead-free ceramics for pyroelectric applications. J Appl Phys 103:104105CrossRef
121.
Zurück zum Zitat Chi Q, Dong J, Zhang C, Wang X, Lei Q (2016) Highly (100)-oriented sandwich structure of (Na0.85K0.15)0.5Bi0.5TiO3 composite films with outstanding pyroelectric properties. J Mater Chem C 4:4442–4450CrossRef Chi Q, Dong J, Zhang C, Wang X, Lei Q (2016) Highly (100)-oriented sandwich structure of (Na0.85K0.15)0.5Bi0.5TiO3 composite films with outstanding pyroelectric properties. J Mater Chem C 4:4442–4450CrossRef
122.
Zurück zum Zitat Balakt AM, Shaw CP, Zhang Q (2017) Giant pyroelectric properties in La and Ta co-doped lead-free 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 ceramics. J Alloy Compd 709:82–91CrossRef Balakt AM, Shaw CP, Zhang Q (2017) Giant pyroelectric properties in La and Ta co-doped lead-free 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 ceramics. J Alloy Compd 709:82–91CrossRef
123.
Zurück zum Zitat Balakt AM, Shaw CP, Zhang Q (2017) Enhancement of pyroelectric properties of lead-free 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 ceramics by La doping. J Eur Ceram Soc 37:1459–1466CrossRef Balakt AM, Shaw CP, Zhang Q (2017) Enhancement of pyroelectric properties of lead-free 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 ceramics by La doping. J Eur Ceram Soc 37:1459–1466CrossRef
124.
Zurück zum Zitat Sun R, Wang J, Wang F, Feng T, Li Y, Chi Z, Zhao X, Luo H (2014) Pyroelectric properties of Mn-doped 94.6Na0.5Bi0.5TiO3-5.4BaTiO3 lead-free single crystals. J Appl Phys 115:074101CrossRef Sun R, Wang J, Wang F, Feng T, Li Y, Chi Z, Zhao X, Luo H (2014) Pyroelectric properties of Mn-doped 94.6Na0.5Bi0.5TiO3-5.4BaTiO3 lead-free single crystals. J Appl Phys 115:074101CrossRef
125.
Zurück zum Zitat Li J, Li Y, Zhou Z, Guo R, Bhalla A (2013) Pyroelectric properties of lead-free ferroelectric niobium-rich potassium lithium tantalate niobate single crystals. Ceram Int 39:8517–8519CrossRef Li J, Li Y, Zhou Z, Guo R, Bhalla A (2013) Pyroelectric properties of lead-free ferroelectric niobium-rich potassium lithium tantalate niobate single crystals. Ceram Int 39:8517–8519CrossRef
126.
Zurück zum Zitat Zhang H, Jiang S, Kajiyoshi K, Xiao J (2010) Dielectric, ferroelectric, pyroelectric, and piezoelectric properties of La-modified lead-free sodium-potassium bismuth titanate thick films. J Am Ceram Soc 93:750–757CrossRef Zhang H, Jiang S, Kajiyoshi K, Xiao J (2010) Dielectric, ferroelectric, pyroelectric, and piezoelectric properties of La-modified lead-free sodium-potassium bismuth titanate thick films. J Am Ceram Soc 93:750–757CrossRef
127.
Zurück zum Zitat Eberle G, Schmidt H, Eisenmenger W (1996) Piezoelectric polymer electrets. IEEE Trans Dielect Elect Insul 3:624–646CrossRef Eberle G, Schmidt H, Eisenmenger W (1996) Piezoelectric polymer electrets. IEEE Trans Dielect Elect Insul 3:624–646CrossRef
128.
Zurück zum Zitat Sampathkumar P, Srinivasan K (2016) Pyroelectric properties and electrocaloric effect in TGS1-xPx single crystals. Mater Res Express 3:106301CrossRef Sampathkumar P, Srinivasan K (2016) Pyroelectric properties and electrocaloric effect in TGS1-xPx single crystals. Mater Res Express 3:106301CrossRef
129.
Zurück zum Zitat Liu W, Ko JS, Zhu W (2001) Pyroelectric properties of Pb(Zr, Ti)O3 and Pb(Zr, Ti)O3/PbTiO3 multilayered thin films. Integr Ferroelectr 35:127–135CrossRef Liu W, Ko JS, Zhu W (2001) Pyroelectric properties of Pb(Zr, Ti)O3 and Pb(Zr, Ti)O3/PbTiO3 multilayered thin films. Integr Ferroelectr 35:127–135CrossRef
130.
Zurück zum Zitat Aleksandrov SE, Gavrilov GA, Kapralov AA, Smirnova EP, Sotnikova GY, Sotnikov KA (2004) Characterization of pyroelectric materials for uncooled infrared sensors in dielectric bolometer mode: specific features and setup. In: International society for optics and photonics, lasers for measurements and information transfer. International Society for Optics and Photonics 5381:128–138 Aleksandrov SE, Gavrilov GA, Kapralov AA, Smirnova EP, Sotnikova GY, Sotnikov KA (2004) Characterization of pyroelectric materials for uncooled infrared sensors in dielectric bolometer mode: specific features and setup. In: International society for optics and photonics, lasers for measurements and information transfer. International Society for Optics and Photonics 5381:128–138
131.
Zurück zum Zitat Xu Q, Zhao X, Li X, Li L, Yang L, Di W, Jiao J, Luo H (2015) Novel electrode layout for relaxor single crystal pyroelectric detectors with enhanced responsivity and specific detectivity. Sensor Actuat A: Phys 234:82–86 Xu Q, Zhao X, Li X, Li L, Yang L, Di W, Jiao J, Luo H (2015) Novel electrode layout for relaxor single crystal pyroelectric detectors with enhanced responsivity and specific detectivity. Sensor Actuat A: Phys 234:82–86
132.
Zurück zum Zitat Sebald G, Lefeuvre E, Guyomar D (2008) Pyroelectric energy conversion: optimization principles. IEEE Trans Ultrason Ferroelectr Freq Control 55:538–551CrossRef Sebald G, Lefeuvre E, Guyomar D (2008) Pyroelectric energy conversion: optimization principles. IEEE Trans Ultrason Ferroelectr Freq Control 55:538–551CrossRef
133.
Zurück zum Zitat Lei X, Dong X, Mao C, Chen Y, Cao F, Wang G (2012) Dielectric and enhanced pyroelectric properties of (Pb0.325Sr0.675)TiO3 ceramics under direct current bias field. Appl Phys Lett 101:262901CrossRef Lei X, Dong X, Mao C, Chen Y, Cao F, Wang G (2012) Dielectric and enhanced pyroelectric properties of (Pb0.325Sr0.675)TiO3 ceramics under direct current bias field. Appl Phys Lett 101:262901CrossRef
134.
Zurück zum Zitat Han L, Guo S, Yan S, Cao F, Guo W, Yao C, Dong X, Wang G (2017) Enhanced pyroelectric properties of Pb0.3Ca0.15Sr0.55TiO3 ceramic with first-order dominated phase transition under low bias field. Appl Phys Lett 110:102905CrossRef Han L, Guo S, Yan S, Cao F, Guo W, Yao C, Dong X, Wang G (2017) Enhanced pyroelectric properties of Pb0.3Ca0.15Sr0.55TiO3 ceramic with first-order dominated phase transition under low bias field. Appl Phys Lett 110:102905CrossRef
135.
Zurück zum Zitat Sugai T, Kikuchi K, Yoshita R, Akai D, Sawada K, Ishida M (2009) Pyroelectric IR sensor array using lead-free pyroelectric NBT thin film on epitaxial c-Al2O3/Si (100) substrates. In: Solid-state sensors, actuators and microsystems conference. Transducers pp 1971–1974 Sugai T, Kikuchi K, Yoshita R, Akai D, Sawada K, Ishida M (2009) Pyroelectric IR sensor array using lead-free pyroelectric NBT thin film on epitaxial c-Al2O3/Si (100) substrates. In: Solid-state sensors, actuators and microsystems conference. Transducers pp 1971–1974
136.
Zurück zum Zitat Zhang WL, Yu YC, Luo WB, Shuai Y, Pan XQ, Wu QQ, Wu CG (2017) Lead free KNN/P(VDF-TrFE) 0-3 pyroelectric composite films and its infrared sensor. Infrared Phys Technol 80:100–104CrossRef Zhang WL, Yu YC, Luo WB, Shuai Y, Pan XQ, Wu QQ, Wu CG (2017) Lead free KNN/P(VDF-TrFE) 0-3 pyroelectric composite films and its infrared sensor. Infrared Phys Technol 80:100–104CrossRef
137.
Zurück zum Zitat Zhu H, Miao J, Noda M, Okuyama M (2004) Preparation of BST ferroelectric thin film by metal organic decomposition for infrared sensor. Sensor Actuat A: Phys 110:371–377CrossRef Zhu H, Miao J, Noda M, Okuyama M (2004) Preparation of BST ferroelectric thin film by metal organic decomposition for infrared sensor. Sensor Actuat A: Phys 110:371–377CrossRef
138.
Zurück zum Zitat Jamaluddin A, Susilowati E, Budiawanti S, Iriani Y (2012) Characterization of multilayer thin film Ba0.8Sr0.2TiO3 for lighting sensor application. In: Proceedings of international conferences on physics and applications, pp 49–52 Jamaluddin A, Susilowati E, Budiawanti S, Iriani Y (2012) Characterization of multilayer thin film Ba0.8Sr0.2TiO3 for lighting sensor application. In: Proceedings of international conferences on physics and applications, pp 49–52
139.
Zurück zum Zitat Neumann N, Es-Souni M, Luo H (2009) Application of PMN-PT in pyroelectric detectors. In: 18th IEEE international symposium, applications of ferroelectrics, pp 1–3 Neumann N, Es-Souni M, Luo H (2009) Application of PMN-PT in pyroelectric detectors. In: 18th IEEE international symposium, applications of ferroelectrics, pp 1–3
140.
Zurück zum Zitat Stenger V, Shnider M, Sriram S, Dooley D, Stout M (2012) Thin film lithium tantalate (TFLT) pyroelectric detectors. International society for optics and photonics, p 82610Q Stenger V, Shnider M, Sriram S, Dooley D, Stout M (2012) Thin film lithium tantalate (TFLT) pyroelectric detectors. International society for optics and photonics, p 82610Q
141.
Zurück zum Zitat Hsiao CC, Yu SY (2012) Improved response of ZnO films for pyroelectric devices. Sensor 12:17007–17022CrossRef Hsiao CC, Yu SY (2012) Improved response of ZnO films for pyroelectric devices. Sensor 12:17007–17022CrossRef
142.
Zurück zum Zitat Tan Q-L, Zhang W-D, Xue C-Y, Xiong J-J, Liu J, Li J-H, Liang T (2009) Design, fabrication and characterization of pyroelectric thin film and its application for infrared gas sensors. Microelectronic J 40:58–62CrossRef Tan Q-L, Zhang W-D, Xue C-Y, Xiong J-J, Liu J, Li J-H, Liang T (2009) Design, fabrication and characterization of pyroelectric thin film and its application for infrared gas sensors. Microelectronic J 40:58–62CrossRef
143.
Zurück zum Zitat Li L, Zhao X, Li X, Ren B, Xu Q, Liang Z, Di W, Yang L, Luo H, Shao X, Fang J, Neumann N, Jiao J (2014) Scale effects of low-dimensional relaxor ferroelectric single crystals and their application in novel pyroelectric infrared detectors. Adv Mater 26:2580–2585CrossRef Li L, Zhao X, Li X, Ren B, Xu Q, Liang Z, Di W, Yang L, Luo H, Shao X, Fang J, Neumann N, Jiao J (2014) Scale effects of low-dimensional relaxor ferroelectric single crystals and their application in novel pyroelectric infrared detectors. Adv Mater 26:2580–2585CrossRef
144.
Zurück zum Zitat Sharma M, Chauhan A, Vaish R, Chauhan VS (2015) Pyroelectric materials for solar energy harvesting: a comparative study. Smart Mater Struct 24:105013CrossRef Sharma M, Chauhan A, Vaish R, Chauhan VS (2015) Pyroelectric materials for solar energy harvesting: a comparative study. Smart Mater Struct 24:105013CrossRef
145.
Zurück zum Zitat Yang Y, Jung JH, Yun BK, Zhang F, Pradel KC, Guo W, Wang ZL (2012) Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO3 nanowires. Adv Mater 24:5357–5362CrossRef Yang Y, Jung JH, Yun BK, Zhang F, Pradel KC, Guo W, Wang ZL (2012) Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO3 nanowires. Adv Mater 24:5357–5362CrossRef
146.
Zurück zum Zitat Madhar NA, Ilahi B, Vaish M (2015) Pyroelectric energy harvesting using (Ba0.85Ca0.15)(Zr0.1Ti0.89Fe0.01)O3 ceramics. Integr Ferroelectric 167:176–183CrossRef Madhar NA, Ilahi B, Vaish M (2015) Pyroelectric energy harvesting using (Ba0.85Ca0.15)(Zr0.1Ti0.89Fe0.01)O3 ceramics. Integr Ferroelectric 167:176–183CrossRef
147.
Zurück zum Zitat Akai D, Yoshita R, Ishida M (2013) (Na, Bi)TiO3 based lead-free ferroelectric thin films on Si substrate for pyroelectric infrared sensors. J Phys: Conf Ser 433:012017 Akai D, Yoshita R, Ishida M (2013) (Na, Bi)TiO3 based lead-free ferroelectric thin films on Si substrate for pyroelectric infrared sensors. J Phys: Conf Ser 433:012017
148.
Zurück zum Zitat Chiu CH, Liang WI, Huang CW, Chen JY, Liu YY, Li JY, Hsin CL, Chu YH, Wu WW (2015) Atomic visualization of the phase transition in highly strained BiFeO3 thin films with excellent pyroelectric response. Nano Energy 17:72–81CrossRef Chiu CH, Liang WI, Huang CW, Chen JY, Liu YY, Li JY, Hsin CL, Chu YH, Wu WW (2015) Atomic visualization of the phase transition in highly strained BiFeO3 thin films with excellent pyroelectric response. Nano Energy 17:72–81CrossRef
149.
Zurück zum Zitat Chauhan VS, Sharma SK, Dutta S, Srikanth KS (2017) A study on SBN-POP composites for pyroelectric sensing applications. J Aust Ceram Soc 1–6 Chauhan VS, Sharma SK, Dutta S, Srikanth KS (2017) A study on SBN-POP composites for pyroelectric sensing applications. J Aust Ceram Soc 1–6
150.
Zurück zum Zitat Battista L, Mecozzi L, Coppola S, Vespini V, Grilli S, Ferraro P (2014) Graphene and carbon black nano-composite polymer absorbers for a pyro-electric solar energy harvesting device based on LiNbO3 crystals. Appl Energy 136:357–362CrossRef Battista L, Mecozzi L, Coppola S, Vespini V, Grilli S, Ferraro P (2014) Graphene and carbon black nano-composite polymer absorbers for a pyro-electric solar energy harvesting device based on LiNbO3 crystals. Appl Energy 136:357–362CrossRef
151.
Zurück zum Zitat Xie J, Mane XP, Green CW, Mossi KM, Leang KK (2010) Performance of thin piezoelectric materials for pyroelectric energy harvesting. J Intel Mater Syst Struct 21:243–249CrossRef Xie J, Mane XP, Green CW, Mossi KM, Leang KK (2010) Performance of thin piezoelectric materials for pyroelectric energy harvesting. J Intel Mater Syst Struct 21:243–249CrossRef
152.
Zurück zum Zitat Yamanaka S, Kim J, Nakajima A, Katou T, Kim Y, Fukuda T, Yoshii K, Nishihata Y, Baba M, Yamada N, Nakayama T, Takeda M, Niihara K, Tanaka H (2017) Relationship between the material properties and pyroelectric-generating performance of PZTs. Adv Sustain Syst 1:1700121 Yamanaka S, Kim J, Nakajima A, Katou T, Kim Y, Fukuda T, Yoshii K, Nishihata Y, Baba M, Yamada N, Nakayama T, Takeda M, Niihara K, Tanaka H (2017) Relationship between the material properties and pyroelectric-generating performance of PZTs. Adv Sustain Syst 1:1700121
153.
Zurück zum Zitat Ravindran SKT, Huesgen T, Kroener M, Woias P (2011) A self-sustaining micro thermomechanic-pyroelectric generator. Appl Phys Lett 99:104102CrossRef Ravindran SKT, Huesgen T, Kroener M, Woias P (2011) A self-sustaining micro thermomechanic-pyroelectric generator. Appl Phys Lett 99:104102CrossRef
154.
Zurück zum Zitat Yang Y, Wang S, Zhang Y, Wang ZL (2012) Pyroelectric nanogenerators for driving wireless sensors. Nano letter 12:6408–6413CrossRef Yang Y, Wang S, Zhang Y, Wang ZL (2012) Pyroelectric nanogenerators for driving wireless sensors. Nano letter 12:6408–6413CrossRef
155.
Zurück zum Zitat Lee JH, Lee KY, Gupta MK, Kim TY, Lee DY, Oh Ryu C, Yoo WJ, Kang C-Y, Yoon S-J, Yoo JB, Kim S-W (2014) Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv Mater 26:765–769CrossRef Lee JH, Lee KY, Gupta MK, Kim TY, Lee DY, Oh Ryu C, Yoo WJ, Kang C-Y, Yoon S-J, Yoo JB, Kim S-W (2014) Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv Mater 26:765–769CrossRef
156.
Zurück zum Zitat Zi Y, Lin L, Wang J, Wang S, Chen J, Fan X, Yang P-K, Yi F, Wang ZL (2015) Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv Mater 27:2340–2347CrossRef Zi Y, Lin L, Wang J, Wang S, Chen J, Fan X, Yang P-K, Yi F, Wang ZL (2015) Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv Mater 27:2340–2347CrossRef
157.
Zurück zum Zitat Lin RL (2001) Piezoelectric transformer characterization and application of electronic ballast. Ph.D. dissertation, Department of Electrical Engineering, Virginia Polytechnic Institute State University, Blacksburg, VA, USA, 2001 Lin RL (2001) Piezoelectric transformer characterization and application of electronic ballast. Ph.D. dissertation, Department of Electrical Engineering, Virginia Polytechnic Institute State University, Blacksburg, VA, USA, 2001
158.
Zurück zum Zitat Baker EM, Huang W, Chen DY, Lee FC (2005) Radial mode piezoelectric transformer design for fluorescent lamp ballast applications. IEEE Trans Power Electron 20:1213–1220CrossRef Baker EM, Huang W, Chen DY, Lee FC (2005) Radial mode piezoelectric transformer design for fluorescent lamp ballast applications. IEEE Trans Power Electron 20:1213–1220CrossRef
159.
Zurück zum Zitat Rødgaard MS, Weirich M, Andersen MA (2013) Forward conduction mode controlled piezoelectric transformer-based PFC LED drive. IEEE Trans Power Electron 28:4841–4849CrossRef Rødgaard MS, Weirich M, Andersen MA (2013) Forward conduction mode controlled piezoelectric transformer-based PFC LED drive. IEEE Trans Power Electron 28:4841–4849CrossRef
160.
Zurück zum Zitat Andersen T (2012) Piezoelectric transformer based power supply for dielectric electro active polymers. Ph.D. dissertation, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark, 2012 Andersen T (2012) Piezoelectric transformer based power supply for dielectric electro active polymers. Ph.D. dissertation, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark, 2012
161.
Zurück zum Zitat Carazo AV (2016) Piezoelectric transformers: an historical review. Actuators 5:12CrossRef Carazo AV (2016) Piezoelectric transformers: an historical review. Actuators 5:12CrossRef
162.
Zurück zum Zitat Zaitsu T, Shigehisa T, Inoue T, Shoyama M, Ninomiya T (1995) Piezoelectric transformer converter with frequency control. In: 17th International of telecommunications energy conference, 1995, INTELEC’95. IEEE, pp 175–180 Zaitsu T, Shigehisa T, Inoue T, Shoyama M, Ninomiya T (1995) Piezoelectric transformer converter with frequency control. In: 17th International of telecommunications energy conference, 1995, INTELEC’95. IEEE, pp 175–180
163.
Zurück zum Zitat Alonso JM, Ordiz C, Dalla Costa MA (2008) A novel control method for piezoelectric-transformer based power supplies assuring zero-voltage-switching operation. IEEE Trans Ind Electron 55:1085–1089CrossRef Alonso JM, Ordiz C, Dalla Costa MA (2008) A novel control method for piezoelectric-transformer based power supplies assuring zero-voltage-switching operation. IEEE Trans Ind Electron 55:1085–1089CrossRef
164.
Zurück zum Zitat Ekhtiari M, Andersen T, Andersen MA, Zhang Z (2017) Dynamic optimum dead time in piezoelectric transformer-based switch-mode power supplies. IEEE Trans Power Electron 32:783–793CrossRef Ekhtiari M, Andersen T, Andersen MA, Zhang Z (2017) Dynamic optimum dead time in piezoelectric transformer-based switch-mode power supplies. IEEE Trans Power Electron 32:783–793CrossRef
165.
Zurück zum Zitat Hamamura S, Kurose D, Ninomiya T, Yamamoto M (2000) New control method of piezoelectric transformer converter by PWM and PFM for wide range of input voltage. In: VII IEEE international on power electronics congress, CIEP 2000. IEEE, pp 3–8 Hamamura S, Kurose D, Ninomiya T, Yamamoto M (2000) New control method of piezoelectric transformer converter by PWM and PFM for wide range of input voltage. In: VII IEEE international on power electronics congress, CIEP 2000. IEEE, pp 3–8
166.
Zurück zum Zitat Zaitsu T, Ninomiya T, Shoyama M (1997) Piezoelectric transformer converter with PWM control. IEICE Trans Commun 80:1035–1044 Zaitsu T, Ninomiya T, Shoyama M (1997) Piezoelectric transformer converter with PWM control. IEICE Trans Commun 80:1035–1044
167.
Zurück zum Zitat Martin-Ramos JA, Prieto MAJ, García FN, González JD, Linera FF (2002) A new full-protected control mode to drive piezoelectric transformers in DC-DC converters. IEEE Trans Power Electron 17:1096–1103CrossRef Martin-Ramos JA, Prieto MAJ, García FN, González JD, Linera FF (2002) A new full-protected control mode to drive piezoelectric transformers in DC-DC converters. IEEE Trans Power Electron 17:1096–1103CrossRef
168.
Zurück zum Zitat Rosen CA, Fish K, Rothenberg HC (1958) Voltage mode active clamp PWM controller for high speed operation. U.S. Patent 2830274, 8 Apr 1958 Rosen CA, Fish K, Rothenberg HC (1958) Voltage mode active clamp PWM controller for high speed operation. U.S. Patent 2830274, 8 Apr 1958
169.
Zurück zum Zitat Yoo J, Yoon K, Hwang S, Suh S, Kim J, Yoo C (2001) Electrical characteristics of high power piezoelectric transformer for 28 W fluorescent lamp. Sensor Actuat A-Phys 90:132–137CrossRef Yoo J, Yoon K, Hwang S, Suh S, Kim J, Yoo C (2001) Electrical characteristics of high power piezoelectric transformer for 28 W fluorescent lamp. Sensor Actuat A-Phys 90:132–137CrossRef
170.
Zurück zum Zitat Yang Z, Tang WH, Shintemirov A, Wu QH (2009) Association rule mining-based dissolved gas analysis for fault diagnosis of power transformers. Trans Syst Man Cybern Part C (Appl Rev) 39:597–610CrossRef Yang Z, Tang WH, Shintemirov A, Wu QH (2009) Association rule mining-based dissolved gas analysis for fault diagnosis of power transformers. Trans Syst Man Cybern Part C (Appl Rev) 39:597–610CrossRef
171.
Zurück zum Zitat Lin D, Guo MS, Lam KH, Kwok KW, Chan HLW (2008) Lead-free piezoelectric ceramic (K0.5Na0.5)NbO3 with MnO2 and K5.4Cu1.3Ta10O29 doping for piezoelectric transformer application. Smart Mater Struct 17:035002CrossRef Lin D, Guo MS, Lam KH, Kwok KW, Chan HLW (2008) Lead-free piezoelectric ceramic (K0.5Na0.5)NbO3 with MnO2 and K5.4Cu1.3Ta10O29 doping for piezoelectric transformer application. Smart Mater Struct 17:035002CrossRef
172.
Zurück zum Zitat Heywang W, Lubitz K, Wersing W (2008) Piezoelectricity: evolution and future of a technology. Springer Science & Business Media, vol 114 Heywang W, Lubitz K, Wersing W (2008) Piezoelectricity: evolution and future of a technology. Springer Science & Business Media, vol 114
173.
Zurück zum Zitat Gao F, Bozhko S, Costabeber A, Asher GM, Wheeler PW (2017) Control design and voltage stability analysis of a droop-controlled electrical power system for more electric aircraft. IEEE Trans Ind Electron 64(12):9271–9281CrossRef Gao F, Bozhko S, Costabeber A, Asher GM, Wheeler PW (2017) Control design and voltage stability analysis of a droop-controlled electrical power system for more electric aircraft. IEEE Trans Ind Electron 64(12):9271–9281CrossRef
174.
Zurück zum Zitat Zhao CS (2011) Ultrasonic motors: technologies and applications. Springer Science & Business Media Zhao CS (2011) Ultrasonic motors: technologies and applications. Springer Science & Business Media
175.
Zurück zum Zitat Willams W, Brown W (1942) Piezoelectric motor. US Patent, 2439499 Willams W, Brown W (1942) Piezoelectric motor. US Patent, 2439499
176.
Zurück zum Zitat Sashida T (1982) Trial construction and operation of an ultrasonic vibration drivcn motor. Oyo Butsiuri 51:713–718 Sashida T (1982) Trial construction and operation of an ultrasonic vibration drivcn motor. Oyo Butsiuri 51:713–718
177.
Zurück zum Zitat Uchino K (1998) Piezoelectric ultrasonic motors: overview. Smart Mater Struct 7:273CrossRef Uchino K (1998) Piezoelectric ultrasonic motors: overview. Smart Mater Struct 7:273CrossRef
178.
Zurück zum Zitat Uchino K (1994) Piezoelectric actuators/ultrasonic motors-their developments and markets. In: Proceedings of the ninth IEEE international symposium on applications of ferroelectrics, 1991. IEEE, pp 319–324 Uchino K (1994) Piezoelectric actuators/ultrasonic motors-their developments and markets. In: Proceedings of the ninth IEEE international symposium on applications of ferroelectrics, 1991. IEEE, pp 319–324
179.
Zurück zum Zitat Nakamura K, Nakamura T, Yamada K (1993) Torsional actuators using LiNbO3 plates with an inversion layer. Jpn J Appl Phys 32:2415CrossRef Nakamura K, Nakamura T, Yamada K (1993) Torsional actuators using LiNbO3 plates with an inversion layer. Jpn J Appl Phys 32:2415CrossRef
180.
Zurück zum Zitat Kawai K, Tamura H, Takano T, Tomikawa Y, Hirose S, Aoyagi M (2006) Load characteristics of a diagonally symmetric form ultrasonic motor using a LiNbO3 plate. Proc Symp Ultrason Electron 27:271–272 Kawai K, Tamura H, Takano T, Tomikawa Y, Hirose S, Aoyagi M (2006) Load characteristics of a diagonally symmetric form ultrasonic motor using a LiNbO3 plate. Proc Symp Ultrason Electron 27:271–272
181.
Zurück zum Zitat Tamura H, Kawai K, Takano T, Tomikawa Y, Hirose S, Aoyagi M (2007) Diagonally symmetric form ultrasonic motor using LiNbO3 plate. Jpn J Appl Phys 46:4698CrossRef Tamura H, Kawai K, Takano T, Tomikawa Y, Hirose S, Aoyagi M (2007) Diagonally symmetric form ultrasonic motor using LiNbO3 plate. Jpn J Appl Phys 46:4698CrossRef
182.
Zurück zum Zitat Tamura H, Shibata K, Aoyagi M, Takano T, Tomikawa Y, Hirose S (2008) Single phase drive ultrasonic motor using LiNbO3 rectangular vibrator. Jpn J Appl Phys 47:4015CrossRef Tamura H, Shibata K, Aoyagi M, Takano T, Tomikawa Y, Hirose S (2008) Single phase drive ultrasonic motor using LiNbO3 rectangular vibrator. Jpn J Appl Phys 47:4015CrossRef
183.
Zurück zum Zitat Tamura H, Iwase M, Hirose S, Aoyagi M, Takano T, Tomikawa Y (2008) Measurement of LiNbO3 rectangular plate under large vibration velocity of the first longitudinal and second flexural modes. Jpn J Appl Phys 47:4034CrossRef Tamura H, Iwase M, Hirose S, Aoyagi M, Takano T, Tomikawa Y (2008) Measurement of LiNbO3 rectangular plate under large vibration velocity of the first longitudinal and second flexural modes. Jpn J Appl Phys 47:4034CrossRef
184.
Zurück zum Zitat Tamura H, Morooka T, Yamayoshi Y, Aoyagi M, Takano T, Hirose S (2010) Design and characteristics of mode-coupling LiNbO3 ultrasonic motor depended on width-to-length ratio of the stator vibrator. Jpn J Appl Phys 49:07HE26CrossRef Tamura H, Morooka T, Yamayoshi Y, Aoyagi M, Takano T, Hirose S (2010) Design and characteristics of mode-coupling LiNbO3 ultrasonic motor depended on width-to-length ratio of the stator vibrator. Jpn J Appl Phys 49:07HE26CrossRef
185.
Zurück zum Zitat Xie RJ, Akimune Y (2002) Lead-free piezoelectric ceramics in the (1-x)Sr2NaNb5O15–xCa2NaNb5O15 (0.05 ≤ x ≤ 0.35) system. J Mater Chem 12:3156–3161CrossRef Xie RJ, Akimune Y (2002) Lead-free piezoelectric ceramics in the (1-x)Sr2NaNb5O15xCa2NaNb5O15 (0.05 ≤ x ≤ 0.35) system. J Mater Chem 12:3156–3161CrossRef
186.
Zurück zum Zitat Doshida Y, Kishi H, Makiya A, Tanaka S, Uematsu K, Kimura T (2006) Crystal-oriented La-substituted Sr2NaNb5O15 ceramics fabricated using high-magnetic-field method. Jpn J Appl Phys 45:7460CrossRef Doshida Y, Kishi H, Makiya A, Tanaka S, Uematsu K, Kimura T (2006) Crystal-oriented La-substituted Sr2NaNb5O15 ceramics fabricated using high-magnetic-field method. Jpn J Appl Phys 45:7460CrossRef
187.
Zurück zum Zitat Doshida Y, Kishimoto S, Ishii K, Kishi H, Tamura H, Tomikawa Y, Hirose S (2007) Miniature cantilever-type ultrasonic motor using Pb-free multilayer piezoelectric ceramics. Jpn J Appl Phys 46:4921CrossRef Doshida Y, Kishimoto S, Ishii K, Kishi H, Tamura H, Tomikawa Y, Hirose S (2007) Miniature cantilever-type ultrasonic motor using Pb-free multilayer piezoelectric ceramics. Jpn J Appl Phys 46:4921CrossRef
188.
Zurück zum Zitat Doshida Y, Kishimoto S, Irieda T, Tamura H, Tomikawa Y, Hirose S (2008) Double-mode miniature cantilever-type ultrasonic motor using lead-free array-type multilayer piezoelectric ceramics. Jpn J Appl Phys 47:4242CrossRef Doshida Y, Kishimoto S, Irieda T, Tamura H, Tomikawa Y, Hirose S (2008) Double-mode miniature cantilever-type ultrasonic motor using lead-free array-type multilayer piezoelectric ceramics. Jpn J Appl Phys 47:4242CrossRef
189.
Zurück zum Zitat Wu JG, Xiao DQ, Zhu JG (2015) Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115:2559–2595CrossRef Wu JG, Xiao DQ, Zhu JG (2015) Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115:2559–2595CrossRef
190.
Zurück zum Zitat Li EZ, Kakemoto H, Wada S, Tsurumi T (2007) Influence of CuO on the structure and piezoelectric properties of the alkaline niobate-based lead-free ceramics. J Am Ceram Soc 90:1787–1791CrossRef Li EZ, Kakemoto H, Wada S, Tsurumi T (2007) Influence of CuO on the structure and piezoelectric properties of the alkaline niobate-based lead-free ceramics. J Am Ceram Soc 90:1787–1791CrossRef
191.
Zurück zum Zitat Li EZ, Kakemoto H, Hoshina T, Tsurumi T (2008) A shear-mode ultrasonic motor using potassium sodium niobate-based ceramics with high mechanical quality factor. Jpn J Appl Phys 47:7702CrossRef Li EZ, Kakemoto H, Hoshina T, Tsurumi T (2008) A shear-mode ultrasonic motor using potassium sodium niobate-based ceramics with high mechanical quality factor. Jpn J Appl Phys 47:7702CrossRef
192.
Zurück zum Zitat Li E, Sasaki R, Hoshina T, Takeda H, Tsurumi T (2009) Miniature ultrasonic motor using shear mode of potassium sodium niobate-based lead-free piezoelectric ceramics. Jpn J Appl Phys 48:09KD11 Li E, Sasaki R, Hoshina T, Takeda H, Tsurumi T (2009) Miniature ultrasonic motor using shear mode of potassium sodium niobate-based lead-free piezoelectric ceramics. Jpn J Appl Phys 48:09KD11
193.
Zurück zum Zitat Wang K, Yao FZ, Jo W, Gobeljic D, Shvartsman VV, Lupascu DC, Li JF, Rödel J (2013) Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 23:4079–4086CrossRef Wang K, Yao FZ, Jo W, Gobeljic D, Shvartsman VV, Lupascu DC, Li JF, Rödel J (2013) Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 23:4079–4086CrossRef
194.
Zurück zum Zitat Hong CH, Han HS, Lee JS, Wang K, Yao FZ, Gwon JH, Quyet NV, Jung JK, Jo W (2015) Ring-type rotary ultrasonic motor using lead-free ceramics. J Sens Sci Technol 24:228–231CrossRef Hong CH, Han HS, Lee JS, Wang K, Yao FZ, Gwon JH, Quyet NV, Jung JK, Jo W (2015) Ring-type rotary ultrasonic motor using lead-free ceramics. J Sens Sci Technol 24:228–231CrossRef
Metadaten
Titel
Application of Lead-Free Piezoelectric Materials
verfasst von
Jiagang Wu
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8998-5_9

Neuer Inhalt