Skip to main content

2022 | OriginalPaper | Buchkapitel

10. Applications of 1D Mesoporous Inorganic Nanomaterials as Sensors

verfasst von : Huilin Hou, Linli Xu, Weiyou Yang, Wai-Yeung Wong

Erschienen in: One-Dimensional Mesoporous Inorganic Nanomaterials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

At present, it is a hot topic to develop chemical sensors that have wide application potential (Kong et al. in Science 287:622–625, 2000;Kreno et al. in Chem Rev 112:1105–1125, 2012;). For enhancing the sensing properties, the nanostructures-based sensor devices are extensively studied since they have greater surface areas than the traditional bulks (Robinson et al. in Nano Lett 6:1747–1751, 2006;Huang and Choi in Sens Actuators B 122:659–671, 2007;Yavari and Koratkar in J Phys Chem Lett 3:1746–1753, 2012;).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000)CrossRef J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000)CrossRef
2.
Zurück zum Zitat L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-Organic framework materials as chemical sensors. Chem Rev. 112(2), 1105–1125 (2012)CrossRef L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-Organic framework materials as chemical sensors. Chem Rev. 112(2), 1105–1125 (2012)CrossRef
3.
Zurück zum Zitat J.A. Robinson, E.S. Snow, ŞC. Bǎdescu, T.L. Reinecke, F.K. Perkins, Role of defects in single-walled carbon nanotube chemical sensors. Nano Lett. 6(8), 1747–1751 (2006)CrossRef J.A. Robinson, E.S. Snow, ŞC. Bǎdescu, T.L. Reinecke, F.K. Perkins, Role of defects in single-walled carbon nanotube chemical sensors. Nano Lett. 6(8), 1747–1751 (2006)CrossRef
4.
Zurück zum Zitat X.-J. Huang, Y.-K. Choi, Chemical sensors based on nanostructured materials. Sens. Actuators B 122(2), 659–671 (2007)CrossRef X.-J. Huang, Y.-K. Choi, Chemical sensors based on nanostructured materials. Sens. Actuators B 122(2), 659–671 (2007)CrossRef
5.
Zurück zum Zitat F. Yavari, N. Koratkar, Graphene-Based chemical sensors. J. Phys. Chem. Lett. 3(13), 1746–1753 (2012)CrossRef F. Yavari, N. Koratkar, Graphene-Based chemical sensors. J. Phys. Chem. Lett. 3(13), 1746–1753 (2012)CrossRef
6.
Zurück zum Zitat N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors. Catal Surv. Asia 7(1), 63–75 (2003)CrossRef N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors. Catal Surv. Asia 7(1), 63–75 (2003)CrossRef
7.
Zurück zum Zitat M.M. Arafat, B. Dinan, S.A. Akbar, A.S.M.A. Haseeb, Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12(6), 7207–7258 (2012)CrossRef M.M. Arafat, B. Dinan, S.A. Akbar, A.S.M.A. Haseeb, Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12(6), 7207–7258 (2012)CrossRef
8.
Zurück zum Zitat A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with pd catalyst particles. Nano. Lett. 5(4), 667–673 (2005)CrossRef A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with pd catalyst particles. Nano. Lett. 5(4), 667–673 (2005)CrossRef
9.
Zurück zum Zitat X.-L. Li, T.-J. Lou, X.-M. Sun, Y.-D. Li, Highly Sensitive WO3 Hollow-Sphere Gas Sensors. Inorg Chem 43(17), 5442–5449 (2004)CrossRef X.-L. Li, T.-J. Lou, X.-M. Sun, Y.-D. Li, Highly Sensitive WO3 Hollow-Sphere Gas Sensors. Inorg Chem 43(17), 5442–5449 (2004)CrossRef
10.
Zurück zum Zitat S. Elouali, L.G. Bloor, R. Binions, I.P. Parkin, C.J. Carmalt, J.A. Darr, Gas sensing with nano-indium oxides (In2O3) Prepared via continuous hydrothermal flow synthesis. Langmuir 28(3), 1879–1885 (2012)CrossRef S. Elouali, L.G. Bloor, R. Binions, I.P. Parkin, C.J. Carmalt, J.A. Darr, Gas sensing with nano-indium oxides (In2O3) Prepared via continuous hydrothermal flow synthesis. Langmuir 28(3), 1879–1885 (2012)CrossRef
11.
Zurück zum Zitat S.K. Lim, S.-H. Hwang, D. Chang, S. Kim, Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor. Sens Actuators B 149(1), 28–33 (2010)CrossRef S.K. Lim, S.-H. Hwang, D. Chang, S. Kim, Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor. Sens Actuators B 149(1), 28–33 (2010)CrossRef
12.
Zurück zum Zitat A. Tricoli, M. Righettoni, A. Teleki, Semiconductor gas sensors: dry synthesis and application. Angew. Chem. Int. Edn. 49(42), 7632–7659 (2010)CrossRef A. Tricoli, M. Righettoni, A. Teleki, Semiconductor gas sensors: dry synthesis and application. Angew. Chem. Int. Edn. 49(42), 7632–7659 (2010)CrossRef
13.
Zurück zum Zitat X. Chen, C.K.Y. Wong, C.A. Yuan, G. Zhang, Nanowire-based gas sensors. Sens Actuators B 177, 178–195 (2013)CrossRef X. Chen, C.K.Y. Wong, C.A. Yuan, G. Zhang, Nanowire-based gas sensors. Sens Actuators B 177, 178–195 (2013)CrossRef
14.
Zurück zum Zitat T. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, Mesoporous materials as gas sensors. Chem. Soc. Rev. 42(9), 4036–4053 (2013)CrossRef T. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, Mesoporous materials as gas sensors. Chem. Soc. Rev. 42(9), 4036–4053 (2013)CrossRef
15.
Zurück zum Zitat D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4(10), 1919–1924 (2004)CrossRef D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4(10), 1919–1924 (2004)CrossRef
16.
Zurück zum Zitat A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, G. Sberveglieri, Controlled growth and sensing properties of In2O3 nanowires. Cryst. Growth Des. 7(12), 2500–3250 (2007)CrossRef A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, G. Sberveglieri, Controlled growth and sensing properties of In2O3 nanowires. Cryst. Growth Des. 7(12), 2500–3250 (2007)CrossRef
17.
Zurück zum Zitat T. Waitz, T. Wagner, T. Sauerwald, C.-D. Kohl, M. Tiemann, Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Adv. Funct. Mater 19(4), 653–661 (2009)CrossRef T. Waitz, T. Wagner, T. Sauerwald, C.-D. Kohl, M. Tiemann, Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Adv. Funct. Mater 19(4), 653–661 (2009)CrossRef
18.
Zurück zum Zitat J. Zhao, M. Zheng, X. Lai, H. Lu, N. Li, Z. Ling, J. Cao, Preparation of mesoporous In2O3 nanorods via a hydrothermal-annealing method and their gas sensing properties. Mater Lett. 75, 126–129 (2012)CrossRef J. Zhao, M. Zheng, X. Lai, H. Lu, N. Li, Z. Ling, J. Cao, Preparation of mesoporous In2O3 nanorods via a hydrothermal-annealing method and their gas sensing properties. Mater Lett. 75, 126–129 (2012)CrossRef
19.
Zurück zum Zitat L. Xu, B. Dong, Y. Wang, X. Bai, Q. Liu, H. Song, Electrospinning preparation and room temperature gas sensing properties of porous In2O3 nanotubes and nanowires. Sens Actuators B 147(2), 531–538 (2010)CrossRef L. Xu, B. Dong, Y. Wang, X. Bai, Q. Liu, H. Song, Electrospinning preparation and room temperature gas sensing properties of porous In2O3 nanotubes and nanowires. Sens Actuators B 147(2), 531–538 (2010)CrossRef
20.
Zurück zum Zitat H. Wu, K. Kan, L. Wang, G. Zhang, Y. Yang, H. Li, L. Jing, P. Shen, L. Li, K. Shi, Electrospinning of mesoporous p-type In2O3/TiO2 composite nanofibers for enhancing NOx gas sensing properties at room temperature. Cryst. Eng. Comm. 16(38), 9116–9124 (2014)CrossRef H. Wu, K. Kan, L. Wang, G. Zhang, Y. Yang, H. Li, L. Jing, P. Shen, L. Li, K. Shi, Electrospinning of mesoporous p-type In2O3/TiO2 composite nanofibers for enhancing NOx gas sensing properties at room temperature. Cryst. Eng. Comm. 16(38), 9116–9124 (2014)CrossRef
21.
Zurück zum Zitat J. Zhou, M. Ikram, A.U. Rehman, J. Wang, Y. Zhao, K. Kan, W. Zhang, F. Raziq, L. Li, K. Shi, Highly selective detection of NH3 and H2S using the pristine CuO and mesoporous In2O3@CuO multijunctions nanofibers at room temperature. Sens Actuators B 255, 1819–1830 (2018)CrossRef J. Zhou, M. Ikram, A.U. Rehman, J. Wang, Y. Zhao, K. Kan, W. Zhang, F. Raziq, L. Li, K. Shi, Highly selective detection of NH3 and H2S using the pristine CuO and mesoporous In2O3@CuO multijunctions nanofibers at room temperature. Sens Actuators B 255, 1819–1830 (2018)CrossRef
22.
Zurück zum Zitat J, Gao, L. Wang, K. Kan, S. Xu, L. Jing, S. Liu, P. Shen, L. Li, K. Shi, One-step synthesis of mesoporous Al2O3–In2O3 nanofibers with remarkable gas-sensing performance to NOx at room temperature. J. Mater. Chem. A 2(4), 949–956 J, Gao, L. Wang, K. Kan, S. Xu, L. Jing, S. Liu, P. Shen, L. Li, K. Shi, One-step synthesis of mesoporous Al2O3–In2O3 nanofibers with remarkable gas-sensing performance to NOx at room temperature. J. Mater. Chem. A 2(4), 949–956
23.
Zurück zum Zitat H. Yang, S. Wang, Y. Yang, Zn-doped In2O3 nanostructures: preparation, structure and gas-sensing properties. Cryst. Eng. Comm. 14(3), 1135–1142 (2012)CrossRef H. Yang, S. Wang, Y. Yang, Zn-doped In2O3 nanostructures: preparation, structure and gas-sensing properties. Cryst. Eng. Comm. 14(3), 1135–1142 (2012)CrossRef
24.
Zurück zum Zitat J. Zhao, T. Yang, Y. Liu, Z. Wang, X. Li, Y. Sun, Y. Du, Y. Li, G. Lu, Enhancement of NO2 gas sensing response based on ordered mesoporous Fe-doped In2O3. Sens Actuators B 191, 806–812 (2014)CrossRef J. Zhao, T. Yang, Y. Liu, Z. Wang, X. Li, Y. Sun, Y. Du, Y. Li, G. Lu, Enhancement of NO2 gas sensing response based on ordered mesoporous Fe-doped In2O3. Sens Actuators B 191, 806–812 (2014)CrossRef
25.
Zurück zum Zitat Q. Yang, Y. Wang, J. Liu, J. Liu, Y. Gao, P. Sun, J. Zheng, T. Zhang, Y. Wang, G. Lu, Enhanced sensing response towards NO2 based on ordered mesoporous Zr-doped In2O3 with low operating temperature. Sens Actuators B 241, 806–813 (2017)CrossRef Q. Yang, Y. Wang, J. Liu, J. Liu, Y. Gao, P. Sun, J. Zheng, T. Zhang, Y. Wang, G. Lu, Enhanced sensing response towards NO2 based on ordered mesoporous Zr-doped In2O3 with low operating temperature. Sens Actuators B 241, 806–813 (2017)CrossRef
26.
Zurück zum Zitat Y. Liu, X. Gao, F. Li, G. Lu, T. Zhang, N. Barsan, Pt- In2O3 mesoporous nanofibers with enhanced gas sensing performance towards ppb-level NO2 at room temperature. Sens. Actuators B 260, 927–936 (2018)CrossRef Y. Liu, X. Gao, F. Li, G. Lu, T. Zhang, N. Barsan, Pt- In2O3 mesoporous nanofibers with enhanced gas sensing performance towards ppb-level NO2 at room temperature. Sens. Actuators B 260, 927–936 (2018)CrossRef
27.
Zurück zum Zitat L. Yao, K. Kan, Y. Lin, J. Song, J. Wang, J. Gao, P. Shen, L. Li, K. Shi, Si doped highly crystalline mesoporous In2O3 nanowires: synthesis, characterization and ultra-high response to NOx at room temperature. RSC Adv. 5(20), 15515–15523 (2015)CrossRef L. Yao, K. Kan, Y. Lin, J. Song, J. Wang, J. Gao, P. Shen, L. Li, K. Shi, Si doped highly crystalline mesoporous In2O3 nanowires: synthesis, characterization and ultra-high response to NOx at room temperature. RSC Adv. 5(20), 15515–15523 (2015)CrossRef
28.
Zurück zum Zitat X. Wang, J. Zhang, Y. He, L. Wang, L. Liu, H. Wang, X. Guo, H. Lian, Porous Nd-doped In2O3 nanotubes with excellent formaldehyde sensing properties. Chem Phys Lett 658, 319–323 (2016)CrossRef X. Wang, J. Zhang, Y. He, L. Wang, L. Liu, H. Wang, X. Guo, H. Lian, Porous Nd-doped In2O3 nanotubes with excellent formaldehyde sensing properties. Chem Phys Lett 658, 319–323 (2016)CrossRef
29.
Zurück zum Zitat W. Liu, Y. Xie, T. Chen, Q. Lu, S. Ur Rehman, L. Zhu, Rationally designed mesoporous In2O3 nanofibers functionalized Pt catalysts for high-performance acetone gas sensors. Sens. Actuators B 298, 126871 W. Liu, Y. Xie, T. Chen, Q. Lu, S. Ur Rehman, L. Zhu, Rationally designed mesoporous In2O3 nanofibers functionalized Pt catalysts for high-performance acetone gas sensors. Sens. Actuators B 298, 126871
30.
Zurück zum Zitat X. Li, D. Li, J. Xu, Y. Han, H. Jin, B. Hong, H. Ge, X. Wang, Calcination-temperature-dependent gas-sensing properties of mesoporous α-Fe2O3 nanowires as ethanol sensors. Solid State Sci. 69, 38–43 (2017)CrossRef X. Li, D. Li, J. Xu, Y. Han, H. Jin, B. Hong, H. Ge, X. Wang, Calcination-temperature-dependent gas-sensing properties of mesoporous α-Fe2O3 nanowires as ethanol sensors. Solid State Sci. 69, 38–43 (2017)CrossRef
31.
Zurück zum Zitat X. Li, D. Li, J. Xu, H. Jin, D. Jin, X. Peng, B. Hong, J. Li, Y. Yang, H. Ge, Calcination-temperature-dependent gas-sensing properties of mesoporous nickel oxides nanowires as ethanol sensors. Powder Technol. 318, 40–45 (2017)CrossRef X. Li, D. Li, J. Xu, H. Jin, D. Jin, X. Peng, B. Hong, J. Li, Y. Yang, H. Ge, Calcination-temperature-dependent gas-sensing properties of mesoporous nickel oxides nanowires as ethanol sensors. Powder Technol. 318, 40–45 (2017)CrossRef
32.
Zurück zum Zitat H. Chen, G.-D. Li, M. Fan, Q. Gao, J. Hu, S. Ao, C. Wei, X. Zou, Electrospinning preparation of mesoporous spinel gallate (MGa2O4; M=Ni, Cu, Co) nanofibers and their M(II) ions-dependent gas sensing properties. Sens. Actuators B 240, 689–696 (2017)CrossRef H. Chen, G.-D. Li, M. Fan, Q. Gao, J. Hu, S. Ao, C. Wei, X. Zou, Electrospinning preparation of mesoporous spinel gallate (MGa2O4; M=Ni, Cu, Co) nanofibers and their M(II) ions-dependent gas sensing properties. Sens. Actuators B 240, 689–696 (2017)CrossRef
33.
Zurück zum Zitat J. Wei, X. Li, Y. Han, J. Xu, H. Jin, D. Jin, X. Peng, B. Hong, J. Li, Y. Yang, H. Ge, X. Wang, Highly improved ethanol gas-sensing performance of mesoporous nickel oxides nanowires with the stannum donor doping. Nanotechnology 29(24), 245501 J. Wei, X. Li, Y. Han, J. Xu, H. Jin, D. Jin, X. Peng, B. Hong, J. Li, Y. Yang, H. Ge, X. Wang, Highly improved ethanol gas-sensing performance of mesoporous nickel oxides nanowires with the stannum donor doping. Nanotechnology 29(24), 245501
34.
Zurück zum Zitat J. Zhou, M. Ikram, A.U. Rehman, J. Wang, Y. Zhao, K. Kan, W. Zhang, F. Raziq, L. Li, K. Shi, Highly selective detection of NH3 and H2S using the pristine CuO and mesoporous In2O3@CuO multi-junctions nanofibers at room temperature. Sens. Actuators B 255, 1819–1830 (2018)CrossRef J. Zhou, M. Ikram, A.U. Rehman, J. Wang, Y. Zhao, K. Kan, W. Zhang, F. Raziq, L. Li, K. Shi, Highly selective detection of NH3 and H2S using the pristine CuO and mesoporous In2O3@CuO multi-junctions nanofibers at room temperature. Sens. Actuators B 255, 1819–1830 (2018)CrossRef
35.
Zurück zum Zitat P.L. Quang, N.D. Cuong, T.T. Hoa, H.T. Long, C.M. Hung, D.T.T. Le, N.V. Hieu, Simple post-synthesis of mesoporous p-type Co3O4 nanochains for enhanced H2S gas sensing performance. Sens. Actuators B 270, 158–166 (2018)CrossRef P.L. Quang, N.D. Cuong, T.T. Hoa, H.T. Long, C.M. Hung, D.T.T. Le, N.V. Hieu, Simple post-synthesis of mesoporous p-type Co3O4 nanochains for enhanced H2S gas sensing performance. Sens. Actuators B 270, 158–166 (2018)CrossRef
36.
Zurück zum Zitat L. Wang, P. Gao, G. Zhang, G. Chen, Y. Chen, Y. Wang, Bao D (2012) Synthesis of mesoporous MoO3 nanoribbons through a multi-molybdate coordination-polymer-precursor route. Eur. J. Inorg Chem. 35, 5831–5836 (2012)CrossRef L. Wang, P. Gao, G. Zhang, G. Chen, Y. Chen, Y. Wang, Bao D (2012) Synthesis of mesoporous MoO3 nanoribbons through a multi-molybdate coordination-polymer-precursor route. Eur. J. Inorg Chem. 35, 5831–5836 (2012)CrossRef
37.
Zurück zum Zitat X.L. Xu, Y. Chen, S.Y. Ma, W.Q. Li, Y.Z. Mao, S.H. Yan, T. Wang, Facile synthesis of SnO2 mesoporous tubular nanostructure with high sensitivity to ethanol. Mater. Lett. 143, 55–59 (2015)CrossRef X.L. Xu, Y. Chen, S.Y. Ma, W.Q. Li, Y.Z. Mao, S.H. Yan, T. Wang, Facile synthesis of SnO2 mesoporous tubular nanostructure with high sensitivity to ethanol. Mater. Lett. 143, 55–59 (2015)CrossRef
38.
Zurück zum Zitat S.-J. Kim, S.-J. Choi, J.-S. Jang, N.-H. Kim, M. Hakim, H.L. Tuller, I.-D. Kim, Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 10(6), 5891–5899 (2016)CrossRef S.-J. Kim, S.-J. Choi, J.-S. Jang, N.-H. Kim, M. Hakim, H.L. Tuller, I.-D. Kim, Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 10(6), 5891–5899 (2016)CrossRef
39.
Zurück zum Zitat C. Balamurugan, D.W. Lee, A selective NH3 gas sensor based on mesoporous p-type NiV2O6 semiconducting nanorods synthesized using solution method. Sens. Actuators B 192, 414–422 (2014)CrossRef C. Balamurugan, D.W. Lee, A selective NH3 gas sensor based on mesoporous p-type NiV2O6 semiconducting nanorods synthesized using solution method. Sens. Actuators B 192, 414–422 (2014)CrossRef
40.
Zurück zum Zitat H. Wu, L. Wang, J. Zhou, J. Gao, G. Zhang, S. Xu, Y. Xie, L. Li, K. Shi, Facile preparation of porous In 2 TiO 5 –rutile composite nanotubes by electrospinning and sensitivity enhancement in NO2 gas at room temperature. J. Colloid Sci. 466, 72–79 (2016)CrossRef H. Wu, L. Wang, J. Zhou, J. Gao, G. Zhang, S. Xu, Y. Xie, L. Li, K. Shi, Facile preparation of porous In 2 TiO 5 –rutile composite nanotubes by electrospinning and sensitivity enhancement in NO2 gas at room temperature. J. Colloid Sci. 466, 72–79 (2016)CrossRef
41.
Zurück zum Zitat S. Sotiropoulou, N.A. Chaniotakis, Carbon nanotube array-based biosensor. Anal. Bioanal. Chem. 375(1), 103–105 (2003)CrossRef S. Sotiropoulou, N.A. Chaniotakis, Carbon nanotube array-based biosensor. Anal. Bioanal. Chem. 375(1), 103–105 (2003)CrossRef
42.
Zurück zum Zitat G.-J. Zhang, Y. Ning, Silicon nanowire biosensor and its applications in disease diagnostics: a review. Anal. Chim. Acta 749, 1–15 (2012)CrossRef G.-J. Zhang, Y. Ning, Silicon nanowire biosensor and its applications in disease diagnostics: a review. Anal. Chim. Acta 749, 1–15 (2012)CrossRef
43.
Zurück zum Zitat V. Vamvakaki, K. Tsagaraki, N. Chaniotakis, Carbon nanofiber-based glucose biosensor. Anal. Chem. 78(15), 5538–5542 (2006)CrossRef V. Vamvakaki, K. Tsagaraki, N. Chaniotakis, Carbon nanofiber-based glucose biosensor. Anal. Chem. 78(15), 5538–5542 (2006)CrossRef
44.
Zurück zum Zitat C. Wu, H. Sun, Y. Li, X. Liu, X. Du, X. Wang, P. Xu, Biosensor based on glucose oxidase-nanoporous gold co-catalysis for glucose detection. Biosens Bioelectron. 66, 350–355 (2015)CrossRef C. Wu, H. Sun, Y. Li, X. Liu, X. Du, X. Wang, P. Xu, Biosensor based on glucose oxidase-nanoporous gold co-catalysis for glucose detection. Biosens Bioelectron. 66, 350–355 (2015)CrossRef
45.
Zurück zum Zitat T.C. Gokoglan, S. Soylemez, M. Kesik, I.B. Dogru, O. Turel, R. Yuksel, H.E. Unalan, L. Toppare, A novel approach for the fabrication of a flexible glucose biosensor: the combination of vertically aligned CNTs and a conjugated polymer. Food Chem 220, 299–305 (2017)CrossRef T.C. Gokoglan, S. Soylemez, M. Kesik, I.B. Dogru, O. Turel, R. Yuksel, H.E. Unalan, L. Toppare, A novel approach for the fabrication of a flexible glucose biosensor: the combination of vertically aligned CNTs and a conjugated polymer. Food Chem 220, 299–305 (2017)CrossRef
46.
Zurück zum Zitat M. Malmqvist, Biospecific interaction analysis using biosensor technology. Nature 361(6408), 186–187 (1993)CrossRef M. Malmqvist, Biospecific interaction analysis using biosensor technology. Nature 361(6408), 186–187 (1993)CrossRef
47.
Zurück zum Zitat K. Reder-Christ, G. Bendas, Biosensor applications in the field of antibiotic research-a review of recent developments. Sensors 11(10), 9450 (2011)CrossRef K. Reder-Christ, G. Bendas, Biosensor applications in the field of antibiotic research-a review of recent developments. Sensors 11(10), 9450 (2011)CrossRef
48.
Zurück zum Zitat N. Verma, A. Bhardwaj, Biosensor technology for pesticides-a review. Appl. Biochem. Biotech. 175(6), 3093–3119 (2015)CrossRef N. Verma, A. Bhardwaj, Biosensor technology for pesticides-a review. Appl. Biochem. Biotech. 175(6), 3093–3119 (2015)CrossRef
49.
Zurück zum Zitat X.-L. Luo, J.-J. Xu, J.-L. Wang, H.-Y. Chen, Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem. Commun. 16, 2169–2171 (2005)CrossRef X.-L. Luo, J.-J. Xu, J.-L. Wang, H.-Y. Chen, Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem. Commun. 16, 2169–2171 (2005)CrossRef
50.
Zurück zum Zitat K. Wang, Q. Liu, Q.-M. Guan, J. Wu, H.-N. Li, J.-J. Yan, Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosens Bioelectron. 26(5), 2252–2257 (2011)CrossRef K. Wang, Q. Liu, Q.-M. Guan, J. Wu, H.-N. Li, J.-J. Yan, Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosens Bioelectron. 26(5), 2252–2257 (2011)CrossRef
51.
Zurück zum Zitat M. Zhao, Z. Li, Z. Han, K. Wang, Y. Zhou, J. Huang, Z. Ye, Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor. Biosens Bioelectron. 49, 318–322 (2013)CrossRef M. Zhao, Z. Li, Z. Han, K. Wang, Y. Zhou, J. Huang, Z. Ye, Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor. Biosens Bioelectron. 49, 318–322 (2013)CrossRef
52.
Zurück zum Zitat G. Saher, B. Brügger, C. Lappesiefke, W. Möbius, R. Tozawa, M.C. Wehr, F. Wieland, S. Ishibashi, K.A. Nave, High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 8(4), 468–475 (2005)CrossRef G. Saher, B. Brügger, C. Lappesiefke, W. Möbius, R. Tozawa, M.C. Wehr, F. Wieland, S. Ishibashi, K.A. Nave, High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 8(4), 468–475 (2005)CrossRef
53.
Zurück zum Zitat J.L. Goldstein, R.A. DeBose-Boyd, M.S. Brown, Protein sensors for membrane sterols. Cell 124(1), 35–46 (2006)CrossRef J.L. Goldstein, R.A. DeBose-Boyd, M.S. Brown, Protein sensors for membrane sterols. Cell 124(1), 35–46 (2006)CrossRef
54.
Zurück zum Zitat R.E. Tanzi, L. Bertram, New frontiers in Alzheimer’s disease genetics. Neuron 32, 181–184 (2001)CrossRef R.E. Tanzi, L. Bertram, New frontiers in Alzheimer’s disease genetics. Neuron 32, 181–184 (2001)CrossRef
55.
Zurück zum Zitat S. Wahrle, P. Das, A.C. Nyborg, C. McLendon, M. Shoji, T. Kawarabayashi, L.H. Younkin, S.G. Younkin, T.E. Golde, Cholesterol-Dependent γ-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol. Dis. 9(1), 11–23 (2002)CrossRef S. Wahrle, P. Das, A.C. Nyborg, C. McLendon, M. Shoji, T. Kawarabayashi, L.H. Younkin, S.G. Younkin, T.E. Golde, Cholesterol-Dependent γ-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol. Dis. 9(1), 11–23 (2002)CrossRef
56.
Zurück zum Zitat K. Mondal, M.A. Ali, V.V. Agrawal, B.D. Malhotra, A. Sharma, Highly Sensitive Biofunctionalized Mesoporous Electrospun TiO2 Nanofiber Based Interface for Biosensing. ACS Appl Mater Interfaces 6(4), 2516–2527 (2014)CrossRef K. Mondal, M.A. Ali, V.V. Agrawal, B.D. Malhotra, A. Sharma, Highly Sensitive Biofunctionalized Mesoporous Electrospun TiO2 Nanofiber Based Interface for Biosensing. ACS Appl Mater Interfaces 6(4), 2516–2527 (2014)CrossRef
57.
Zurück zum Zitat M.A. Ali, K. Mondal, C. Singh, B. Dhar Malhotra, A. Sharma, Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale 7(16), 7234–7245 (2015)CrossRef M.A. Ali, K. Mondal, C. Singh, B. Dhar Malhotra, A. Sharma, Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale 7(16), 7234–7245 (2015)CrossRef
Metadaten
Titel
Applications of 1D Mesoporous Inorganic Nanomaterials as Sensors
verfasst von
Huilin Hou
Linli Xu
Weiyou Yang
Wai-Yeung Wong
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-89105-3_10