Skip to main content

2023 | OriginalPaper | Buchkapitel

2. Application of MXenes in Water Purification, CO2 Capture and Conversion

verfasst von : Jonathan Tersur Orasugh, Lesego Tabea Temane, Suprakas Sinha Ray

Erschienen in: Two-Dimensional Materials for Environmental Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The number of nanomaterials that are suitable for many applications has increased with the 2011 discovery of two-dimensional (2D) transition metal carbides as well as nitrides (MXenes). MXenes are a new class of 2D materials that are quickly gaining popularity for various uses in the fields of medicine, chemistry, and the environment. MXenes but also MXene-composites or hybrids have several desirable properties, including a large surface area, outstanding chemical stability, hydrophilicity, excellent thermal conductivity, and environmental compatibility. MXenes have therefore been utilized in the creation of lithium-ion batteries, semiconductors, and hydrogen storage. The remediation of contaminated groundwater, surface waters, industrial and municipal wastewaters, as well as the capture and conversion of hydrogen, are just a few of the environmental applications where MXenes have recently been used. These applications frequently outperform those for traditional materials. MXene-composites can deionize via Faradaic capacitive deionization (CDI) as well as adsorb a range of organic and inorganic contaminants when employed for electrochemical applications. The applications of MXenes as well as its composites/hybrids for water treatment and CO2 capture and conversion, are conversed in this chapter as per the literature. We have also discussed the challenges with regard to the utilization of Mxene and its materials in wastewater remediation, along with drawn conclusions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Naguib et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011)CrossRef M. Naguib et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011)CrossRef
2.
Zurück zum Zitat M. Boota et al., Interaction of polar and nonpolar polyfluorenes with layers of two-dimensional titanium carbide (MXene): intercalation and pseudocapacitance. Chem. Mater. 29(7), 2731–2738 (2017)CrossRef M. Boota et al., Interaction of polar and nonpolar polyfluorenes with layers of two-dimensional titanium carbide (MXene): intercalation and pseudocapacitance. Chem. Mater. 29(7), 2731–2738 (2017)CrossRef
3.
Zurück zum Zitat R.M. Ronchi, J.T. Arantes, S.F. Santos, Synthesis, structure, properties and applications of MXenes: current status and perspectives. Ceram. Int. 45(15), 18167–18188 (2019)CrossRef R.M. Ronchi, J.T. Arantes, S.F. Santos, Synthesis, structure, properties and applications of MXenes: current status and perspectives. Ceram. Int. 45(15), 18167–18188 (2019)CrossRef
4.
Zurück zum Zitat S.K. Hwang et al., MXene: an emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J. 397, 125428 (2020)CrossRef S.K. Hwang et al., MXene: an emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J. 397, 125428 (2020)CrossRef
5.
Zurück zum Zitat J. Jang et al., Magnetic Ti3C2Tx (Mxene) for diclofenac degradation via the ultraviolet/chlorine advanced oxidation process. Environ. Res. 182, 108990 (2020)CrossRef J. Jang et al., Magnetic Ti3C2Tx (Mxene) for diclofenac degradation via the ultraviolet/chlorine advanced oxidation process. Environ. Res. 182, 108990 (2020)CrossRef
6.
Zurück zum Zitat Y.A. Al-Hamadani, et al., Applications of MXene-based membranes in water purification: a review. Chemosphere 254, 126821 (2020) Y.A. Al-Hamadani, et al., Applications of MXene-based membranes in water purification: a review. Chemosphere 254, 126821 (2020)
7.
Zurück zum Zitat G.J. Adekoya, et al., Applications of MXene-Containing Polypyrrole Nanocomposites in Electrochemical Energy Storage and Conversion (ACS Omega, 2022) G.J. Adekoya, et al., Applications of MXene-Containing Polypyrrole Nanocomposites in Electrochemical Energy Storage and Conversion (ACS Omega, 2022)
8.
Zurück zum Zitat F. Dixit et al., Application of MXenes for water treatment and energy-efficient desalination: a review. J. Hazard. Mater. 423, 127050 (2022)CrossRef F. Dixit et al., Application of MXenes for water treatment and energy-efficient desalination: a review. J. Hazard. Mater. 423, 127050 (2022)CrossRef
9.
10.
Zurück zum Zitat A. Lipatov et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2(12), 1600255 (2016)CrossRef A. Lipatov et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2(12), 1600255 (2016)CrossRef
11.
Zurück zum Zitat J. Halim et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26(7), 2374–2381 (2014)CrossRef J. Halim et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26(7), 2374–2381 (2014)CrossRef
12.
Zurück zum Zitat Y. Guo et al., Synthesis of two-dimensional carbide Mo2CTx MXene by hydrothermal etching with fluorides and its thermal stability. Ceram. Int. 46(11), 19550–19556 (2020)CrossRef Y. Guo et al., Synthesis of two-dimensional carbide Mo2CTx MXene by hydrothermal etching with fluorides and its thermal stability. Ceram. Int. 46(11), 19550–19556 (2020)CrossRef
13.
Zurück zum Zitat Y. Gogotsi, Transition metal carbides go 2D. Nat. Mater. 14(11), 1079–1080 (2015)CrossRef Y. Gogotsi, Transition metal carbides go 2D. Nat. Mater. 14(11), 1079–1080 (2015)CrossRef
14.
Zurück zum Zitat P. Urbankowski et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8(22), 11385–11391 (2016)CrossRef P. Urbankowski et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8(22), 11385–11391 (2016)CrossRef
15.
Zurück zum Zitat S. Yang et al., Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. 130(47), 15717–15721 (2018)CrossRef S. Yang et al., Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. 130(47), 15717–15721 (2018)CrossRef
16.
Zurück zum Zitat V. Natu et al., 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6(3), 616–630 (2020)CrossRef V. Natu et al., 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6(3), 616–630 (2020)CrossRef
17.
Zurück zum Zitat B. Unnikrishnan et al., Synthesis and in situ sulfidation of molybdenum carbide MXene using fluorine-free etchant for electrocatalytic hydrogen evolution reactions. J. Colloid Interface Sci. 628, 849–857 (2022)CrossRef B. Unnikrishnan et al., Synthesis and in situ sulfidation of molybdenum carbide MXene using fluorine-free etchant for electrocatalytic hydrogen evolution reactions. J. Colloid Interface Sci. 628, 849–857 (2022)CrossRef
18.
Zurück zum Zitat Z. Sun et al., Selective lithiation–expansion–microexplosion synthesis of two-dimensional fluoride-free Mxene. ACS Mater. Lett. 1(6), 628–632 (2019)CrossRef Z. Sun et al., Selective lithiation–expansion–microexplosion synthesis of two-dimensional fluoride-free Mxene. ACS Mater. Lett. 1(6), 628–632 (2019)CrossRef
19.
Zurück zum Zitat Z. Li et al., Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 14(5), 5581–5589 (2020)CrossRef Z. Li et al., Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 14(5), 5581–5589 (2020)CrossRef
20.
Zurück zum Zitat C. Xu et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14(11), 1135–1141 (2015)CrossRef C. Xu et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14(11), 1135–1141 (2015)CrossRef
21.
Zurück zum Zitat D. Geng et al., Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 29(35), 1700072 (2017)CrossRef D. Geng et al., Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 29(35), 1700072 (2017)CrossRef
22.
Zurück zum Zitat V. Thirumal et al., Facile single-step synthesis of MXene@CNTs hybrid nanocomposite by CVD method to remove hazardous pollutants. Chemosphere 286, 131733 (2022)CrossRef V. Thirumal et al., Facile single-step synthesis of MXene@CNTs hybrid nanocomposite by CVD method to remove hazardous pollutants. Chemosphere 286, 131733 (2022)CrossRef
23.
Zurück zum Zitat F. Turker et al., CVD synthesis and characterization of thin Mo2C crystals. J. Am. Ceram. Soc. 103(10), 5586–5593 (2020)CrossRef F. Turker et al., CVD synthesis and characterization of thin Mo2C crystals. J. Am. Ceram. Soc. 103(10), 5586–5593 (2020)CrossRef
24.
Zurück zum Zitat A. Zaman et al., Biopolymer-based nanocomposites for removal of hazardous dyes from water bodies, in Innovations in Environmental Biotechnology. ed. by S. Arora et al. (Springer Nature Singapore, Singapore, 2022), pp.759–783CrossRef A. Zaman et al., Biopolymer-based nanocomposites for removal of hazardous dyes from water bodies, in Innovations in Environmental Biotechnology. ed. by S. Arora et al. (Springer Nature Singapore, Singapore, 2022), pp.759–783CrossRef
25.
Zurück zum Zitat J.T. Orasugh, S.S. Ray, Nanocellulose-Graphene Oxide-Based Nanocomposite for Adsorptive Water Treatment, in Functional Polymer Nanocomposites for Wastewater Treatment, ed. by M.J. Hato, S. Sinha Ray (Springer International Publishing, Cham, 2022), pp. 1–53 J.T. Orasugh, S.S. Ray, Nanocellulose-Graphene Oxide-Based Nanocomposite for Adsorptive Water Treatment, in Functional Polymer Nanocomposites for Wastewater Treatment, ed. by M.J. Hato, S. Sinha Ray (Springer International Publishing, Cham, 2022), pp. 1–53
26.
Zurück zum Zitat A. Shahzad et al., Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain. Chem. Eng. 5(12), 11481–11488 (2017)CrossRef A. Shahzad et al., Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain. Chem. Eng. 5(12), 11481–11488 (2017)CrossRef
27.
Zurück zum Zitat Y. Ying et al., Two-dimensional titanium carbide for efficiently reductive removal of highly toxic Chromium(VI) from water. ACS Appl. Mater. Interfaces. 7(3), 1795–1803 (2015)CrossRef Y. Ying et al., Two-dimensional titanium carbide for efficiently reductive removal of highly toxic Chromium(VI) from water. ACS Appl. Mater. Interfaces. 7(3), 1795–1803 (2015)CrossRef
28.
Zurück zum Zitat G. Zou et al., Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. J. Mater. Chem. A 4(2), 489–499 (2016)MathSciNetCrossRef G. Zou et al., Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. J. Mater. Chem. A 4(2), 489–499 (2016)MathSciNetCrossRef
29.
Zurück zum Zitat A. Shahzad et al., Unique selectivity and rapid uptake of molybdenum-disulfide-functionalized MXene nanocomposite for mercury adsorption. Environ. Res. 182, 109005 (2020)CrossRef A. Shahzad et al., Unique selectivity and rapid uptake of molybdenum-disulfide-functionalized MXene nanocomposite for mercury adsorption. Environ. Res. 182, 109005 (2020)CrossRef
30.
Zurück zum Zitat A. Shahzad et al., Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain. Chem. Eng. 5(12), 11481–11488 (2017)CrossRef A. Shahzad et al., Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain. Chem. Eng. 5(12), 11481–11488 (2017)CrossRef
31.
Zurück zum Zitat P. Karthikeyan et al., Two-dimensional (2D) Ti3C2Tx MXene nanosheets with superior adsorption behavior for phosphate and nitrate ions from the aqueous environment. Ceram. Int. 47(1), 732–739 (2021)CrossRef P. Karthikeyan et al., Two-dimensional (2D) Ti3C2Tx MXene nanosheets with superior adsorption behavior for phosphate and nitrate ions from the aqueous environment. Ceram. Int. 47(1), 732–739 (2021)CrossRef
32.
Zurück zum Zitat Z. He et al., Ca2+ induced 3D porous MXene gel for continuous removal of phosphate and uranium. Appl. Surf. Sci. 570, 150804 (2021)CrossRef Z. He et al., Ca2+ induced 3D porous MXene gel for continuous removal of phosphate and uranium. Appl. Surf. Sci. 570, 150804 (2021)CrossRef
33.
Zurück zum Zitat O. Mashtalir et al., Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A 2(35), 14334–14338 (2014)CrossRef O. Mashtalir et al., Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A 2(35), 14334–14338 (2014)CrossRef
34.
Zurück zum Zitat A. Shahzad et al., Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite. J. Hazard. Mater. 344, 811–818 (2018)CrossRef A. Shahzad et al., Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite. J. Hazard. Mater. 344, 811–818 (2018)CrossRef
35.
Zurück zum Zitat L. Wang et al., Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem. Commun. 53(89), 12084–12087 (2017)CrossRef L. Wang et al., Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem. Commun. 53(89), 12084–12087 (2017)CrossRef
36.
Zurück zum Zitat B.-M. Jun et al., Adsorption of selected dyes on Ti3C2Tx MXene and Al-based metal-organic framework. Ceram. Int. 46(3), 2960–2968 (2020)CrossRef B.-M. Jun et al., Adsorption of selected dyes on Ti3C2Tx MXene and Al-based metal-organic framework. Ceram. Int. 46(3), 2960–2968 (2020)CrossRef
37.
Zurück zum Zitat P. Karthikeyan et al., Effective removal of Cr (VI) and methyl orange from the aqueous environment using two-dimensional (2D) Ti3C2Tx MXene nanosheets. Ceram. Int. 47(3), 3692–3698 (2021)CrossRef P. Karthikeyan et al., Effective removal of Cr (VI) and methyl orange from the aqueous environment using two-dimensional (2D) Ti3C2Tx MXene nanosheets. Ceram. Int. 47(3), 3692–3698 (2021)CrossRef
38.
Zurück zum Zitat S. Kim et al., Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2Tx MXene. Chem. Eng. J. 406, 126789 (2021)CrossRef S. Kim et al., Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2Tx MXene. Chem. Eng. J. 406, 126789 (2021)CrossRef
39.
Zurück zum Zitat A.A. Ghani et al., Adsorption and electrochemical regeneration of intercalated Ti3C2Tx MXene for the removal of ciprofloxacin from wastewater. Chem. Eng. J. 421, 127780 (2021)CrossRef A.A. Ghani et al., Adsorption and electrochemical regeneration of intercalated Ti3C2Tx MXene for the removal of ciprofloxacin from wastewater. Chem. Eng. J. 421, 127780 (2021)CrossRef
40.
Zurück zum Zitat S. Kim et al., Effect of single and multilayered Ti3C2Tx MXene as a catalyst and adsorbent on enhanced sonodegradation of diclofenac and verapamil. J. Hazard. Mater. 426, 128120 (2022)CrossRef S. Kim et al., Effect of single and multilayered Ti3C2Tx MXene as a catalyst and adsorbent on enhanced sonodegradation of diclofenac and verapamil. J. Hazard. Mater. 426, 128120 (2022)CrossRef
41.
Zurück zum Zitat C. Peng et al., Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 8(9), 6051–6060 (2016)CrossRef C. Peng et al., Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 8(9), 6051–6060 (2016)CrossRef
42.
Zurück zum Zitat J. Qu et al., Preparation and regulation of two-dimensional Ti3C2Tx MXene for enhanced adsorption–photocatalytic degradation of organic dyes in wastewater. Ceram. Int. 48(10), 14451–14459 (2022)MathSciNetCrossRef J. Qu et al., Preparation and regulation of two-dimensional Ti3C2Tx MXene for enhanced adsorption–photocatalytic degradation of organic dyes in wastewater. Ceram. Int. 48(10), 14451–14459 (2022)MathSciNetCrossRef
43.
Zurück zum Zitat B.-M. Jun et al., Ultrasonic degradation of selected dyes using Ti3C2Tx MXene as a sonocatalyst. Ultrason. Sonochem. 64, 104993 (2020)CrossRef B.-M. Jun et al., Ultrasonic degradation of selected dyes using Ti3C2Tx MXene as a sonocatalyst. Ultrason. Sonochem. 64, 104993 (2020)CrossRef
44.
Zurück zum Zitat M. Jeon et al., Sonodegradation of amitriptyline and ibuprofen in the presence of Ti3C2Tx MXene. J. Hazard. Mater. Lett. 2, 100028 (2021)CrossRef M. Jeon et al., Sonodegradation of amitriptyline and ibuprofen in the presence of Ti3C2Tx MXene. J. Hazard. Mater. Lett. 2, 100028 (2021)CrossRef
45.
Zurück zum Zitat A. Shahzad et al., Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 349, 748–755 (2018)CrossRef A. Shahzad et al., Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 349, 748–755 (2018)CrossRef
46.
Zurück zum Zitat H. Wang et al., Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. Chemsuschem 9(12), 1490–1497 (2016)CrossRef H. Wang et al., Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. Chemsuschem 9(12), 1490–1497 (2016)CrossRef
47.
Zurück zum Zitat Q. Zhang et al., Defect-engineered MXene monolith enabling interfacial photothermal catalysis for high-yield solar hydrogen generation. Cell Rep. Phys. Sci. 3(5), 100877 (2022)MathSciNetCrossRef Q. Zhang et al., Defect-engineered MXene monolith enabling interfacial photothermal catalysis for high-yield solar hydrogen generation. Cell Rep. Phys. Sci. 3(5), 100877 (2022)MathSciNetCrossRef
48.
Zurück zum Zitat X. Chen et al., Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two-dimensional heterostructures for photocatalytic hydrogen production. J. Colloid Interface Sci. 613, 644–651 (2022)CrossRef X. Chen et al., Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two-dimensional heterostructures for photocatalytic hydrogen production. J. Colloid Interface Sci. 613, 644–651 (2022)CrossRef
49.
Zurück zum Zitat Y. Wang et al., Ti3C2 MXene coupled with CdS nanoflowers as 2D/3D heterostructures for enhanced photocatalytic hydrogen production activity. Int. J. Hydrog. Energy 47(52), 22045–22053 (2022)CrossRef Y. Wang et al., Ti3C2 MXene coupled with CdS nanoflowers as 2D/3D heterostructures for enhanced photocatalytic hydrogen production activity. Int. J. Hydrog. Energy 47(52), 22045–22053 (2022)CrossRef
50.
Zurück zum Zitat B. Sun et al., The fabrication of 1D/2D CdS nanorod@Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis. Chem. Eng. J. 406, 127177 (2021)CrossRef B. Sun et al., The fabrication of 1D/2D CdS nanorod@Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis. Chem. Eng. J. 406, 127177 (2021)CrossRef
51.
Zurück zum Zitat J. Ran et al., Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8(1), 1–10 (2017)CrossRef J. Ran et al., Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8(1), 1–10 (2017)CrossRef
52.
Zurück zum Zitat B.-M. Jun et al., Adsorption of Ba2+ and Sr2+ on Ti3C2Tx MXene in model fracking wastewater. J. Environ. Manag. 256, 109940 (2020)CrossRef B.-M. Jun et al., Adsorption of Ba2+ and Sr2+ on Ti3C2Tx MXene in model fracking wastewater. J. Environ. Manag. 256, 109940 (2020)CrossRef
53.
Zurück zum Zitat B.-M. Jun et al., Effective removal of Pb (ii) from synthetic wastewater using Ti3C2Tx MXene. Environ. Sci. Water Res. Technol. 6(1), 173–180 (2020)CrossRef B.-M. Jun et al., Effective removal of Pb (ii) from synthetic wastewater using Ti3C2Tx MXene. Environ. Sci. Water Res. Technol. 6(1), 173–180 (2020)CrossRef
54.
Zurück zum Zitat Z. Othman, H.R. Mackey, K.A. Mahmoud, A critical overview of MXenes adsorption behavior toward heavy metals. Chemosphere 295, 133849 (2022)CrossRef Z. Othman, H.R. Mackey, K.A. Mahmoud, A critical overview of MXenes adsorption behavior toward heavy metals. Chemosphere 295, 133849 (2022)CrossRef
55.
Zurück zum Zitat Q. Peng et al., Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 136(11), 4113–4116 (2014)CrossRef Q. Peng et al., Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 136(11), 4113–4116 (2014)CrossRef
56.
Zurück zum Zitat A. Shahzad et al., Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions. Chem. Eng. J. 368, 400–408 (2019)CrossRef A. Shahzad et al., Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions. Chem. Eng. J. 368, 400–408 (2019)CrossRef
57.
Zurück zum Zitat C.E. Ren et al., Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 6(20), 4026–4031 (2015)CrossRef C.E. Ren et al., Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 6(20), 4026–4031 (2015)CrossRef
58.
Zurück zum Zitat J. Guo et al., Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. J. Phys. Chem. C 119(36), 20923–20930 (2015)CrossRef J. Guo et al., Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. J. Phys. Chem. C 119(36), 20923–20930 (2015)CrossRef
59.
Zurück zum Zitat X. Guo et al., High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation. Phys. Chem. Chem. Phys. 18(1), 228–233 (2016)CrossRef X. Guo et al., High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation. Phys. Chem. Chem. Phys. 18(1), 228–233 (2016)CrossRef
60.
Zurück zum Zitat R.P. Pandey et al., Reductive sequestration of toxic bromate from drinking water using lamellar two-dimensional Ti3C2Tx (MXene). ACS Sustain. Chem. Eng. 6(6), 7910–7917 (2018)CrossRef R.P. Pandey et al., Reductive sequestration of toxic bromate from drinking water using lamellar two-dimensional Ti3C2Tx (MXene). ACS Sustain. Chem. Eng. 6(6), 7910–7917 (2018)CrossRef
61.
Zurück zum Zitat Q. Zhang et al., Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 8(13), 7085–7093 (2016)CrossRef Q. Zhang et al., Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 8(13), 7085–7093 (2016)CrossRef
62.
Zurück zum Zitat D. Gan et al., Bioinspired functionalization of MXenes (Ti3C2Tx) with amino acids for efficient removal of heavy metal ions. Appl. Surf. Sci. 504, 144603 (2020)CrossRef D. Gan et al., Bioinspired functionalization of MXenes (Ti3C2Tx) with amino acids for efficient removal of heavy metal ions. Appl. Surf. Sci. 504, 144603 (2020)CrossRef
63.
Zurück zum Zitat S. Wang et al., Facile preparation of biosurfactant-functionalized Ti2CTX MXene nanosheets with an enhanced adsorption performance for Pb (II) ions. J. Mol. Liq. 297, 111810 (2020)CrossRef S. Wang et al., Facile preparation of biosurfactant-functionalized Ti2CTX MXene nanosheets with an enhanced adsorption performance for Pb (II) ions. J. Mol. Liq. 297, 111810 (2020)CrossRef
64.
Zurück zum Zitat Z. Wei et al., Alkali treated Ti3C2Tx MXenes and their dye adsorption performance. Mater. Chem. Phys. 206, 270–276 (2018)CrossRef Z. Wei et al., Alkali treated Ti3C2Tx MXenes and their dye adsorption performance. Mater. Chem. Phys. 206, 270–276 (2018)CrossRef
65.
Zurück zum Zitat Z. Zhu et al., Effect of temperature on methylene blue removal with novel 2D-Magnetism titanium carbide. J. Solid State Chem. 280, 120989 (2019)CrossRef Z. Zhu et al., Effect of temperature on methylene blue removal with novel 2D-Magnetism titanium carbide. J. Solid State Chem. 280, 120989 (2019)CrossRef
66.
Zurück zum Zitat Y. Cui et al., A novel one-step strategy for preparation of Fe3O4-loaded Ti3C2 MXenes with high efficiency for removal organic dyes. Ceram. Int. 46(8), 11593–11601 (2020)MathSciNetCrossRef Y. Cui et al., A novel one-step strategy for preparation of Fe3O4-loaded Ti3C2 MXenes with high efficiency for removal organic dyes. Ceram. Int. 46(8), 11593–11601 (2020)MathSciNetCrossRef
67.
Zurück zum Zitat B.-M. Jun et al., Ultrasound-assisted Ti3C2Tx MXene adsorption of dyes: removal performance and mechanism analyses via dynamic light scattering. Chemosphere 254, 126827 (2020)CrossRef B.-M. Jun et al., Ultrasound-assisted Ti3C2Tx MXene adsorption of dyes: removal performance and mechanism analyses via dynamic light scattering. Chemosphere 254, 126827 (2020)CrossRef
68.
Zurück zum Zitat Y. Lei et al., Facile preparation of sulfonic groups functionalized Mxenes for efficient removal of methylene blue. Ceram. Int. 45(14), 17653–17661 (2019)CrossRef Y. Lei et al., Facile preparation of sulfonic groups functionalized Mxenes for efficient removal of methylene blue. Ceram. Int. 45(14), 17653–17661 (2019)CrossRef
69.
Zurück zum Zitat Y. Gao et al., Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 150, 62–64 (2015)CrossRef Y. Gao et al., Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 150, 62–64 (2015)CrossRef
70.
Zurück zum Zitat N.-N. Wang et al., Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation. ACS Appl. Mater. Interfaces 11(43), 40512–40523 (2019)CrossRef N.-N. Wang et al., Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation. ACS Appl. Mater. Interfaces 11(43), 40512–40523 (2019)CrossRef
71.
Zurück zum Zitat Z.-K. Li et al., Ultra-thin titanium carbide (MXene) sheet membranes for high-efficient oil/water emulsions separation. J. Membr. Sci. 592, 117361 (2019)CrossRef Z.-K. Li et al., Ultra-thin titanium carbide (MXene) sheet membranes for high-efficient oil/water emulsions separation. J. Membr. Sci. 592, 117361 (2019)CrossRef
72.
Zurück zum Zitat J. Saththasivam et al., A flexible Ti3C2Tx (MXene)/paper membrane for efficient oil/water separation. RSC Adv. 9(29), 16296–16304 (2019)CrossRef J. Saththasivam et al., A flexible Ti3C2Tx (MXene)/paper membrane for efficient oil/water separation. RSC Adv. 9(29), 16296–16304 (2019)CrossRef
73.
Zurück zum Zitat H. Zhang et al., Ultrathin 2D Ti3C2Tx MXene membrane for effective separation of oil-in-water emulsions in acidic, alkaline, and salty environment. J. Colloid Interface Sci. 561, 861–869 (2020)CrossRef H. Zhang et al., Ultrathin 2D Ti3C2Tx MXene membrane for effective separation of oil-in-water emulsions in acidic, alkaline, and salty environment. J. Colloid Interface Sci. 561, 861–869 (2020)CrossRef
74.
Zurück zum Zitat S. He et al., Chemically stable two-dimensional MXene@UIO-66-(COOH)2 composite lamellar membrane for multi-component pollutant-oil-water emulsion separation. Compos. B Eng. 197, 108188 (2020)CrossRef S. He et al., Chemically stable two-dimensional MXene@UIO-66-(COOH)2 composite lamellar membrane for multi-component pollutant-oil-water emulsion separation. Compos. B Eng. 197, 108188 (2020)CrossRef
75.
Zurück zum Zitat A. Moghaddasi et al., Separation of water/oil emulsions by an electrospun copolyamide mat covered with a 2D Ti3C2Tx MXene. Materials 13(14), 3171 (2020)CrossRef A. Moghaddasi et al., Separation of water/oil emulsions by an electrospun copolyamide mat covered with a 2D Ti3C2Tx MXene. Materials 13(14), 3171 (2020)CrossRef
76.
Zurück zum Zitat S. Luo et al., Preparation and dye degradation performances of self-assembled MXene-Co3O4 nanocomposites synthesized via solvothermal approach. ACS Omega 4(2), 3946–3953 (2019)CrossRef S. Luo et al., Preparation and dye degradation performances of self-assembled MXene-Co3O4 nanocomposites synthesized via solvothermal approach. ACS Omega 4(2), 3946–3953 (2019)CrossRef
77.
Zurück zum Zitat K. Li et al., Self-assembled MXene-based nanocomposites via layer-by-layer strategy for elevated adsorption capacities. Colloids Surf. A Phys. Chem. Eng. Asp. 553, 105–113 (2018)CrossRef K. Li et al., Self-assembled MXene-based nanocomposites via layer-by-layer strategy for elevated adsorption capacities. Colloids Surf. A Phys. Chem. Eng. Asp. 553, 105–113 (2018)CrossRef
78.
Zurück zum Zitat A. Sarycheva et al., Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J. Phys. Chem. C 121(36), 19983–19988 (2017)CrossRef A. Sarycheva et al., Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J. Phys. Chem. C 121(36), 19983–19988 (2017)CrossRef
79.
Zurück zum Zitat H. Zhang et al., Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. J. Mater. Chem. A 4(33), 12913–12920 (2016)CrossRef H. Zhang et al., Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. J. Mater. Chem. A 4(33), 12913–12920 (2016)CrossRef
80.
Zurück zum Zitat K. Xiong et al., Functional group effects on the photoelectronic properties of MXene (Sc2CT2, T = O, F, OH) and their possible photocatalytic activities. Sci. Rep. 7(1), 1–8 (2017)CrossRef K. Xiong et al., Functional group effects on the photoelectronic properties of MXene (Sc2CT2, T = O, F, OH) and their possible photocatalytic activities. Sci. Rep. 7(1), 1–8 (2017)CrossRef
81.
Zurück zum Zitat R. Li et al., MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11(4), 3752–3759 (2017)CrossRef R. Li et al., MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11(4), 3752–3759 (2017)CrossRef
82.
Zurück zum Zitat X. Zhong et al., The fabrication of 3D hierarchical flower-like δ-MnO2@COF nanocomposites for the efficient and ultra-fast removal of UO22+ ions from aqueous solution. Environ. Sci. Nano 7(11), 3303–3317 (2020)CrossRef X. Zhong et al., The fabrication of 3D hierarchical flower-like δ-MnO2@COF nanocomposites for the efficient and ultra-fast removal of UO22+ ions from aqueous solution. Environ. Sci. Nano 7(11), 3303–3317 (2020)CrossRef
83.
Zurück zum Zitat S. Li et al., Adsorption and mechanistic study of the invasive plant-derived biochar functionalized with CaAl-LDH for Eu (III) in water. J. Environ. Sci. 96, 127–137 (2020)CrossRef S. Li et al., Adsorption and mechanistic study of the invasive plant-derived biochar functionalized with CaAl-LDH for Eu (III) in water. J. Environ. Sci. 96, 127–137 (2020)CrossRef
84.
Zurück zum Zitat X. Zhong et al., The magnetic covalent organic framework as a platform for high-performance extraction of Cr (VI) and bisphenol a from aqueous solution. J. Hazard. Mater. 393, 122353 (2020)CrossRef X. Zhong et al., The magnetic covalent organic framework as a platform for high-performance extraction of Cr (VI) and bisphenol a from aqueous solution. J. Hazard. Mater. 393, 122353 (2020)CrossRef
85.
Zurück zum Zitat Y.-J. Zhang et al., Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Appl. Surf. Sci. 426, 572–578 (2017)CrossRef Y.-J. Zhang et al., Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Appl. Surf. Sci. 426, 572–578 (2017)CrossRef
86.
Zurück zum Zitat L. Wang et al., Porous carbon-supported gold nanoparticles for oxygen reduction reaction: effects of nanoparticle size. ACS Appl. Mater. Interfaces 8(32), 20635–20641 (2016)CrossRef L. Wang et al., Porous carbon-supported gold nanoparticles for oxygen reduction reaction: effects of nanoparticle size. ACS Appl. Mater. Interfaces 8(32), 20635–20641 (2016)CrossRef
87.
Zurück zum Zitat B. Anasori et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015)CrossRef B. Anasori et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015)CrossRef
88.
Zurück zum Zitat X. Zhong et al., Aluminum-based metal-organic frameworks (CAU-1) highly efficient UO22+ and TcO4− ions immobilization from aqueous solution. J. Hazard. Mater. 407, 124729 (2021)CrossRef X. Zhong et al., Aluminum-based metal-organic frameworks (CAU-1) highly efficient UO22+ and TcO4 ions immobilization from aqueous solution. J. Hazard. Mater. 407, 124729 (2021)CrossRef
89.
Zurück zum Zitat W. Mu et al., Removal of radioactive palladium based on novel 2D titanium carbides. Chem. Eng. J. 358, 283–290 (2019)CrossRef W. Mu et al., Removal of radioactive palladium based on novel 2D titanium carbides. Chem. Eng. J. 358, 283–290 (2019)CrossRef
90.
Zurück zum Zitat B.-M. Jun et al., Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater. Nucl. Eng. Technol. 52(6), 1201–1207 (2020)CrossRef B.-M. Jun et al., Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater. Nucl. Eng. Technol. 52(6), 1201–1207 (2020)CrossRef
91.
Zurück zum Zitat M. ul Hassan, et al., Post-decontamination treatment of MXene after adsorbing Cs from contaminated water with the enhanced thermal stability to form a stable radioactive waste matrix. J. Nucl. Mater. 543, 152566 (2021) M. ul Hassan, et al., Post-decontamination treatment of MXene after adsorbing Cs from contaminated water with the enhanced thermal stability to form a stable radioactive waste matrix. J. Nucl. Mater. 543, 152566 (2021)
92.
Zurück zum Zitat L. Wang et al., Effective removal of anionic Re (VII) by surface-modified Ti2CTx MXene nanocomposites: implications for Tc (VII) sequestration. Environ. Sci. Technol. 53(7), 3739–3747 (2019)CrossRef L. Wang et al., Effective removal of anionic Re (VII) by surface-modified Ti2CTx MXene nanocomposites: implications for Tc (VII) sequestration. Environ. Sci. Technol. 53(7), 3739–3747 (2019)CrossRef
93.
Zurück zum Zitat P. Zhang et al., Effective removal of U (VI) and Eu (III) by carboxyl functionalized MXene nanosheets. J. Hazard. Mater. 396, 122731 (2020)CrossRef P. Zhang et al., Effective removal of U (VI) and Eu (III) by carboxyl functionalized MXene nanosheets. J. Hazard. Mater. 396, 122731 (2020)CrossRef
94.
Zurück zum Zitat L. Wang et al., Efficient U (VI) reduction and sequestration by Ti2CTx MXene. Environ. Sci. Technol. 52(18), 10748–10756 (2018)CrossRef L. Wang et al., Efficient U (VI) reduction and sequestration by Ti2CTx MXene. Environ. Sci. Technol. 52(18), 10748–10756 (2018)CrossRef
95.
Zurück zum Zitat S. Wang et al., Highly efficient adsorption and immobilization of U (VI) from aqueous solution by alkalized MXene-supported nanoscale zero-valent iron. J. Hazard. Mater. 408, 124949 (2021)CrossRef S. Wang et al., Highly efficient adsorption and immobilization of U (VI) from aqueous solution by alkalized MXene-supported nanoscale zero-valent iron. J. Hazard. Mater. 408, 124949 (2021)CrossRef
96.
Zurück zum Zitat P. Zhang et al., Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption. ACS Appl. Mater. Interfaces 12(13), 15579–15587 (2020)CrossRef P. Zhang et al., Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption. ACS Appl. Mater. Interfaces 12(13), 15579–15587 (2020)CrossRef
97.
Zurück zum Zitat L. Wang et al., Layered structure-based materials: challenges and opportunities for radionuclide sequestration. Environ. Sci. Nano 7(3), 724–752 (2020)CrossRef L. Wang et al., Layered structure-based materials: challenges and opportunities for radionuclide sequestration. Environ. Sci. Nano 7(3), 724–752 (2020)CrossRef
98.
Zurück zum Zitat L. Ding et al., Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 3(4), 296–302 (2020)CrossRef L. Ding et al., Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 3(4), 296–302 (2020)CrossRef
100.
Zurück zum Zitat H. Zhou et al., Water permeability in MXene membranes: process matters. Chin. Chem. Lett. 31(6), 1665–1669 (2020)CrossRef H. Zhou et al., Water permeability in MXene membranes: process matters. Chin. Chem. Lett. 31(6), 1665–1669 (2020)CrossRef
101.
Zurück zum Zitat S. Jiang et al., Synthesis of polyurea from 1, 6-hexanediamine with CO2 through a two-step polymerization. Green Energy Environ. 2(4), 370–376 (2017)CrossRef S. Jiang et al., Synthesis of polyurea from 1, 6-hexanediamine with CO2 through a two-step polymerization. Green Energy Environ. 2(4), 370–376 (2017)CrossRef
102.
Zurück zum Zitat Y. Chen, et al., CO2 capture and conversion to value-added products promoted by MXene-based materials. Green Energy Environ. (2020) Y. Chen, et al., CO2 capture and conversion to value-added products promoted by MXene-based materials. Green Energy Environ. (2020)
103.
Zurück zum Zitat M. He, Y. Sun, B. Han, Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem. Int. Ed. 52(37), 9620–9633 (2013)CrossRef M. He, Y. Sun, B. Han, Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem. Int. Ed. 52(37), 9620–9633 (2013)CrossRef
104.
Zurück zum Zitat D. Voiry et al., Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2(1), 1–17 (2018)CrossRef D. Voiry et al., Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2(1), 1–17 (2018)CrossRef
105.
Zurück zum Zitat L. Zhang et al., Nano-designed semiconductors for electro-and photoelectro-catalytic conversion of carbon dioxide. Chem. Soc. Rev. 47(14), 5423–5443 (2018)CrossRef L. Zhang et al., Nano-designed semiconductors for electro-and photoelectro-catalytic conversion of carbon dioxide. Chem. Soc. Rev. 47(14), 5423–5443 (2018)CrossRef
106.
Zurück zum Zitat C. Yoo, Y.-E. Kim, Y. Lee, Selective transformation of CO2 to CO at a single nickel center. Acc. Chem. Res. 51(5), 1144–1152 (2018)CrossRef C. Yoo, Y.-E. Kim, Y. Lee, Selective transformation of CO2 to CO at a single nickel center. Acc. Chem. Res. 51(5), 1144–1152 (2018)CrossRef
107.
Zurück zum Zitat D.M. Weekes et al., Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51(4), 910–918 (2018)CrossRef D.M. Weekes et al., Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51(4), 910–918 (2018)CrossRef
108.
Zurück zum Zitat C. Giordano et al., Metal nitride and metal carbide nanoparticles by a soft urea pathway. Chem. Mater. 21(21), 5136–5144 (2009)CrossRef C. Giordano et al., Metal nitride and metal carbide nanoparticles by a soft urea pathway. Chem. Mater. 21(21), 5136–5144 (2009)CrossRef
109.
Zurück zum Zitat Á. Morales-García et al., CO2 abatement using two-dimensional MXene carbides. J. Mater. Chem. A 6(8), 3381–3385 (2018)CrossRef Á. Morales-García et al., CO2 abatement using two-dimensional MXene carbides. J. Mater. Chem. A 6(8), 3381–3385 (2018)CrossRef
110.
Zurück zum Zitat B. Wang et al., Carbon dioxide adsorption of two-dimensional carbide MXenes. J. Adv. Ceram. 7(3), 237–245 (2018)MathSciNetCrossRef B. Wang et al., Carbon dioxide adsorption of two-dimensional carbide MXenes. J. Adv. Ceram. 7(3), 237–245 (2018)MathSciNetCrossRef
111.
Zurück zum Zitat S. Jin et al., Carbon dioxide adsorption of two-dimensional Mo2C MXene. Diam. Relat. Mater. 128, 109277 (2022)CrossRef S. Jin et al., Carbon dioxide adsorption of two-dimensional Mo2C MXene. Diam. Relat. Mater. 128, 109277 (2022)CrossRef
112.
Zurück zum Zitat K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985)CrossRef K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985)CrossRef
113.
Zurück zum Zitat M. Kruk et al., Characterization of MCM-48 silicas with tailored pore sizes synthesized via a highly efficient procedure. Chem. Mater. 12(5), 1414–1421 (2000)CrossRef M. Kruk et al., Characterization of MCM-48 silicas with tailored pore sizes synthesized via a highly efficient procedure. Chem. Mater. 12(5), 1414–1421 (2000)CrossRef
114.
Zurück zum Zitat M. Park, S. Komarneni, Stepwise functionalization of mesoporous crystalline silica materials. Microporous Mesoporous Mater. 25(1–3), 75–80 (1998)CrossRef M. Park, S. Komarneni, Stepwise functionalization of mesoporous crystalline silica materials. Microporous Mesoporous Mater. 25(1–3), 75–80 (1998)CrossRef
115.
Zurück zum Zitat A. Kurlov et al., Exploiting two-dimensional morphology of molybdenum oxycarbide to enable efficient catalytic dry reforming of methane. Nat. Commun. 11(1), 1–11 (2020)CrossRef A. Kurlov et al., Exploiting two-dimensional morphology of molybdenum oxycarbide to enable efficient catalytic dry reforming of methane. Nat. Commun. 11(1), 1–11 (2020)CrossRef
116.
Zurück zum Zitat M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. Chem. Mater. 13(10), 3169–3183 (2001)CrossRef M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. Chem. Mater. 13(10), 3169–3183 (2001)CrossRef
117.
Zurück zum Zitat A.A. Shamsabadi et al., Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2Tx MXene Nanosheets. ACS Appl. Mater. Interfaces 12(3), 3984–3992 (2019)CrossRef A.A. Shamsabadi et al., Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2Tx MXene Nanosheets. ACS Appl. Mater. Interfaces 12(3), 3984–3992 (2019)CrossRef
118.
Zurück zum Zitat M.S. Boutilier et al., Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. ACS Nano 8(1), 841–849 (2014)CrossRef M.S. Boutilier et al., Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. ACS Nano 8(1), 841–849 (2014)CrossRef
119.
Zurück zum Zitat S.J. Kim et al., Metallic Ti3C2T x MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018)CrossRef S.J. Kim et al., Metallic Ti3C2T x MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018)CrossRef
120.
Zurück zum Zitat L. Ding et al., MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9(1), 1–7 (2018)MathSciNetCrossRef L. Ding et al., MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9(1), 1–7 (2018)MathSciNetCrossRef
121.
Zurück zum Zitat A. Ali Khan, M. Tahir, Construction of an S-Scheme heterojunction with oxygen-vacancy-rich trimetallic CoAlLa-LDH anchored on titania-sandwiched Ti3C2 multilayers for boosting photocatalytic CO2 reduction under visible light. Ind. Eng. Chem. Res. 60(45), 16201–16223 (2021) A. Ali Khan, M. Tahir, Construction of an S-Scheme heterojunction with oxygen-vacancy-rich trimetallic CoAlLa-LDH anchored on titania-sandwiched Ti3C2 multilayers for boosting photocatalytic CO2 reduction under visible light. Ind. Eng. Chem. Res. 60(45), 16201–16223 (2021)
122.
Zurück zum Zitat Y. Chen, E.A. Silva, Smart transport: a comparative analysis using the most used indicators in the literature juxtaposed with interventions in English metropolitan areas. Transp. Res. Interdiscip. Perspect. 10, 100371 (2021) Y. Chen, E.A. Silva, Smart transport: a comparative analysis using the most used indicators in the literature juxtaposed with interventions in English metropolitan areas. Transp. Res. Interdiscip. Perspect. 10, 100371 (2021)
123.
Zurück zum Zitat H. Wang, Q. Tang, Z. Wu, Construction of few-layer Ti3C2 MXene and boron-doped g-C3N4 for enhanced photocatalytic CO2 reduction. ACS Sustain. Chem. Eng. 9(25), 8425–8434 (2021)CrossRef H. Wang, Q. Tang, Z. Wu, Construction of few-layer Ti3C2 MXene and boron-doped g-C3N4 for enhanced photocatalytic CO2 reduction. ACS Sustain. Chem. Eng. 9(25), 8425–8434 (2021)CrossRef
124.
Zurück zum Zitat A. Pan et al., CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction. J. Phys. Chem. Lett. 10(21), 6590–6597 (2019)CrossRef A. Pan et al., CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction. J. Phys. Chem. Lett. 10(21), 6590–6597 (2019)CrossRef
125.
Zurück zum Zitat M. Que et al., Anchoring of formamidinium lead bromide quantum dots on Ti3C2 nanosheets for efficient photocatalytic reduction of CO2. ACS Appl. Mater. Interfaces 13(5), 6180–6187 (2021)CrossRef M. Que et al., Anchoring of formamidinium lead bromide quantum dots on Ti3C2 nanosheets for efficient photocatalytic reduction of CO2. ACS Appl. Mater. Interfaces 13(5), 6180–6187 (2021)CrossRef
126.
Zurück zum Zitat X. Sang et al., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10(10), 9193–9200 (2016)CrossRef X. Sang et al., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10(10), 9193–9200 (2016)CrossRef
127.
Zurück zum Zitat W. Cui et al., Atomic defects, functional groups and properties in MXenes. Chin. Chem. Lett. 32(1), 339–344 (2021)CrossRef W. Cui et al., Atomic defects, functional groups and properties in MXenes. Chin. Chem. Lett. 32(1), 339–344 (2021)CrossRef
128.
Zurück zum Zitat V. Parey et al., High-throughput screening of atomic defects in MXenes for CO2 capture, activation, and dissociation. ACS Appl. Mater. Interfaces 13(30), 35585–35594 (2021)CrossRef V. Parey et al., High-throughput screening of atomic defects in MXenes for CO2 capture, activation, and dissociation. ACS Appl. Mater. Interfaces 13(30), 35585–35594 (2021)CrossRef
129.
Zurück zum Zitat R. Khaledialidusti, A.K. Mishra, A. Barnoush, Atomic defects in monolayer ordered double transition metal carbide (Mo2TiC2Tx) MXene and CO2 adsorption. J. Mater. Chem. C 8(14), 4771–4779 (2020)CrossRef R. Khaledialidusti, A.K. Mishra, A. Barnoush, Atomic defects in monolayer ordered double transition metal carbide (Mo2TiC2Tx) MXene and CO2 adsorption. J. Mater. Chem. C 8(14), 4771–4779 (2020)CrossRef
130.
Zurück zum Zitat Q. Wang et al., Recent progress in thermal conversion of CO2 via single-atom site catalysis. Small Struct. 3(9), 2200059 (2022)CrossRef Q. Wang et al., Recent progress in thermal conversion of CO2 via single-atom site catalysis. Small Struct. 3(9), 2200059 (2022)CrossRef
131.
Zurück zum Zitat J. Jones et al., Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353(6295), 150–154 (2016)CrossRef J. Jones et al., Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353(6295), 150–154 (2016)CrossRef
132.
Zurück zum Zitat D. Zhao et al., MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 141(9), 4086–4093 (2019)CrossRef D. Zhao et al., MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 141(9), 4086–4093 (2019)CrossRef
133.
Zurück zum Zitat N. Li et al., Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano 11(11), 10825–10833 (2017)CrossRef N. Li et al., Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano 11(11), 10825–10833 (2017)CrossRef
134.
Zurück zum Zitat A.D. Handoko et al., Establishing new scaling relations on two-dimensional MXenes for CO2 electroreduction. J. Mater. Chem. A 6(44), 21885–21890 (2018)CrossRef A.D. Handoko et al., Establishing new scaling relations on two-dimensional MXenes for CO2 electroreduction. J. Mater. Chem. A 6(44), 21885–21890 (2018)CrossRef
135.
Zurück zum Zitat D. Yang et al., Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat. Commun. 10(1), 1–9 (2019) D. Yang et al., Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat. Commun. 10(1), 1–9 (2019)
136.
Zurück zum Zitat Q. Zhu et al., Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture. Angew. Chem. 128(31), 9158–9162 (2016)CrossRef Q. Zhu et al., Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture. Angew. Chem. 128(31), 9158–9162 (2016)CrossRef
137.
Zurück zum Zitat Q. Zhu et al., Hollow metal–organic-framework-mediated in situ architecture of copper dendrites for enhanced CO2 electroreduction. Angew. Chem. 132(23), 8981–8986 (2020)CrossRef Q. Zhu et al., Hollow metal–organic-framework-mediated in situ architecture of copper dendrites for enhanced CO2 electroreduction. Angew. Chem. 132(23), 8981–8986 (2020)CrossRef
138.
Zurück zum Zitat A.D. Handoko et al., Two-dimensional titanium and molybdenum carbide MXenes as electrocatalysts for CO2 reduction. Iscience 23(6), 101181 (2020)CrossRef A.D. Handoko et al., Two-dimensional titanium and molybdenum carbide MXenes as electrocatalysts for CO2 reduction. Iscience 23(6), 101181 (2020)CrossRef
139.
Zurück zum Zitat K. Kannan et al., Fabrication of ZnO-Fe-MXene based nanocomposites for efficient CO2 reduction. Catalysts 10(5), 549 (2020)CrossRef K. Kannan et al., Fabrication of ZnO-Fe-MXene based nanocomposites for efficient CO2 reduction. Catalysts 10(5), 549 (2020)CrossRef
140.
Zurück zum Zitat D. Qu et al., Nitrogen doping and titanium vacancies synergistically promote CO2 fixation in seawater. Nanoscale 12(33), 17191–17195 (2020)CrossRef D. Qu et al., Nitrogen doping and titanium vacancies synergistically promote CO2 fixation in seawater. Nanoscale 12(33), 17191–17195 (2020)CrossRef
Metadaten
Titel
Application of MXenes in Water Purification, CO2 Capture and Conversion
verfasst von
Jonathan Tersur Orasugh
Lesego Tabea Temane
Suprakas Sinha Ray
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-28756-5_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.