Skip to main content

2020 | OriginalPaper | Buchkapitel

6. Application of Vortex Theory

verfasst von : A. P. Schaffarczyk

Erschienen in: Introduction to Wind Turbine Aerodynamics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It was already mentioned in Chap. 3 that Saffman (Vortex dynamics, 1992, [27]) quoted Küchemann, who said that
vortices are the sinews and muscles of fluid motion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In fact this is a distribution (sometimes also called a generalized function) with the property that
$$\begin{aligned} \forall f \in {\mathscr {S}}: \int \delta (x) f(x) \; dx = f(0)\qquad \qquad \qquad {(6.2)} \end{aligned}$$
f(x) is called a test function. \({\mathscr {S}}\) is the set of test functions named after Laurent Schwartz, Field’s medal winner of 1950.
 
2
Von Kuik [15], [20] in Chap. 5 recently pointed out how to combine non-conservative forces with the conventional lifting-line Helmholtz–Kelvin approach.
 
3
The most famous outcome was a quantitative description of the phenomenon of induced drag \(c_{D,ind} = c_L^2/ (\pi AR)\) which is minimized by an elliptical distribution of lift only. Corten [8] shows similarities and differences in the case of wind turbines. He found an AOA correction of \(c_L /(8 \pi ) \cdot (B c/r) \cdot \lambda _r.\)
 
Literatur
1.
Zurück zum Zitat Abramowitz M, Stegun I (1964) Handbook of mathematical functions. Dover Publications, MineolaMATH Abramowitz M, Stegun I (1964) Handbook of mathematical functions. Dover Publications, MineolaMATH
2.
3.
Zurück zum Zitat Churchfield M, Lee S, Motuarty P (2012) Overview of the simulator for wind farm application (SOWFA), NREL Churchfield M, Lee S, Motuarty P (2012) Overview of the simulator for wind farm application (SOWFA), NREL
4.
Zurück zum Zitat Conway JT (1995) Analytical solutions for the actuator disk with variable radial distribution of load. J Fluid Mech 297:327–355 Conway JT (1995) Analytical solutions for the actuator disk with variable radial distribution of load. J Fluid Mech 297:327–355
5.
Zurück zum Zitat Conway JT (1998) Exact actuator disk solution for non-uniform heavy loading and slipstream contraction. J Fluid Mech 365:235–267 Conway JT (1998) Exact actuator disk solution for non-uniform heavy loading and slipstream contraction. J Fluid Mech 365:235–267
6.
Zurück zum Zitat Conway JT (1998) Prediction of the performance of heavily loaded propellers with slipstream contraction. CASJ 44:169–174 Conway JT (1998) Prediction of the performance of heavily loaded propellers with slipstream contraction. CASJ 44:169–174
7.
Zurück zum Zitat Conway JT (2002) Application of an exact nonlinear actuator disk theory to wind turbines. In: Proceedings of the ICNPAA, Melbourne, Florida, USA Conway JT (2002) Application of an exact nonlinear actuator disk theory to wind turbines. In: Proceedings of the ICNPAA, Melbourne, Florida, USA
8.
Zurück zum Zitat Corten G (2001) Aspect ratio correction for wind turbine blades. In: Proceedings of the IEA joint action, aerodynamics of wind turbines, Athens, Greece Corten G (2001) Aspect ratio correction for wind turbine blades. In: Proceedings of the IEA joint action, aerodynamics of wind turbines, Athens, Greece
9.
Zurück zum Zitat von Eitzen A (2018) Optimum circulation distribution on wind turbine rotor using SOWFA code. MSc thesis, The Danish Technical University, Lyngby, Denmark von Eitzen A (2018) Optimum circulation distribution on wind turbine rotor using SOWFA code. MSc thesis, The Danish Technical University, Lyngby, Denmark
10.
Zurück zum Zitat Fukumoto Y, Okulov V (2005) The velocity field induced by a helical vortex tube. Phys Fluids 17:107101–107101-19 Fukumoto Y, Okulov V (2005) The velocity field induced by a helical vortex tube. Phys Fluids 17:107101–107101-19
11.
Zurück zum Zitat Goldstein S (1929) On the vortex theory of screw propellers. Proc R Soc Ser A 123:440–465 Goldstein S (1929) On the vortex theory of screw propellers. Proc R Soc Ser A 123:440–465
12.
Zurück zum Zitat Helmholtz H (1858) Ueber Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen (On integrals of the hydrodynamic equations which correspond to vortex motions). Crelle-Borchardt J f d reine und ang Mathematik LV:25–55 (Berlin, Preussen) (in German) Helmholtz H (1858) Ueber Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen (On integrals of the hydrodynamic equations which correspond to vortex motions). Crelle-Borchardt J f d reine und ang Mathematik LV:25–55 (Berlin, Preussen) (in German)
13.
Zurück zum Zitat Holme O (1976) A contribution to the aerodynamic theory of the vertical-axis wind turbine. In: Proceedings of the international symposium on wind energy systems, Cambridge, UK, pp C4-55–C4-72 Holme O (1976) A contribution to the aerodynamic theory of the vertical-axis wind turbine. In: Proceedings of the international symposium on wind energy systems, Cambridge, UK, pp C4-55–C4-72
14.
Zurück zum Zitat Joukovski N (1929) Théorie tourbillonnaire de L’hélice. Gauthier-Villars, ParisMATH Joukovski N (1929) Théorie tourbillonnaire de L’hélice. Gauthier-Villars, ParisMATH
15.
Zurück zum Zitat van Kuik G (2013) On the generation of vorticity in rotor and disc flows. In: Proceedings of the ICOWES2013, Copenhagen, Denmark van Kuik G (2013) On the generation of vorticity in rotor and disc flows. In: Proceedings of the ICOWES2013, Copenhagen, Denmark
16.
Zurück zum Zitat Leweke et al T (2013) Local and global pairing in helical vortex systems. In: Proceedings of the ICOWES2013, Copenhagen, Denmark Leweke et al T (2013) Local and global pairing in helical vortex systems. In: Proceedings of the ICOWES2013, Copenhagen, Denmark
17.
Zurück zum Zitat Oeye S (1990) A simple vortex model. In: Proceedings of the 3rd IEAwind Annex XI, meeting, Harwell, UK Oeye S (1990) A simple vortex model. In: Proceedings of the 3rd IEAwind Annex XI, meeting, Harwell, UK
19.
Zurück zum Zitat Okulov VL (2010) Private communication Okulov VL (2010) Private communication
20.
Zurück zum Zitat Okulov VL, Sørensen JN (2007) Stability of helical tip vortices in a rotor far wake. J Fluid Mech 576:1–25MathSciNetCrossRef Okulov VL, Sørensen JN (2007) Stability of helical tip vortices in a rotor far wake. J Fluid Mech 576:1–25MathSciNetCrossRef
21.
Zurück zum Zitat Okulov VL, Sørensen JN (2008) Refined Betz limit for rotors with a finite number of blades. Wind Energy 11:415–426 Okulov VL, Sørensen JN (2008) Refined Betz limit for rotors with a finite number of blades. Wind Energy 11:415–426
22.
Zurück zum Zitat Okulov VL, Sørensen JN (2010) Maximum efficiency of wind turbine rotors using Joukowsky and Betz approaches. J Fluid Mech 649:497–508 Okulov VL, Sørensen JN (2010) Maximum efficiency of wind turbine rotors using Joukowsky and Betz approaches. J Fluid Mech 649:497–508
23.
Zurück zum Zitat Okulov VL, Sørensen JN, van Kuik GAM (2013) Development of the optimum rotor theories. R&C Dynamics, Moscow-Izhevsk Okulov VL, Sørensen JN, van Kuik GAM (2013) Development of the optimum rotor theories. R&C Dynamics, Moscow-Izhevsk
24.
Zurück zum Zitat Prandtl L (1918) Tragflügeltheorie. I. Mitteilung. Nachr d Königl Gesell Wiss zu Göttingen Math-phys Kl 451-477 Prandtl L (1918) Tragflügeltheorie. I. Mitteilung. Nachr d Königl Gesell Wiss zu Göttingen Math-phys Kl 451-477
25.
Zurück zum Zitat Prandtl L (1919) Tragflügeltheorie. II. Mitteilung. Nachr d Königl Gesell Wiss zu Göttingen Math-phys Kl 107–137 Prandtl L (1919) Tragflügeltheorie. II. Mitteilung. Nachr d Königl Gesell Wiss zu Göttingen Math-phys Kl 107–137
26.
Zurück zum Zitat Réthoré P-E, Sørensen NN, Zahle F (2010) Validation of an actuator disc model. In: Proceedings of the EWEC 2010, Brussels, Belgium Réthoré P-E, Sørensen NN, Zahle F (2010) Validation of an actuator disc model. In: Proceedings of the EWEC 2010, Brussels, Belgium
27.
Zurück zum Zitat Saffman PG (1992) Vortex dynamics. Cambridge University Press, CambridgeMATH Saffman PG (1992) Vortex dynamics. Cambridge University Press, CambridgeMATH
28.
Zurück zum Zitat Segalini A, Alfredson PH (2013) A simplified vortex model of propeller and wind-turbine wakes. J Fluid Mech 725:91–116MathSciNetCrossRef Segalini A, Alfredson PH (2013) A simplified vortex model of propeller and wind-turbine wakes. J Fluid Mech 725:91–116MathSciNetCrossRef
29.
Zurück zum Zitat Schaffarczyk AP (2011) Komponentenentwicklung und Konstruktion WIKO Urban 5, Aerodynamische Auslegung des Diffusors, des Blattes und eines passiven Pitch-Systems (Design and development of WIKO Urban 5: aerodynamic design of the diffusors, the blade and a passive pitch system), internal confidential report No. 81, Kiel, Germany (in German) Schaffarczyk AP (2011) Komponentenentwicklung und Konstruktion WIKO Urban 5, Aerodynamische Auslegung des Diffusors, des Blattes und eines passiven Pitch-Systems (Design and development of WIKO Urban 5: aerodynamic design of the diffusors, the blade and a passive pitch system), internal confidential report No. 81, Kiel, Germany (in German)
30.
Zurück zum Zitat Schaffarczyk AP, Conway JT (2000) Comparison of nonlinear actuator disk theory with numerical integration including viscous effects. CASJ 46:209–215 Schaffarczyk AP, Conway JT (2000) Comparison of nonlinear actuator disk theory with numerical integration including viscous effects. CASJ 46:209–215
31.
Zurück zum Zitat Schaffarczyk AP, Conway JT (2000) Application of a nonlinear actuator disk theory to wind turbines. In: Proceedings of the 14th symposium on IEA joint action aerodynamics of wind turbines, Boulder, Co, USA Schaffarczyk AP, Conway JT (2000) Application of a nonlinear actuator disk theory to wind turbines. In: Proceedings of the 14th symposium on IEA joint action aerodynamics of wind turbines, Boulder, Co, USA
32.
Zurück zum Zitat Strickland JH, Webster BT, Nguyen T (1979) A vortex model of the Darrieus turbine: an analytical and experimental study, Paper 79-WA/FE-6. ASME, New York Strickland JH, Webster BT, Nguyen T (1979) A vortex model of the Darrieus turbine: an analytical and experimental study, Paper 79-WA/FE-6. ASME, New York
33.
Zurück zum Zitat Tao T (2016) Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation. Ann PDE 2:9 Tao T (2016) Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation. Ann PDE 2:9
34.
Zurück zum Zitat Theodorsen T (1948) Theory of propellers. McGraw-Hill, New YorkMATH Theodorsen T (1948) Theory of propellers. McGraw-Hill, New YorkMATH
35.
Zurück zum Zitat Tibery CL, Wrench JW (1964) Tables of the Goldstein factor. Applied mathematics laboratory report, vol 1534. D. Taylor Model Basin, Washington Tibery CL, Wrench JW (1964) Tables of the Goldstein factor. Applied mathematics laboratory report, vol 1534. D. Taylor Model Basin, Washington
36.
Zurück zum Zitat Wald QR (2006) The aerodynamics of propellers. Prog Aerosp Sci 42:85–128CrossRef Wald QR (2006) The aerodynamics of propellers. Prog Aerosp Sci 42:85–128CrossRef
37.
Zurück zum Zitat Wu TY (1964) Flow through a heavily loaded actuator disc. Schiffstechnik 9(47):134–138 Wu TY (1964) Flow through a heavily loaded actuator disc. Schiffstechnik 9(47):134–138
38.
Zurück zum Zitat Wu J-Z, Ma H-Y, Zhou M-D (2006) Vorticity and vortex dynamics. Springer, BerlinCrossRef Wu J-Z, Ma H-Y, Zhou M-D (2006) Vorticity and vortex dynamics. Springer, BerlinCrossRef
39.
Zurück zum Zitat Young LA (2003) Vortex core size in the rotor near-wake, NASA/TM-2003-212275. Ames Research Center, Moffett Field, CA, USA Young LA (2003) Vortex core size in the rotor near-wake, NASA/TM-2003-212275. Ames Research Center, Moffett Field, CA, USA
Metadaten
Titel
Application of Vortex Theory
verfasst von
A. P. Schaffarczyk
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-41028-5_6