Skip to main content

2017 | OriginalPaper | Buchkapitel

4. Application of Lithium Metal Anodes

verfasst von : Ji-Guang Zhang, Wu Xu, Wesley A. Henderson

Erschienen in: Lithium Metal Anodes and Rechargeable Lithium Metal Batteries

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Li metal is an ideal anode to replace carbon based anode used in the state of the art Li-ion batteries. It is also widely used in Li-S and Li-air batteries. Although the use of Li metal anodes in these batteries has been limited by Li dendrite growth and the low CE of Li cycling, the stability of Li metal anodes is much different when used in different types of Li metal batteries and will be discussed separately in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abraham KM, Jiang Z (1996a) Solid polymer electrolyte-based oxygen batteries. US 5510209 Abraham KM, Jiang Z (1996a) Solid polymer electrolyte-based oxygen batteries. US 5510209
Zurück zum Zitat Abraham KM, Jiang Z (1996b) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5CrossRef Abraham KM, Jiang Z (1996b) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5CrossRef
Zurück zum Zitat Abraham KM, Jiang Z, Carroll B (1997) Highly conductive PEO-like polymer electrolytes. Chem Mater 9(9):1978–1988CrossRef Abraham KM, Jiang Z, Carroll B (1997) Highly conductive PEO-like polymer electrolytes. Chem Mater 9(9):1978–1988CrossRef
Zurück zum Zitat Arai H, Hayashi M (2009) Secondary batteries-metal-air systems: overview (secondary and primary). In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 347–355CrossRef Arai H, Hayashi M (2009) Secondary batteries-metal-air systems: overview (secondary and primary). In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 347–355CrossRef
Zurück zum Zitat Aurbach D, Zinigrad E, Teller H, Dan P (2000) Factors which limit the cycle life of rechargeable lithium (metal) batteries. J Electrochem Soc 147:1274–1279CrossRef Aurbach D, Zinigrad E, Teller H, Dan P (2000) Factors which limit the cycle life of rechargeable lithium (metal) batteries. J Electrochem Soc 147:1274–1279CrossRef
Zurück zum Zitat Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148:405–416CrossRef Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148:405–416CrossRef
Zurück zum Zitat Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc 156(8):A694–A702. doi:10.1149/1.3148721 Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc 156(8):A694–A702. doi:10.​1149/​1.​3148721
Zurück zum Zitat Barchasz C, Molton F, Duboc C, Leprêtre J-C, Patoux S, Alloin F (2012) Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal Chem 84(9):3973–3980. doi:10.1021/ac2032244 Barchasz C, Molton F, Duboc C, Leprêtre J-C, Patoux S, Alloin F (2012) Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal Chem 84(9):3973–3980. doi:10.​1021/​ac2032244
Zurück zum Zitat Barchasz C, Lepretre JC, Patoux S, Alloin F (2013a) Revisiting TEGDME/DIOX binary electrolytes for lithium/sulfur batteries: importance of solvation ability and additives. J Electrochem Soc 160(3):A430–A436. doi:10.1149/2.022303jes Barchasz C, Lepretre JC, Patoux S, Alloin F (2013a) Revisiting TEGDME/DIOX binary electrolytes for lithium/sulfur batteries: importance of solvation ability and additives. J Electrochem Soc 160(3):A430–A436. doi:10.​1149/​2.​022303jes
Zurück zum Zitat Barghamadi M, Kapoor A, Wen C (2013) A review on Li-S batteries as a high efficiency rechargeable lithium battery. J Electrochem Soc 160(8):A1256–A1263. doi:10.1149/2.096308jes Barghamadi M, Kapoor A, Wen C (2013) A review on Li-S batteries as a high efficiency rechargeable lithium battery. J Electrochem Soc 160(8):A1256–A1263. doi:10.​1149/​2.​096308jes
Zurück zum Zitat Bates JB, Dudney NJ, Gruzalski GR, Zuhr RA, Choudhury A, Luck CF, Robertson JD (1993) Fabrication and characterization of amorphous lithium electrolyte thin-films and rechargeable thin-film batteries. J Power Sources 43(1–3):103–110. doi:10.1016/0378-7753(93)80106-y Bates JB, Dudney NJ, Gruzalski GR, Zuhr RA, Choudhury A, Luck CF, Robertson JD (1993) Fabrication and characterization of amorphous lithium electrolyte thin-films and rechargeable thin-film batteries. J Power Sources 43(1–3):103–110. doi:10.​1016/​0378-7753(93)80106-y
Zurück zum Zitat Blurton KF, Oswin HG (1972) Refuelable batteries. In: Proceedings of the symposium on non-fossil chemical fuels, preprints of papers presented at the 163rd national meeting of the American Chemical Society, vol 2, Boston, Massachusetts, 10–14 April 1972, American Chemical Society, Division of Fuel Chemistry, Washington DC, pp 48–69 Blurton KF, Oswin HG (1972) Refuelable batteries. In: Proceedings of the symposium on non-fossil chemical fuels, preprints of papers presented at the 163rd national meeting of the American Chemical Society, vol 2, Boston, Massachusetts, 10–14 April 1972, American Chemical Society, Division of Fuel Chemistry, Washington DC, pp 48–69
Zurück zum Zitat Blurton KF, Sammells AF (1979) Metal-air batteries—their status and potential—review. J Power Sources 4(4):263–279CrossRef Blurton KF, Sammells AF (1979) Metal-air batteries—their status and potential—review. J Power Sources 4(4):263–279CrossRef
Zurück zum Zitat Bresser D, Passerini S, Scrosati B (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries—a review. Chem Commun 49(90):10545–10562. doi:10.1039/C3CC46131A CrossRef Bresser D, Passerini S, Scrosati B (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries—a review. Chem Commun 49(90):10545–10562. doi:10.​1039/​C3CC46131A CrossRef
Zurück zum Zitat Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29CrossRef Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29CrossRef
Zurück zum Zitat Brückner J, Thieme S, Böttger-Hiller F, Bauer I, Grossmann HT, Strubel P, Althues H, Spange S, Kaskel S (2014) Carbon-based anodes for lithium sulfur full cells with high cycle stability. Adv Funct Mater 24(9):1284–1289. doi:10.1002/adfm.201302169 CrossRef Brückner J, Thieme S, Böttger-Hiller F, Bauer I, Grossmann HT, Strubel P, Althues H, Spange S, Kaskel S (2014) Carbon-based anodes for lithium sulfur full cells with high cycle stability. Adv Funct Mater 24(9):1284–1289. doi:10.​1002/​adfm.​201302169 CrossRef
Zurück zum Zitat Bucur CB, Muldoon J, Lita A, Schlenoff JB, Ghostine RA, Dietz S, Allred G (2013) Ultrathin tunable ion conducting nanomembranes for encapsulation of sulfur cathodes. Energy Environ Sci 6(11):3286–3290. doi:10.1039/C3EE42739K CrossRef Bucur CB, Muldoon J, Lita A, Schlenoff JB, Ghostine RA, Dietz S, Allred G (2013) Ultrathin tunable ion conducting nanomembranes for encapsulation of sulfur cathodes. Energy Environ Sci 6(11):3286–3290. doi:10.​1039/​C3EE42739K CrossRef
Zurück zum Zitat Busche MR, Adelhelm P, Sommer H, Schneider H, Leitner K, Janek J (2014) Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates. J Power Sources 259:289–299. doi:10.1016/j.jpowsour.2014.02.075 CrossRef Busche MR, Adelhelm P, Sommer H, Schneider H, Leitner K, Janek J (2014) Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates. J Power Sources 259:289–299. doi:10.​1016/​j.​jpowsour.​2014.​02.​075 CrossRef
Zurück zum Zitat Chung S-H, Manthiram A (2014b) A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells. ChemSusChem 7(6):1655–1661. doi:10.1002/cssc.201301287 CrossRef Chung S-H, Manthiram A (2014b) A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells. ChemSusChem 7(6):1655–1661. doi:10.​1002/​cssc.​201301287 CrossRef
Zurück zum Zitat Chung S-H, Manthiram A (2014c) High-performance Li–S batteries with an ultra-lightweight MWCNT-coated separator. J Phys Chem Lett 5(11):1978–1983. doi:10.1021/jz5006913 CrossRef Chung S-H, Manthiram A (2014c) High-performance Li–S batteries with an ultra-lightweight MWCNT-coated separator. J Phys Chem Lett 5(11):1978–1983. doi:10.​1021/​jz5006913 CrossRef
Zurück zum Zitat Chung SH, Manthiram A (2014d) Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Adv Funct Mater 24(33):5299–5306. doi:10.1002/adfm.201400845 CrossRef Chung SH, Manthiram A (2014d) Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Adv Funct Mater 24(33):5299–5306. doi:10.​1002/​adfm.​201400845 CrossRef
Zurück zum Zitat Debart A, Bao J, Armstrong G, Bruce PG (2007a) Effect of catalyst on the performance of rechargeable lithium/air batteries. ECS Trans 3(27):225–232. doi:10.1149/1.2793594 CrossRef Debart A, Bao J, Armstrong G, Bruce PG (2007a) Effect of catalyst on the performance of rechargeable lithium/air batteries. ECS Trans 3(27):225–232. doi:10.​1149/​1.​2793594 CrossRef
Zurück zum Zitat Debart A, Bao J, Armstrong G, Bruce PG (2007b) An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J Power Sources 147(2):1177–1182CrossRef Debart A, Bao J, Armstrong G, Bruce PG (2007b) An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J Power Sources 147(2):1177–1182CrossRef
Zurück zum Zitat Debart A, Paterson AJ, Bao J, Bruce PG (2008) Alpha-MnO2 nanowires: a catalyst for the O-2 electrode in rechargeable lithium batteries. Angew Chem Int Edit 47(24):4521–4524. doi:10.1002/anie.200705648 CrossRef Debart A, Paterson AJ, Bao J, Bruce PG (2008) Alpha-MnO2 nanowires: a catalyst for the O-2 electrode in rechargeable lithium batteries. Angew Chem Int Edit 47(24):4521–4524. doi:10.​1002/​anie.​200705648 CrossRef
Zurück zum Zitat Demir-Cakan R, Morcrette M, Gangulibabu GA, Dedryvere R, Tarascon J-M (2013) Li-S batteries: simple approaches for superior performance. Energy Environ Sci 6(1):176–182. doi:10.1039/C2EE23411D CrossRef Demir-Cakan R, Morcrette M, Gangulibabu GA, Dedryvere R, Tarascon J-M (2013) Li-S batteries: simple approaches for superior performance. Energy Environ Sci 6(1):176–182. doi:10.​1039/​C2EE23411D CrossRef
Zurück zum Zitat Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang J-G (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135(11):4450–4456. doi:10.1021/ja312241y CrossRef Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang J-G (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135(11):4450–4456. doi:10.​1021/​ja312241y CrossRef
Zurück zum Zitat Dobley A, Morein C, Abraham KM (2006a) Cathode optimization for lithium-air batteries. Paper presented at the 208th meeting of the electrochemical society abstracts: energy technology and battery joint general session, 16–21 Oct 2005, Los Angeles, California Dobley A, Morein C, Abraham KM (2006a) Cathode optimization for lithium-air batteries. Paper presented at the 208th meeting of the electrochemical society abstracts: energy technology and battery joint general session, 16–21 Oct 2005, Los Angeles, California
Zurück zum Zitat Dobley A, Morein C, Roark R, Abraham KM (2006b) Paper presented at the proceedings of the 42nd power sources conference, 12–15 June 2006, Philadelphia, Pennsylvania Dobley A, Morein C, Roark R, Abraham KM (2006b) Paper presented at the proceedings of the 42nd power sources conference, 12–15 June 2006, Philadelphia, Pennsylvania
Zurück zum Zitat Dobley A, Morein C, Roark R, Abraham KM (2006c) Large prototype lithium air batteries. In: Proceedings of the 42nd power sources conference, Philadelphia, Pennsylvania, 12–15 June 2006. U.S. Army Communications-Electronics Command, Fort Monmouth, New Jersey Dobley A, Morein C, Roark R, Abraham KM (2006c) Large prototype lithium air batteries. In: Proceedings of the 42nd power sources conference, Philadelphia, Pennsylvania, 12–15 June 2006. U.S. Army Communications-Electronics Command, Fort Monmouth, New Jersey
Zurück zum Zitat Egashira M (2009) Secondary batteries-metal-air systems: iron-air (secondary and primary). In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 372–375CrossRef Egashira M (2009) Secondary batteries-metal-air systems: iron-air (secondary and primary). In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 372–375CrossRef
Zurück zum Zitat Gao J, Lowe MA, Kiya Y, Abruña HD (2011) Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C 115(50):25132–25137. doi:10.1021/jp207714c CrossRef Gao J, Lowe MA, Kiya Y, Abruña HD (2011) Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C 115(50):25132–25137. doi:10.​1021/​jp207714c CrossRef
Zurück zum Zitat Giordani V, Freunberger SA, Bruce PG, Tarascon JM, Larcher D (2010) H2O2 decomposition reaction as selecting tool for catalysts in Li-O-2 cells. Electrochem Solid State Lett 13(12):A180–A183. doi:10.1149/1.3494045 CrossRef Giordani V, Freunberger SA, Bruce PG, Tarascon JM, Larcher D (2010) H2O2 decomposition reaction as selecting tool for catalysts in Li-O-2 cells. Electrochem Solid State Lett 13(12):A180–A183. doi:10.​1149/​1.​3494045 CrossRef
Zurück zum Zitat Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium−air battery: promise and challenges. J Phys Chem Lett 1:2193–2203CrossRef Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium−air battery: promise and challenges. J Phys Chem Lett 1:2193–2203CrossRef
Zurück zum Zitat Gregory DP (1972) Metal-air batteries. Mills and Boon, London Gregory DP (1972) Metal-air batteries. Mills and Boon, London
Zurück zum Zitat Haas O, Van Wesemael J (2009) Secondary batteries-metal-air systems: zinc-air: electrical recharge. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 384–392CrossRef Haas O, Van Wesemael J (2009) Secondary batteries-metal-air systems: zinc-air: electrical recharge. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 384–392CrossRef
Zurück zum Zitat Hakari T, Nagao M, Hayashi A, Tatsumisago M (2014) Preparation of composite electrode with Li2S–P2S5 glasses as active materials for all-solid-state lithium secondary batteries. Solid State Ionics 262:147–150. doi:10.1016/j.ssi.2013.09.023 CrossRef Hakari T, Nagao M, Hayashi A, Tatsumisago M (2014) Preparation of composite electrode with Li2S–P2S5 glasses as active materials for all-solid-state lithium secondary batteries. Solid State Ionics 262:147–150. doi:10.​1016/​j.​ssi.​2013.​09.​023 CrossRef
Zurück zum Zitat Hamlen RP, Atwater TB (2001) Metal/air batteries. In: Linden D, Reddy T (eds) Handbook of batteries, 3rd edn. McGraw Hill, New York, pp 38.31–38.53 Hamlen RP, Atwater TB (2001) Metal/air batteries. In: Linden D, Reddy T (eds) Handbook of batteries, 3rd edn. McGraw Hill, New York, pp 38.31–38.53
Zurück zum Zitat Heine J, Krüger S, Hartnig C, Wietelmann U, Winter M, Bieker P (2014) Coated lithium powder (CLiP) electrodes for lithium-metal batteries. Adv Energy Mater 4(5). doi:10.1002/aenm.201300815 Heine J, Krüger S, Hartnig C, Wietelmann U, Winter M, Bieker P (2014) Coated lithium powder (CLiP) electrodes for lithium-metal batteries. Adv Energy Mater 4(5). doi:10.​1002/​aenm.​201300815
Zurück zum Zitat Huang J-Q, Zhang Q, Zhang S-M, Liu X-F, Zhu W, Qian W-Z, Wei F (2013) Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode. Carbon 58:99–106. doi:10.1016/j.carbon.2013.02.037 CrossRef Huang J-Q, Zhang Q, Zhang S-M, Liu X-F, Zhu W, Qian W-Z, Wei F (2013) Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode. Carbon 58:99–106. doi:10.​1016/​j.​carbon.​2013.​02.​037 CrossRef
Zurück zum Zitat Huang C, Xiao J, Shao Y, Zheng J, Bennett WD, Lu D, Saraf LV, Engelhard M, Ji L, Zhang J, Li X, Graff GL, Liu J (2014a) Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures. Nat Commun 5:3015. doi:10.1038/ncomms4015 Huang C, Xiao J, Shao Y, Zheng J, Bennett WD, Lu D, Saraf LV, Engelhard M, Ji L, Zhang J, Li X, Graff GL, Liu J (2014a) Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures. Nat Commun 5:3015. doi:10.​1038/​ncomms4015
Zurück zum Zitat Huang J-Q, Zhang Q, Peng H-J, Liu X-Y, Qian W-Z, Wei F (2014b) Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries. Energy Environ Sci 7(1):347–353. doi:10.1039/C3EE42223B CrossRef Huang J-Q, Zhang Q, Peng H-J, Liu X-Y, Qian W-Z, Wei F (2014b) Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries. Energy Environ Sci 7(1):347–353. doi:10.​1039/​C3EE42223B CrossRef
Zurück zum Zitat Jeddi K, Zhao Y, Zhang Y, Konarov A, Chen P (2013) Fabrication and characterization of an effective polymer nanocomposite electrolyte membrane for high performance lithium/sulfur batteries. J Electrochem Soc 160(8):A1052–A1060. doi:10.1149/2.010308jes CrossRef Jeddi K, Zhao Y, Zhang Y, Konarov A, Chen P (2013) Fabrication and characterization of an effective polymer nanocomposite electrolyte membrane for high performance lithium/sulfur batteries. J Electrochem Soc 160(8):A1052–A1060. doi:10.​1149/​2.​010308jes CrossRef
Zurück zum Zitat Jeong T-G, Moon YH, Chun H-H, Kim HS, Cho BW, Kim Y-T (2013) Free standing acetylene black mesh to capture dissolved polysulfide in lithium sulfur batteries. Chem Commun 49(94):11107–11109. doi:10.1039/C3CC46358C CrossRef Jeong T-G, Moon YH, Chun H-H, Kim HS, Cho BW, Kim Y-T (2013) Free standing acetylene black mesh to capture dissolved polysulfide in lithium sulfur batteries. Chem Commun 49(94):11107–11109. doi:10.​1039/​C3CC46358C CrossRef
Zurück zum Zitat Jiang J, Shi W, Zheng J, Zuo P, Xiao J, Chen X, Xu W, Zhang J-G (2014) Optimized operating range for large-format LiFePO4/graphite batteries. J Electrochem Soc 161(3):A336–A341. doi:10.1149/2.052403jes CrossRef Jiang J, Shi W, Zheng J, Zuo P, Xiao J, Chen X, Xu W, Zhang J-G (2014) Optimized operating range for large-format LiFePO4/graphite batteries. J Electrochem Soc 161(3):A336–A341. doi:10.​1149/​2.​052403jes CrossRef
Zurück zum Zitat Jin Z, Xie K, Hong X (2013a) Electrochemical performance of lithium/sulfur batteries using perfluorinated ionomer electrolyte with lithium sulfonyl dicyanomethide functional groups as functional separator. RSC Adv 3(23):8889–8898. doi:10.1039/C3RA41517A CrossRef Jin Z, Xie K, Hong X (2013a) Electrochemical performance of lithium/sulfur batteries using perfluorinated ionomer electrolyte with lithium sulfonyl dicyanomethide functional groups as functional separator. RSC Adv 3(23):8889–8898. doi:10.​1039/​C3RA41517A CrossRef
Zurück zum Zitat Joerissen L (2009) Secondary batteries-metal-air systems: bifunctional oxygen electrodes. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 356–371CrossRef Joerissen L (2009) Secondary batteries-metal-air systems: bifunctional oxygen electrodes. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 356–371CrossRef
Zurück zum Zitat Kim H, Wu F, Lee JT, Nitta N, Lin H-T, Oschatz M, Cho WI, Kaskel S, Borodin O, Yushin G (2014) In situ formation of protective coatings on sulfur cathodes in lithium batteries with LiFSI-based organic electrolytes. Adv Energy Mater. doi:10.1002/aenm.201401792 Kim H, Wu F, Lee JT, Nitta N, Lin H-T, Oschatz M, Cho WI, Kaskel S, Borodin O, Yushin G (2014) In situ formation of protective coatings on sulfur cathodes in lithium batteries with LiFSI-based organic electrolytes. Adv Energy Mater. doi:10.​1002/​aenm.​201401792
Zurück zum Zitat Kinoshita K (1992) Electrochemical oxygen technology. The electochemical society series. John Wiley & Sons, New York Kinoshita K (1992) Electrochemical oxygen technology. The electochemical society series. John Wiley & Sons, New York
Zurück zum Zitat Kinoshita S, Okuda K, Machida N, Shigematsu T (2014) Additive effect of ionic liquids on the electrochemical property of a sulfur composite electrode for all-solid-state lithium–sulfur battery. J Power Sources 269:727–734. doi:10.1016/j.jpowsour.2014.07.055 CrossRef Kinoshita S, Okuda K, Machida N, Shigematsu T (2014) Additive effect of ionic liquids on the electrochemical property of a sulfur composite electrode for all-solid-state lithium–sulfur battery. J Power Sources 269:727–734. doi:10.​1016/​j.​jpowsour.​2014.​07.​055 CrossRef
Zurück zum Zitat Kulisch J, Sommer H, Brezesinski T, Janek J (2014) Simple cathode design for Li-S batteries: cell performance and mechanistic insights by in operando X-ray diffraction. Phys Chem Chem Phys 16(35):18765–18771. doi:10.1039/C4CP02220C CrossRef Kulisch J, Sommer H, Brezesinski T, Janek J (2014) Simple cathode design for Li-S batteries: cell performance and mechanistic insights by in operando X-ray diffraction. Phys Chem Chem Phys 16(35):18765–18771. doi:10.​1039/​C4CP02220C CrossRef
Zurück zum Zitat Kumar B, Kumar J, Leese R, Fellner JP, Rodrigues SJ, Abraham KM (2010) A solid-state, rechargeable, long cycle life lithium-air battery. J Electrochem Soc 157(1):A50–A54. doi:10.1149/1.3256129 CrossRef Kumar B, Kumar J, Leese R, Fellner JP, Rodrigues SJ, Abraham KM (2010) A solid-state, rechargeable, long cycle life lithium-air battery. J Electrochem Soc 157(1):A50–A54. doi:10.​1149/​1.​3256129 CrossRef
Zurück zum Zitat Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2009) Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J Phys Chem C 113(46):20127–20134. doi:10.1021/jp908090s CrossRef Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2009) Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J Phys Chem C 113(46):20127–20134. doi:10.​1021/​jp908090s CrossRef
Zurück zum Zitat Lee S-H, Tracy E, Liu P (2004) Buried anode lithium thin film battery and process for forming the same. USA Patent 6,805,999, 19 October 2004 Lee S-H, Tracy E, Liu P (2004) Buried anode lithium thin film battery and process for forming the same. USA Patent 6,805,999, 19 October 2004
Zurück zum Zitat Lee J-S, Kim ST, Cao R, Choi N-S, Liu M, Lee KT, Cho J (2011) Adv Energy Mater 1:34–50 Lee J-S, Kim ST, Cao R, Choi N-S, Liu M, Lee KT, Cho J (2011) Adv Energy Mater 1:34–50
Zurück zum Zitat Li W, Hicks-Garner J, Wang J, Liu J, Gross AF, Sherman E, Graetz J, Vajo JJ, Liu P (2014) V2O5 polysulfide anion barrier for long-lived Li-S batteries. Chem Mater 26(11):3404–3410CrossRef Li W, Hicks-Garner J, Wang J, Liu J, Gross AF, Sherman E, Graetz J, Vajo JJ, Liu P (2014) V2O5 polysulfide anion barrier for long-lived Li-S batteries. Chem Mater 26(11):3404–3410CrossRef
Zurück zum Zitat Lin Z, Liu Z, Fu W, Dudney NJ, Liang C (2013b) Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries. Adv Funct Mater 23(8):1064–1069. doi:10.1002/adfm.201200696 CrossRef Lin Z, Liu Z, Fu W, Dudney NJ, Liang C (2013b) Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries. Adv Funct Mater 23(8):1064–1069. doi:10.​1002/​adfm.​201200696 CrossRef
Zurück zum Zitat Linden D, Reddy T (2001) Handbook of batteries, 3rd edn. McGraw-Hill, New York Linden D, Reddy T (2001) Handbook of batteries, 3rd edn. McGraw-Hill, New York
Zurück zum Zitat Littauer EL, Tsai KC (1977) Corrosion of lithium in alkaline-solution. J Electrochem Soc 124(6):850–855CrossRef Littauer EL, Tsai KC (1977) Corrosion of lithium in alkaline-solution. J Electrochem Soc 124(6):850–855CrossRef
Zurück zum Zitat Liu C, Ma X, Xu F, Zheng L, Zhang H, Feng W, Huang X, Armand M, Nie J, Chen H, Zhou Z (2014a) Ionic liquid electrolyte of lithium bis(fluorosulfonyl)imide/N-Methyl-N-propylpiperidinium bis(fluorosulfonyl)imide for Li/natural graphite cells: effect of concentration of lithium salt on the physicochemical and electrochemical properties. Electrochim Acta 149:370–385. doi:10.1016/j.electacta.2014.10.048 CrossRef Liu C, Ma X, Xu F, Zheng L, Zhang H, Feng W, Huang X, Armand M, Nie J, Chen H, Zhou Z (2014a) Ionic liquid electrolyte of lithium bis(fluorosulfonyl)imide/N-Methyl-N-propylpiperidinium bis(fluorosulfonyl)imide for Li/natural graphite cells: effect of concentration of lithium salt on the physicochemical and electrochemical properties. Electrochim Acta 149:370–385. doi:10.​1016/​j.​electacta.​2014.​10.​048 CrossRef
Zurück zum Zitat Lv D, Shao Y, Lozano T, Bennett WD, Graff GL, Polzin B, Zhang J-G, Engelhard MH, Saenz NT, Henderson WA, Bhattacharya P, Liu J, Xiao J (2015) Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv Energy Mater 5(3):1400993. doi:10.1002/aenm.201400993 CrossRef Lv D, Shao Y, Lozano T, Bennett WD, Graff GL, Polzin B, Zhang J-G, Engelhard MH, Saenz NT, Henderson WA, Bhattacharya P, Liu J, Xiao J (2015) Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv Energy Mater 5(3):1400993. doi:10.​1002/​aenm.​201400993 CrossRef
Zurück zum Zitat Marmorstein D, Yu TH, Striebel KA, McLarnon FR, Hou J, Cairns EJ (2000) Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 89(2):219–226. doi:10.1016/S0378-7753(00)00432-8 CrossRef Marmorstein D, Yu TH, Striebel KA, McLarnon FR, Hou J, Cairns EJ (2000) Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 89(2):219–226. doi:10.​1016/​S0378-7753(00)00432-8 CrossRef
Zurück zum Zitat Mikhaylik YV (2008) Electrolytes for lithium sulfur cells. USA Patent 7,354,680, 8 April 2008 Mikhaylik YV (2008) Electrolytes for lithium sulfur cells. USA Patent 7,354,680, 8 April 2008
Zurück zum Zitat Munichandraiah N, Scanlon LG, Marsh RA (1998) Surface films of lithium: an overview of electrochemical studies. J Power Sources 72:203–210CrossRef Munichandraiah N, Scanlon LG, Marsh RA (1998) Surface films of lithium: an overview of electrochemical studies. J Power Sources 72:203–210CrossRef
Zurück zum Zitat Nagao M, Hayashi A, Tatsumisago M (2012a) High-capacity Li2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries. J Mater Chem 22(19):10015–10020. doi:10.1039/C2JM16802B CrossRef Nagao M, Hayashi A, Tatsumisago M (2012a) High-capacity Li2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries. J Mater Chem 22(19):10015–10020. doi:10.​1039/​C2JM16802B CrossRef
Zurück zum Zitat Nagao M, Imade Y, Narisawa H, Kobayashi T, Watanabe R, Yokoi T, Tatsumi T, Kanno R (2013) All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte. J Power Sources 222:237–242. doi:10.1016/j.jpowsour.2012.08.041 CrossRef Nagao M, Imade Y, Narisawa H, Kobayashi T, Watanabe R, Yokoi T, Tatsumi T, Kanno R (2013) All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte. J Power Sources 222:237–242. doi:10.​1016/​j.​jpowsour.​2012.​08.​041 CrossRef
Zurück zum Zitat Neudecker BJ, Dudney NJ, Bates JB (2000) “Lithium-free” thin-film battery with in situ plated Li anode. J Electrochem Soc 147(2):517–523CrossRef Neudecker BJ, Dudney NJ, Bates JB (2000) “Lithium-free” thin-film battery with in situ plated Li anode. J Electrochem Soc 147(2):517–523CrossRef
Zurück zum Zitat Ogasawara T, Debart A, Holzapfel M, Novak P, Bruce PG (2006) Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc 128(4):1390–1393. doi:10.1021/ja056811q CrossRef Ogasawara T, Debart A, Holzapfel M, Novak P, Bruce PG (2006) Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc 128(4):1390–1393. doi:10.​1021/​ja056811q CrossRef
Zurück zum Zitat Oswin HG (1967) Performance forecast of selected static energy conversion devices. In: Sherman GW, Devol L (eds) Proceedings of the 29th meeting of AGARD propulsion and energetics panel, Liege, Belgium, 12–16 June 1967. Air Force Aero Proplusion Laboratory, Wright-Patterson Air Force Base, Ohio, p 397 Oswin HG (1967) Performance forecast of selected static energy conversion devices. In: Sherman GW, Devol L (eds) Proceedings of the 29th meeting of AGARD propulsion and energetics panel, Liege, Belgium, 12–16 June 1967. Air Force Aero Proplusion Laboratory, Wright-Patterson Air Force Base, Ohio, p 397
Zurück zum Zitat Park J-W, Ueno K, Tachikawa N, Dokko K, Watanabe M (2013) Ionic liquid electrolytes for lithium-sulfur batteries. J Phys Chem C 117(40):20531–20541. doi:10.1021/jp408037e CrossRef Park J-W, Ueno K, Tachikawa N, Dokko K, Watanabe M (2013) Ionic liquid electrolytes for lithium-sulfur batteries. J Phys Chem C 117(40):20531–20541. doi:10.​1021/​jp408037e CrossRef
Zurück zum Zitat Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang JG (2015) High rate and stable cycling of lithium metal anode. Nat Commun 6:6362. doi:10.1038/ncomms7362 CrossRef Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang JG (2015) High rate and stable cycling of lithium metal anode. Nat Commun 6:6362. doi:10.​1038/​ncomms7362 CrossRef
Zurück zum Zitat Qian JF, Adams BD, Zheng JM, Xu W, Henderson WA, Wang J, Bowden ME, Xu SC, Hu JZ, Zhang JZ (2016) Anode-free rechargeable lithium metal batteries. Adv Funct Mater 2016. doi:10.1002/adfm.201602353 Qian JF, Adams BD, Zheng JM, Xu W, Henderson WA, Wang J, Bowden ME, Xu SC, Hu JZ, Zhang JZ (2016) Anode-free rechargeable lithium metal batteries. Adv Funct Mater 2016. doi:10.​1002/​adfm.​201602353
Zurück zum Zitat Read J, Mutolo K, Ervin M, Behl W, Wolfenstine J, Driedger A, Foster D (2003) Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J Electrochem Soc 150(10):A1351–A1356. doi:10.1149/1.1606454 CrossRef Read J, Mutolo K, Ervin M, Behl W, Wolfenstine J, Driedger A, Foster D (2003) Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J Electrochem Soc 150(10):A1351–A1356. doi:10.​1149/​1.​1606454 CrossRef
Zurück zum Zitat Shao Y, Park S, Xiao J, Zhang J-G, Wang Y, Liu AJ (2012a) Electrocatalysts for nonaqueous lithium-air batteries: status. Challenges, and Perspective. ACS Catalysis 845 Shao Y, Park S, Xiao J, Zhang J-G, Wang Y, Liu AJ (2012a) Electrocatalysts for nonaqueous lithium-air batteries: status. Challenges, and Perspective. ACS Catalysis 845
Zurück zum Zitat Shiga T, Nakano H, Imagawa H (2008) Non-aqueous air battery and catalyst therefor. US Patent Application 2008/0299456 Shiga T, Nakano H, Imagawa H (2008) Non-aqueous air battery and catalyst therefor. US Patent Application 2008/0299456
Zurück zum Zitat Shimonishi Y, Zhang T, Johnson P, Imanishi N, Hirano A, Takeda Y, Yamamoto O, Sammes N (2010) A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions. J Power Sources 195(18):6187–6191. doi:10.1016/j.jpowsour.2009.11.023 CrossRef Shimonishi Y, Zhang T, Johnson P, Imanishi N, Hirano A, Takeda Y, Yamamoto O, Sammes N (2010) A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions. J Power Sources 195(18):6187–6191. doi:10.​1016/​j.​jpowsour.​2009.​11.​023 CrossRef
Zurück zum Zitat Shin JH, Kim KW, Ahn HJ, Ahn JH (2002) Electrochemical properties and interfacial stability of (PEO)10LiCF3SO3–TinO2n − 1 composite polymer electrolytes for lithium/sulfur battery. Mater Sci Eng, B 95(2):148–156. doi:10.1016/S0921-5107(02)00226-X CrossRef Shin JH, Kim KW, Ahn HJ, Ahn JH (2002) Electrochemical properties and interfacial stability of (PEO)10LiCF3SO3–TinO2n − 1 composite polymer electrolytes for lithium/sulfur battery. Mater Sci Eng, B 95(2):148–156. doi:10.​1016/​S0921-5107(02)00226-X CrossRef
Zurück zum Zitat Smedley S, Zhang XG (2009) Secondary batteries-metal-air systems: zinc-air: hydraulic recharge. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 393–403CrossRef Smedley S, Zhang XG (2009) Secondary batteries-metal-air systems: zinc-air: hydraulic recharge. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 393–403CrossRef
Zurück zum Zitat Song JH, Yeon JT, Jang JY, Han JG, Lee SM, Choi NS (2013a) Effect of fluoroethylene carbonate on electrochemical performances of lithium electrodes and lithium-sulfur batteries. J Electrochem Soc 160(6):A873–A881. doi:10.1149/2.101306jes CrossRef Song JH, Yeon JT, Jang JY, Han JG, Lee SM, Choi NS (2013a) Effect of fluoroethylene carbonate on electrochemical performances of lithium electrodes and lithium-sulfur batteries. J Electrochem Soc 160(6):A873–A881. doi:10.​1149/​2.​101306jes CrossRef
Zurück zum Zitat Song MK, Cairns EJ, Zhang Y (2013b) Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale 5(6):2186–2204. doi:10.1039/c2nr33044j CrossRef Song MK, Cairns EJ, Zhang Y (2013b) Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale 5(6):2186–2204. doi:10.​1039/​c2nr33044j CrossRef
Zurück zum Zitat Su Y-S, Manthiram A (2012) Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun 3:1166CrossRef Su Y-S, Manthiram A (2012) Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun 3:1166CrossRef
Zurück zum Zitat Sun Y-K, Chen Z, Noh H-J, Lee D-J, Jung H-G, Ren Y, Wang S, Yoon CS, Myung S-T, Amine K (2012) Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11(11):942–947. doi:10.1038/nmat3435 CrossRef Sun Y-K, Chen Z, Noh H-J, Lee D-J, Jung H-G, Ren Y, Wang S, Yoon CS, Myung S-T, Amine K (2012) Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11(11):942–947. doi:10.​1038/​nmat3435 CrossRef
Zurück zum Zitat Suo L, Hu YS, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481. doi:10.1038/ncomms2513 CrossRef Suo L, Hu YS, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481. doi:10.​1038/​ncomms2513 CrossRef
Zurück zum Zitat Visco SJ, Nimon E, De Jonghe LC, Katz B, Chu MY (2004a) Lithium fuel cells. Paper presented at the proceedings of the 12th international meeting on lithium batteries, 27 June–2 July 2004, Nara, Japan Visco SJ, Nimon E, De Jonghe LC, Katz B, Chu MY (2004a) Lithium fuel cells. Paper presented at the proceedings of the 12th international meeting on lithium batteries, 27 June–2 July 2004, Nara, Japan
Zurück zum Zitat Visco SJ, Katz B, Nimon YS, De Jonghe LC (2007) Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture. US 7282295 Visco SJ, Katz B, Nimon YS, De Jonghe LC (2007) Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture. US 7282295
Zurück zum Zitat Visco SJ, Nimon E, De Jonghe C (2009) Secondary batteries-metal-air systems: lithium-air. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 376–383CrossRef Visco SJ, Nimon E, De Jonghe C (2009) Secondary batteries-metal-air systems: lithium-air. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 376–383CrossRef
Zurück zum Zitat Wang J, Lin F, Jia H, Yang J, Monroe CW, NuLi Y (2014) Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode. Angew Chem Int Ed 53(38):10099–10104. doi:10.1002/anie.201405157 CrossRef Wang J, Lin F, Jia H, Yang J, Monroe CW, NuLi Y (2014) Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode. Angew Chem Int Ed 53(38):10099–10104. doi:10.​1002/​anie.​201405157 CrossRef
Zurück zum Zitat Woo J-J, Maroni VA, Liu G, Vaughey JT, Gosztola DJ, Amine K, Zhang Z (2014) Symmetrical impedance study on inactivation induced degradation of lithium electrodes for batteries beyond lithium-ion. J Electrochem Soc 161(5):A827–A830. doi:10.1149/2.089405jes CrossRef Woo J-J, Maroni VA, Liu G, Vaughey JT, Gosztola DJ, Amine K, Zhang Z (2014) Symmetrical impedance study on inactivation induced degradation of lithium electrodes for batteries beyond lithium-ion. J Electrochem Soc 161(5):A827–A830. doi:10.​1149/​2.​089405jes CrossRef
Zurück zum Zitat Wu F, Qian J, Chen R, Lu J, Li L, Wu H, Chen J, Zhao T, Ye Y, Amine K (2014) An effective approach to protect lithium anode and improve cycle performance for Li-S batteries. ACS Appl Mater Interfaces 6(17):15542–15549. doi:10.1021/am504345s Wu F, Qian J, Chen R, Lu J, Li L, Wu H, Chen J, Zhao T, Ye Y, Amine K (2014) An effective approach to protect lithium anode and improve cycle performance for Li-S batteries. ACS Appl Mater Interfaces 6(17):15542–15549. doi:10.​1021/​am504345s
Zurück zum Zitat Xiao J, Wang DH, Xu W, Wang DY, Williford RE, Liu J, Zhang JG (2010b) Optimization of air electrode for Li/air batteries. J Electrochem Soc 157(4):A487–A492. doi:10.1149/1.3314375 CrossRef Xiao J, Wang DH, Xu W, Wang DY, Williford RE, Liu J, Zhang JG (2010b) Optimization of air electrode for Li/air batteries. J Electrochem Soc 157(4):A487–A492. doi:10.​1149/​1.​3314375 CrossRef
Zurück zum Zitat Xu W, Xiao J, Zhang J, Wang DY, Zhang JG (2009) Optimization of nonaqueous electrolytes for primary lithium/air batteries operated in ambient environment. J Electrochem Soc 156(10):A773–A779. doi:10.1149/1.3168564 CrossRef Xu W, Xiao J, Zhang J, Wang DY, Zhang JG (2009) Optimization of nonaqueous electrolytes for primary lithium/air batteries operated in ambient environment. J Electrochem Soc 156(10):A773–A779. doi:10.​1149/​1.​3168564 CrossRef
Zurück zum Zitat Xu W, Xiao J, Wang DY, Zhang J, Zhang JG (2010) Effects of nonaqueous electrolytes on the performance of lithium/air batteries. J Electrochem Soc 157(2):A219–A224. doi:10.1149/1.3269928 CrossRef Xu W, Xiao J, Wang DY, Zhang J, Zhang JG (2010) Effects of nonaqueous electrolytes on the performance of lithium/air batteries. J Electrochem Soc 157(2):A219–A224. doi:10.​1149/​1.​3269928 CrossRef
Zurück zum Zitat Xu G, Ding B, Pan J, Nie P, Shen L, Zhang X-W (2014a) High performance lithium-sulfur batteries: advances and challenges. J Mater Chem A 2(32):12662–12676. doi:10.1039/c4ta02097a CrossRef Xu G, Ding B, Pan J, Nie P, Shen L, Zhang X-W (2014a) High performance lithium-sulfur batteries: advances and challenges. J Mater Chem A 2(32):12662–12676. doi:10.​1039/​c4ta02097a CrossRef
Zurück zum Zitat Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014b) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537. doi:10.1039/c3ee40795k CrossRef Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014b) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537. doi:10.​1039/​c3ee40795k CrossRef
Zurück zum Zitat Yamin H, Peled E (1983) Electrochemistry of a nonaqueous lithium/sulfur cell. J Power Sources 9:281–287CrossRef Yamin H, Peled E (1983) Electrochemistry of a nonaqueous lithium/sulfur cell. J Power Sources 9:281–287CrossRef
Zurück zum Zitat Yang Y, McDowell MT, Jackson A, Cha JJ, Hong SS, Cui Y (2010) New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett 10(4):1486–1491. doi:10.1021/nl100504q CrossRef Yang Y, McDowell MT, Jackson A, Cha JJ, Hong SS, Cui Y (2010) New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett 10(4):1486–1491. doi:10.​1021/​nl100504q CrossRef
Zurück zum Zitat Yang Y, Zheng G, Cui Y (2013b) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ Sci 6(5):1552–1558. doi:10.1039/C3EE00072A CrossRef Yang Y, Zheng G, Cui Y (2013b) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ Sci 6(5):1552–1558. doi:10.​1039/​C3EE00072A CrossRef
Zurück zum Zitat Yao H, Yan K, Li W, Zheng G, Kong D, Seh ZW, Narasimhan VK, Liang Z, Cui Y (2014) Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface. Energy Environ Sci. doi:10.1039/C4EE01377H Yao H, Yan K, Li W, Zheng G, Kong D, Seh ZW, Narasimhan VK, Liang Z, Cui Y (2014) Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface. Energy Environ Sci. doi:10.​1039/​C4EE01377H
Zurück zum Zitat Ye H, Xu JJ (2008) Polymer electrolytes based on ionic liquids and their application to solid-state thin-film Li-oxygen batteries. ECS Trans 3(42):73–81. doi:10.1149/1.2838194 CrossRef Ye H, Xu JJ (2008) Polymer electrolytes based on ionic liquids and their application to solid-state thin-film Li-oxygen batteries. ECS Trans 3(42):73–81. doi:10.​1149/​1.​2838194 CrossRef
Zurück zum Zitat Yim T, Park M-S, Yu J-S, Kim KJ, Im KY, Kim J-H, Jeong G, Jo YN, Woo S-G, Kang KS, Lee I, Kim Y-J (2013) Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochim Acta 107:454–460. doi:10.1016/j.electacta.2013.06.039 CrossRef Yim T, Park M-S, Yu J-S, Kim KJ, Im KY, Kim J-H, Jeong G, Jo YN, Woo S-G, Kang KS, Lee I, Kim Y-J (2013) Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochim Acta 107:454–460. doi:10.​1016/​j.​electacta.​2013.​06.​039 CrossRef
Zurück zum Zitat Yu M, Yuan W, Li C, Hong J-D, Shi G (2014) Performance enhancement of a graphene-sulfur composite as a lithium-sulfur battery electrode by coating with an ultrathin Al2O3 film via atomic layer deposition. J Mater Chem A 2(20):7360–7366. doi:10.1039/C4TA00234B CrossRef Yu M, Yuan W, Li C, Hong J-D, Shi G (2014) Performance enhancement of a graphene-sulfur composite as a lithium-sulfur battery electrode by coating with an ultrathin Al2O3 film via atomic layer deposition. J Mater Chem A 2(20):7360–7366. doi:10.​1039/​C4TA00234B CrossRef
Zurück zum Zitat Zaghib K (2012) Lithium metal for rechargeable polymer and metal-air batteries: challenges and opportunities Zaghib K (2012) Lithium metal for rechargeable polymer and metal-air batteries: challenges and opportunities
Zurück zum Zitat Zhang XG (2009) Zinc electrodes: overview. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopeida of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 454–468CrossRef Zhang XG (2009) Zinc electrodes: overview. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopeida of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 454–468CrossRef
Zurück zum Zitat Zhang SS (2012b) Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. J Electrochem Soc 159(7):A920–A923. doi:10.1149/2.002207jes CrossRef Zhang SS (2012b) Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. J Electrochem Soc 159(7):A920–A923. doi:10.​1149/​2.​002207jes CrossRef
Zurück zum Zitat Zhang SS (2013b) A concept for making poly(ethylene oxide) based composite gel polymer electrolyte lithium/sulfur battery. J Electrochem Soc 160(9):A1421–A1424. doi:10.1149/2.058309jes CrossRef Zhang SS (2013b) A concept for making poly(ethylene oxide) based composite gel polymer electrolyte lithium/sulfur battery. J Electrochem Soc 160(9):A1421–A1424. doi:10.​1149/​2.​058309jes CrossRef
Zurück zum Zitat Zhang Y, Zhao Y, Bakenov Z, Gosselink D, Chen P (2014) Poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/nanoclay composite gel polymer electrolyte for lithium/sulfur batteries. J Solid State Electrochem 18(4):1111–1116. doi:10.1007/s10008-013-2366-y CrossRef Zhang Y, Zhao Y, Bakenov Z, Gosselink D, Chen P (2014) Poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/nanoclay composite gel polymer electrolyte for lithium/sulfur batteries. J Solid State Electrochem 18(4):1111–1116. doi:10.​1007/​s10008-013-2366-y CrossRef
Zurück zum Zitat Zheng J, Lv D, Gu M, Wang C, Zhang J-G, Liu J, Xiao J (2013a) How to obtain reproducible results for lithium sulfur batteries? J Electrochem Soc 160(11):A2288–A2292. doi:10.1149/2.106311jes CrossRef Zheng J, Lv D, Gu M, Wang C, Zhang J-G, Liu J, Xiao J (2013a) How to obtain reproducible results for lithium sulfur batteries? J Electrochem Soc 160(11):A2288–A2292. doi:10.​1149/​2.​106311jes CrossRef
Zurück zum Zitat Zheng J, Gu M, Chen H, Meduri P, Engelhard MH, Zhang J-G, Liu J, Xiao J (2013b) Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium-sulfur batteries. J Mater Chem A 1(29):8464–8470. doi:10.1039/C3TA11553D CrossRef Zheng J, Gu M, Chen H, Meduri P, Engelhard MH, Zhang J-G, Liu J, Xiao J (2013b) Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium-sulfur batteries. J Mater Chem A 1(29):8464–8470. doi:10.​1039/​C3TA11553D CrossRef
Zurück zum Zitat Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9(8):618–623. doi:10.1038/nnano.2014.152 CrossRef Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9(8):618–623. doi:10.​1038/​nnano.​2014.​152 CrossRef
Zurück zum Zitat Zhou G, Pei S, Li L, Wang D-W, Wang S, Huang K, Yin L-C, Li F, Cheng H-M (2014) A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv Mater 26(4):625–631. doi:10.1002/adma.201302877 CrossRef Zhou G, Pei S, Li L, Wang D-W, Wang S, Huang K, Yin L-C, Li F, Cheng H-M (2014) A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv Mater 26(4):625–631. doi:10.​1002/​adma.​201302877 CrossRef
Zurück zum Zitat Zu C, Manthiram A (2014) Stabilized lithium-metal surface in a polysulfide-rich environment of lithium-sulfur batteries. J Phys Chem Lett 5(15):2522–2527. doi:10.1021/jz501352e CrossRef Zu C, Manthiram A (2014) Stabilized lithium-metal surface in a polysulfide-rich environment of lithium-sulfur batteries. J Phys Chem Lett 5(15):2522–2527. doi:10.​1021/​jz501352e CrossRef
Zurück zum Zitat Zu C, Su Y-S, Fu Y, Manthiram A (2013) Improved lithium-sulfur cells with a treated carbon paper interlayer. Phys Chem Chem Phys 15(7):2291–2297. doi:10.1039/C2CP43394J CrossRef Zu C, Su Y-S, Fu Y, Manthiram A (2013) Improved lithium-sulfur cells with a treated carbon paper interlayer. Phys Chem Chem Phys 15(7):2291–2297. doi:10.​1039/​C2CP43394J CrossRef
Metadaten
Titel
Application of Lithium Metal Anodes
verfasst von
Ji-Guang Zhang
Wu Xu
Wesley A. Henderson
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-44054-5_4