Skip to main content
Erschienen in: Russian Journal of Nondestructive Testing 10/2021

01.10.2021 | GENERAL FLAW DETECTION ISSUES

Application of Non-Destructive Testing for Condition Analysis, Repair of Damages and Integrity Assessment of Vital Steel Structures

verfasst von: Miodrag Arsić, Dušan Arsić, Željko Flajs, Aleksandar Grbović, Aleksandar Todić

Erschienen in: Russian Journal of Nondestructive Testing | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Loads at vital steel structures occur during their production and assembly (residual stresses), during the execution of functional tasks in exploitation (stationary and dynamic loads) and during the disturbed process of exploitation (non-stationary dynamic loads). Considering the fact that stress concentrators, corrosion and unpredictable effects that occur during exploitation must be taken into account as well, it is clear that loading of vital structures during the design phase can not be represented with a model in which the parameters change uniformly. Therefore only experimental non-destructive tests performed at large steel structures during exploitation enable the assessment of their current condition, need for particular repairs and assessment of integrity. In that way the data necessary for determination of causes of degradation of material and welded joints at structures, for the evaluation of mutual influence of equipment parts, as well as for determination of functionality and reliability of operation of drive systems. This primarily refers to vital steel structures of bucket-wheel excavators, dredgers and cranes, as well as to vital steel structures at hydroelectric equipment, thermal power plant equipment, bridges etc. This paper presents the analysis of causes for the occurrence of damages at the support structure of the boom of the bucket-wheel excavator, which is operating at the open pit coal mine near Kostolac (Serbia), that was executed on the basis of non-destructive tests. The paper also contains the procedure for the repair of damaged structure through the application of adequate welding, performed at existing and newly produced components, and the assessment of structural integrity after the repair based on non-compliances detected during the design process, as well as during the making of the support structure of the bucket-wheel excavator boom due to inadequate radiuses defined during the processes of design and production and due to the existence of flaws on the surface and within welded joints.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Arsić, M., Bošnjak, S., Zrnić, N., Sedmak, A., and Gnjatović, N., Bucket wheel failure caused by residual stresses in welded joints, Eng. Fail. Anal., 2011, vol. 18, no. 2, pp. 700–712.CrossRef Arsić, M., Bošnjak, S., Zrnić, N., Sedmak, A., and Gnjatović, N., Bucket wheel failure caused by residual stresses in welded joints, Eng. Fail. Anal., 2011, vol. 18, no. 2, pp. 700–712.CrossRef
2.
Zurück zum Zitat Bošnjak, S., Arsić, M., Savićević, S., Milojević, G., and Arsić, D., Fracture analysis of the pulley of a bucket wheel boom hoist system, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 2016 vol. 18, no. 2, pp. 155–163.https://doi.org/10.17531/ein.2016.2.1 Bošnjak, S., Arsić, M., Savićević, S., Milojević, G., and Arsić, D., Fracture analysis of the pulley of a bucket wheel boom hoist system, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 2016 vol. 18, no. 2, pp. 155–163.https://​doi.​org/​10.​17531/​ein.​2016.​2.​1
3.
Zurück zum Zitat Bošnjak, S., Arsić, M., Gnjatović, N., Milenović, I., and Arsić, D., Failure of the bucket wheel excavator buckets, Eng. Fail. Anal., 2018, vol. 84, pp. 247–261.CrossRef Bošnjak, S., Arsić, M., Gnjatović, N., Milenović, I., and Arsić, D., Failure of the bucket wheel excavator buckets, Eng. Fail. Anal., 2018, vol. 84, pp. 247–261.CrossRef
4.
Zurück zum Zitat Arsić, D., Nikolić, R., Lazić, V., Arsić, A., Savić, Z., Djačić, S., and Hadzima, B., Analysis of the cause of the girth gear tooth fracture occurrence at the bucket wheel excavator, Transp. Res. Procedia, 2019, vol. 40, pp. 413–418.CrossRef Arsić, D., Nikolić, R., Lazić, V., Arsić, A., Savić, Z., Djačić, S., and Hadzima, B., Analysis of the cause of the girth gear tooth fracture occurrence at the bucket wheel excavator, Transp. Res. Procedia, 2019, vol. 40, pp. 413–418.CrossRef
5.
Zurück zum Zitat Gašić, V., Arsić, A., and Flajs, Ž., Experimental study on the stresses at the I-beam end-plate moment connection, Struct. Integr. Life, 2019, vol. 19, no. 1, pp. 53–57. Gašić, V., Arsić, A., and Flajs, Ž., Experimental study on the stresses at the I-beam end-plate moment connection, Struct. Integr. Life, 2019, vol. 19, no. 1, pp. 53–57.
8.
Zurück zum Zitat Yin, Y., Grondin, G.Y., Obaia, K.H., and Elwi, A.E., Fatigue life prediction of heavy mining equipment. Part 1: Fatigue load assessment and crack growth rate tests, J. Construct. Steel. Res., 2007, vol. 63, pp. 1494–1505.CrossRef Yin, Y., Grondin, G.Y., Obaia, K.H., and Elwi, A.E., Fatigue life prediction of heavy mining equipment. Part 1: Fatigue load assessment and crack growth rate tests, J. Construct. Steel. Res., 2007, vol. 63, pp. 1494–1505.CrossRef
9.
Zurück zum Zitat Yin, Y., Grondin, G.Y., Obaia, K.H., and Elwi, A.E., Fatigue life prediction of heavy mining equipment. Part 2: Behaviour of corner crack in steel welded box section and remaining fatigue life determination, J. Construct. Steel. Res., 2008, vol. 64, pp. 62–71.CrossRef Yin, Y., Grondin, G.Y., Obaia, K.H., and Elwi, A.E., Fatigue life prediction of heavy mining equipment. Part 2: Behaviour of corner crack in steel welded box section and remaining fatigue life determination, J. Construct. Steel. Res., 2008, vol. 64, pp. 62–71.CrossRef
10.
Zurück zum Zitat Risteiu, M., Ileana, I., and Duma, S., New approaches in heavy duties industrial processes monitoring by using smart sensors, Acta Univ. Apulensis, 2006, vol. 12, pp. 80–92. Risteiu, M., Ileana, I., and Duma, S., New approaches in heavy duties industrial processes monitoring by using smart sensors, Acta Univ. Apulensis, 2006, vol. 12, pp. 80–92.
11.
Zurück zum Zitat Arsić, D., Gnjatović, N., Sedmak, S., Arsić, A., and Uhričik, M., Integrity assessment and determination of residual fatigue life of vital parts of bucket-wheel excavator operating under dynamic loads, Eng. Fail. Anal., 2019, vol. 105, pp. 182–195.CrossRef Arsić, D., Gnjatović, N., Sedmak, S., Arsić, A., and Uhričik, M., Integrity assessment and determination of residual fatigue life of vital parts of bucket-wheel excavator operating under dynamic loads, Eng. Fail. Anal., 2019, vol. 105, pp. 182–195.CrossRef
12.
Zurück zum Zitat Bartelmus, W. and Zimroz, R., A new feature for monitoring the condition of gearboxes in non-stationary operating conditions, Mech. Syst. Signal Process., 2009, vol. 23, no. 15, pp. 28–34. Bartelmus, W. and Zimroz, R., A new feature for monitoring the condition of gearboxes in non-stationary operating conditions, Mech. Syst. Signal Process., 2009, vol. 23, no. 15, pp. 28–34.
13.
Zurück zum Zitat EN 10025-2. Hot rolled products of structural steels—Part 2: Technical delivery conditions for non-alloy structural steels, 2011. EN 10025-2. Hot rolled products of structural steels—Part 2: Technical delivery conditions for non-alloy structural steels, 2011.
14.
Zurück zum Zitat EN 13018. Non-destructive testing—Visual testing—General principles, 2001. EN 13018. Non-destructive testing—Visual testing—General principles, 2001.
15.
Zurück zum Zitat EN ISO 3452-1. Non-destructive testing—Penetrant testing—Part 1: General principles, 2013. EN ISO 3452-1. Non-destructive testing—Penetrant testing—Part 1: General principles, 2013.
16.
Zurück zum Zitat EN 499, E 42 2 Mo B 42. Welding consumables. Covered electrodes for manual metal arc welding of non alloy and fine grain steels, Classification, 1995. EN 499, E 42 2 Mo B 42. Welding consumables. Covered electrodes for manual metal arc welding of non alloy and fine grain steels, Classification, 1995.
17.
Zurück zum Zitat EN ISO 17640. Non-destructive testing of welds. Ultrasonic testing. Techniques, testing levels, and assessment, 2018. EN ISO 17640. Non-destructive testing of welds. Ultrasonic testing. Techniques, testing levels, and assessment, 2018.
19.
Zurück zum Zitat Hertzberg, R., Deformation and Fracture Mechanics of Engineering Materials, New York: Wiley, 1995. Hertzberg, R., Deformation and Fracture Mechanics of Engineering Materials, New York: Wiley, 1995.
20.
Zurück zum Zitat Arsić, M., Savić, Z., Sedmak, A., Bosnjak, S., and Sedmak, A., Experimental examination of fatigue life of welded joint with stress concentration, Fratt. Integr. Strutt., 2016, vol. 10, no. 36, pp. 27–35.CrossRef Arsić, M., Savić, Z., Sedmak, A., Bosnjak, S., and Sedmak, A., Experimental examination of fatigue life of welded joint with stress concentration, Fratt. Integr. Strutt., 2016, vol. 10, no. 36, pp. 27–35.CrossRef
21.
Zurück zum Zitat Mijatović, T., Manjgo, M., Burzić, M., Čolić, K., Burzić, Z., and T. Vuherer, Structural integrity assessment from the aspect of fracture mechanics, Structural Integrity and Life, 2019, vol. 19, no. 2, pp. 121–124. Mijatović, T., Manjgo, M., Burzić, M., Čolić, K., Burzić, Z., and T. Vuherer, Structural integrity assessment from the aspect of fracture mechanics, Structural Integrity and Life, 2019, vol. 19, no. 2, pp. 121–124.
Metadaten
Titel
Application of Non-Destructive Testing for Condition Analysis, Repair of Damages and Integrity Assessment of Vital Steel Structures
verfasst von
Miodrag Arsić
Dušan Arsić
Željko Flajs
Aleksandar Grbović
Aleksandar Todić
Publikationsdatum
01.10.2021
Verlag
Pleiades Publishing
Erschienen in
Russian Journal of Nondestructive Testing / Ausgabe 10/2021
Print ISSN: 1061-8309
Elektronische ISSN: 1608-3385
DOI
https://doi.org/10.1134/S1061830921100053

Weitere Artikel der Ausgabe 10/2021

Russian Journal of Nondestructive Testing 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.