Skip to main content

2024 | OriginalPaper | Buchkapitel

28. Application of Machine Learning Techniques in Natural Gas Price Modeling. Analyses, Comparisons, and Predictions for Romania

verfasst von : Stelian Stancu, Alexandru Isaic-Maniu, Constanţa-Nicoleta Bodea, Mihai Sabin Muscalu, Denisa Elena Bălă

Erschienen in: Constraints and Opportunities in Shaping the Future: New Approaches to Economics and Policy Making

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The current global energy crisis is an important topic, which emphasizes the need to study the natural gas market, with appropriate modeling methods, for a proper substantiation of the public policies. The specialized literature is generous in terms of the analyses carried out on the electricity market, but the natural gas market is not a subject fully exploited by researchers; therefore, this article represents an important contribution to knowledge in the field. This article analyses the natural gas market in Romania between November 2016 and September 2022, using data collected daily, representing the weighted average daily price of natural gas. The research is carried out with the help of advanced machine learning methods, namely, a series of basic algorithms (models), but also three categories of ensemble learning methods (bagging, boosting, and stacking). It was found that the price of natural gas in Romania can be estimated with high accuracy, using decision tree (DT) algorithms or with the help of artificial neural networks (ANNs). However, ensemble learning-based modeling proves to be the best estimation method, characterized by reduced prediction errors compared to basic models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bhatia, K., Mittal, R., Tripathi, M. M., et al. (2020). A multi-phase ensemble model for long term hourly load forecasting. In 2020 IEEE 7th international conference on industrial engineering and applications (ICIEA) (pp. 592–598). IEEE.CrossRef Bhatia, K., Mittal, R., Tripathi, M. M., et al. (2020). A multi-phase ensemble model for long term hourly load forecasting. In 2020 IEEE 7th international conference on industrial engineering and applications (ICIEA) (pp. 592–598). IEEE.CrossRef
Zurück zum Zitat Čeperić, E., Žiković, S., & Čeperić, V. (2017). Short-term forecasting of natural gas prices using machine learning and feature selection algorithms. Energy, 140, 893–900.CrossRef Čeperić, E., Žiković, S., & Čeperić, V. (2017). Short-term forecasting of natural gas prices using machine learning and feature selection algorithms. Energy, 140, 893–900.CrossRef
Zurück zum Zitat Chen, B.-J., Chang, M.-W., & Lin, C.-J. (2004). Load forecasting using support vector machines: A study on EUNITE competition 2001. IEEE Transactions on Power Systems, 19(4), 1821–1830.CrossRef Chen, B.-J., Chang, M.-W., & Lin, C.-J. (2004). Load forecasting using support vector machines: A study on EUNITE competition 2001. IEEE Transactions on Power Systems, 19(4), 1821–1830.CrossRef
Zurück zum Zitat Liu, C., Wu, W. Z., Xie, W., Zhang, T., & Zhang, J. (2021). Forecasting natural gas consumption of China by using a novel fractional grey model with time power term. Energy Reports, 7, 788–797.CrossRef Liu, C., Wu, W. Z., Xie, W., Zhang, T., & Zhang, J. (2021). Forecasting natural gas consumption of China by using a novel fractional grey model with time power term. Energy Reports, 7, 788–797.CrossRef
Zurück zum Zitat Pavićević, M., & Popović, T. (2022). Forecasting day-ahead electricity metrics with artificial neural networks. Sensors, 22(3), 1051.CrossRef Pavićević, M., & Popović, T. (2022). Forecasting day-ahead electricity metrics with artificial neural networks. Sensors, 22(3), 1051.CrossRef
Zurück zum Zitat Qiao, W., Yang, Z., Kang, Z., & Pan, Z. (2020). Short-term natural gas consumption prediction based on Volterra adaptive filter and improved whale optimization algorithm. Engineering Applications of Artificial Intelligence, 87, 103323.CrossRef Qiao, W., Yang, Z., Kang, Z., & Pan, Z. (2020). Short-term natural gas consumption prediction based on Volterra adaptive filter and improved whale optimization algorithm. Engineering Applications of Artificial Intelligence, 87, 103323.CrossRef
Zurück zum Zitat Salehnia, N., Falahi, M. A., Seifi, A., & Mahdavi Adeli, M. H. (2013). Forecasting natural gas spot prices with nonlinear modeling using Gamma test analysis. Journal of Natural Gas Science and Engineering, 14, 238–249.CrossRef Salehnia, N., Falahi, M. A., Seifi, A., & Mahdavi Adeli, M. H. (2013). Forecasting natural gas spot prices with nonlinear modeling using Gamma test analysis. Journal of Natural Gas Science and Engineering, 14, 238–249.CrossRef
Zurück zum Zitat Shi, X., & Shen, Y. (2021). Macroeconomic uncertainty and natural gas prices: Revisiting the Asian Premium. Energy Economics, 94. Shi, X., & Shen, Y. (2021). Macroeconomic uncertainty and natural gas prices: Revisiting the Asian Premium. Energy Economics, 94.
Zurück zum Zitat Su, M., Zhang, Z., Zhu, Y., Zha, D., & Wen, W. (2019). Data driven natural gas spot price prediction models using machine learning methods. Energies, 12(9), 1680.CrossRef Su, M., Zhang, Z., Zhu, Y., Zha, D., & Wen, W. (2019). Data driven natural gas spot price prediction models using machine learning methods. Energies, 12(9), 1680.CrossRef
Zurück zum Zitat Zhang, W., & Hamori, S. (2020). Do machine learning techniques and dynamic methods help forecast US natural gas crises? Energies, 13(9), 2371.CrossRef Zhang, W., & Hamori, S. (2020). Do machine learning techniques and dynamic methods help forecast US natural gas crises? Energies, 13(9), 2371.CrossRef
Zurück zum Zitat Zhao, Z., Wang, C., Nokleby, M. & Miller, C. J.. (2017). Improving short-term electricity price forecasting using day-ahead LMP with ARIMA models. 2017 IEEE Power & Energy Society General Meeting, pp. 1–5. Zhao, Z., Wang, C., Nokleby, M. & Miller, C. J.. (2017). Improving short-term electricity price forecasting using day-ahead LMP with ARIMA models. 2017 IEEE Power & Energy Society General Meeting, pp. 1–5.
Zurück zum Zitat Zhou, W., Wu, X., Ding, S., & Pan, J. (2020). Application of a novel discrete grey model for forecasting natural gas consumption: A case study of Jiangsu Province in China. Energy, Elsevier, 200, 117443. Zhou, W., Wu, X., Ding, S., & Pan, J. (2020). Application of a novel discrete grey model for forecasting natural gas consumption: A case study of Jiangsu Province in China. Energy, Elsevier, 200, 117443.
Metadaten
Titel
Application of Machine Learning Techniques in Natural Gas Price Modeling. Analyses, Comparisons, and Predictions for Romania
verfasst von
Stelian Stancu
Alexandru Isaic-Maniu
Constanţa-Nicoleta Bodea
Mihai Sabin Muscalu
Denisa Elena Bălă
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47925-0_28

Premium Partner