Skip to main content

2022 | OriginalPaper | Buchkapitel

9. Applications of 1D Mesoporous Inorganic Nanostructures in Solar Cells

verfasst von : Huilin Hou, Linli Xu, Weiyou Yang, Wai-Yeung Wong

Erschienen in: One-Dimensional Mesoporous Inorganic Nanomaterials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is a good way to manage the severe energy crisis by fabricating solar cells that have great power conversion efficiency (Law et al. in Nat Mater 4:455–459, 2005; Zhang et al. in Adv Mater 21:4087–4108, 2009; Hagfeldt et al. in Chem Rev 110:6595–6663, 2010; Nie et al. in Science 347:522–525, 2015).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat Mater 4(6), 455–459 (2005)CrossRef M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat Mater 4(6), 455–459 (2005)CrossRef
2.
Zurück zum Zitat Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO Nanostructures for dye-sensitized solar cells. Adv. Mater 21(41), 4087–4108 (2009)CrossRef Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO Nanostructures for dye-sensitized solar cells. Adv. Mater 21(41), 4087–4108 (2009)CrossRef
3.
Zurück zum Zitat A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-Sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)CrossRef A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-Sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)CrossRef
4.
Zurück zum Zitat W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015)CrossRef W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015)CrossRef
5.
Zurück zum Zitat W. Zhang, R. Zhu, L. Ke, X. Liu, B., S. Ramakrishna, Anatase mesoporous TiO2 nanofibers with high surface area for solid‐state dye‐sensitized solar cells. Small 6(19), 2176–2182 (2010) W. Zhang, R. Zhu, L. Ke, X. Liu, B., S. Ramakrishna, Anatase mesoporous TiO2 nanofibers with high surface area for solid‐state dye‐sensitized solar cells. Small 6(19), 2176–2182 (2010)
6.
Zurück zum Zitat W.H. Jung, N.-S. Kwak, T.S. Hwang, K.B. Yi, Preparation of highly porous TiO2 nanofibers for dye-sensitized solar cells (DSSCs) by electro-spinning. Appl. Surf. Sci. 261, 343–435 (2012)CrossRef W.H. Jung, N.-S. Kwak, T.S. Hwang, K.B. Yi, Preparation of highly porous TiO2 nanofibers for dye-sensitized solar cells (DSSCs) by electro-spinning. Appl. Surf. Sci. 261, 343–435 (2012)CrossRef
7.
Zurück zum Zitat F.H. Bijarbooneh, Y. Zhao, Z. Sun, Y.-U. Heo, V. Malgras, J.H. Kim, S.X. Dou, Structurally stabilized mesoporous TiO2 nanofibers for efficient dye-sensitized solar cells. APL Mater. 1(3), 032106 (2013) F.H. Bijarbooneh, Y. Zhao, Z. Sun, Y.-U. Heo, V. Malgras, J.H. Kim, S.X. Dou, Structurally stabilized mesoporous TiO2 nanofibers for efficient dye-sensitized solar cells. APL Mater. 1(3), 032106 (2013)
8.
Zurück zum Zitat S. Zhang, X. Yang, Y. Numata, L. Han, Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ. Sci. 6(5), 1443–1464 (2013)CrossRef S. Zhang, X. Yang, Y. Numata, L. Han, Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ. Sci. 6(5), 1443–1464 (2013)CrossRef
9.
Zurück zum Zitat S. Lee, G.S. Han, J.-H. Lee, J.-K. Lee, H.S. Jung, Mesoporous TiO2 nanowires as bi-functional materials for dye-sensitized solar cells. Electrochim. Acta 74, 83–86 (2012)CrossRef S. Lee, G.S. Han, J.-H. Lee, J.-K. Lee, H.S. Jung, Mesoporous TiO2 nanowires as bi-functional materials for dye-sensitized solar cells. Electrochim. Acta 74, 83–86 (2012)CrossRef
10.
Zurück zum Zitat S.H. Hwang, C. Kim, H. Song, S. Son, J. Jang, Designed architecture of multiscale porous TiO2 nanofibers for dye-sensitized solar cells photoanode. ACS Appl. Mater. Interfaces 4(10), 5287–5292 (2012)CrossRef S.H. Hwang, C. Kim, H. Song, S. Son, J. Jang, Designed architecture of multiscale porous TiO2 nanofibers for dye-sensitized solar cells photoanode. ACS Appl. Mater. Interfaces 4(10), 5287–5292 (2012)CrossRef
11.
Zurück zum Zitat A. Hauch, A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 46(22), 3457–3466 (2001)CrossRef A. Hauch, A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 46(22), 3457–3466 (2001)CrossRef
12.
Zurück zum Zitat S. Thomas, T.G. Deepak, G.S. Anjusree, T.A. Arun, S.V. Nair, A.S. Nair, A review on counter electrode materials in dye-sensitized solar cells. J. Mater Chem. A. 2(13), 4474–4490 (2014)CrossRef S. Thomas, T.G. Deepak, G.S. Anjusree, T.A. Arun, S.V. Nair, A.S. Nair, A review on counter electrode materials in dye-sensitized solar cells. J. Mater Chem. A. 2(13), 4474–4490 (2014)CrossRef
13.
Zurück zum Zitat H. Wang, Y.H. Hu, Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ. Sci. 5(8), 8182–8188 (2012)CrossRef H. Wang, Y.H. Hu, Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ. Sci. 5(8), 8182–8188 (2012)CrossRef
14.
Zurück zum Zitat R. Jose, V. Thavasi, S. Ramakrishna, Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 92(2), 289–301 (2009)CrossRef R. Jose, V. Thavasi, S. Ramakrishna, Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 92(2), 289–301 (2009)CrossRef
15.
Zurück zum Zitat S.-H. Park, B.-K. Kim, W.-J. Lee, Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells. J. Power Sources 239, 122–127 (2013)CrossRef S.-H. Park, B.-K. Kim, W.-J. Lee, Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells. J. Power Sources 239, 122–127 (2013)CrossRef
16.
Zurück zum Zitat S.-q Guo, T.-z Jing, X. Zhang, X.-b Yang, Z.-h Yuan, F.-z Hu, Mesoporous Bi2S3 nanorods with graphene-assistance as low-cost counter-electrode materials in dye-sensitized solar cells. Nanoscale 6(23), 14433–14440 (2014)CrossRef S.-q Guo, T.-z Jing, X. Zhang, X.-b Yang, Z.-h Yuan, F.-z Hu, Mesoporous Bi2S3 nanorods with graphene-assistance as low-cost counter-electrode materials in dye-sensitized solar cells. Nanoscale 6(23), 14433–14440 (2014)CrossRef
17.
Zurück zum Zitat M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012)CrossRef M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012)CrossRef
18.
Zurück zum Zitat G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater Chem. A 3(17), 8970–8980 (2015)CrossRef G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater Chem. A 3(17), 8970–8980 (2015)CrossRef
19.
Zurück zum Zitat J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8(5), 1602–1608 J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8(5), 1602–1608
20.
Zurück zum Zitat M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395 (2013)CrossRef M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395 (2013)CrossRef
21.
Zurück zum Zitat S. Hwang, J. Roh, J. Lee, J. Ryu, J. Yun, J. Jang, Size-controlled SiO2 nanoparticles as scaffold layers in thin-film perovskite solar cells. J. Mater Chem. A. 2(39), 16429–16433 (2014)CrossRef S. Hwang, J. Roh, J. Lee, J. Ryu, J. Yun, J. Jang, Size-controlled SiO2 nanoparticles as scaffold layers in thin-film perovskite solar cells. J. Mater Chem. A. 2(39), 16429–16433 (2014)CrossRef
22.
Zurück zum Zitat H. Huang, J. Shi, S. Lv, D. Li, Y. Luo, Q. Meng, Sprayed P25 scaffolds for high-efficiency mesoscopic perovskite solar cells. Chem. Commun. 51(51), 10306–10309 (2015)CrossRef H. Huang, J. Shi, S. Lv, D. Li, Y. Luo, Q. Meng, Sprayed P25 scaffolds for high-efficiency mesoscopic perovskite solar cells. Chem. Commun. 51(51), 10306–10309 (2015)CrossRef
23.
Zurück zum Zitat S.S. Mali, C. Su Shim, C. Kook Hong, Highly porous Zinc Stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells. Sci. Rep. 5(1), 11424 (2015)CrossRef S.S. Mali, C. Su Shim, C. Kook Hong, Highly porous Zinc Stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells. Sci. Rep. 5(1), 11424 (2015)CrossRef
24.
Zurück zum Zitat K. Lee, C.-M. Yoon, J. Noh, J. Jang, Morphology-controlled mesoporous SiO2 nanorods for efficient scaffolds in organo-metal halide perovskite solar cells. Chem. Commun. 52(22), 4231–4234 (2016)CrossRef K. Lee, C.-M. Yoon, J. Noh, J. Jang, Morphology-controlled mesoporous SiO2 nanorods for efficient scaffolds in organo-metal halide perovskite solar cells. Chem. Commun. 52(22), 4231–4234 (2016)CrossRef
25.
Zurück zum Zitat K. Mahmood, A. Khalid, S.W. Ahmad, M.T. Mehran, Indium-doped ZnO mesoporous nanofibers as efficient electron transporting materials for perovskite solar cells. Surf. Coat. Technol. 352, 231–237 (2018)CrossRef K. Mahmood, A. Khalid, S.W. Ahmad, M.T. Mehran, Indium-doped ZnO mesoporous nanofibers as efficient electron transporting materials for perovskite solar cells. Surf. Coat. Technol. 352, 231–237 (2018)CrossRef
Metadaten
Titel
Applications of 1D Mesoporous Inorganic Nanostructures in Solar Cells
verfasst von
Huilin Hou
Linli Xu
Weiyou Yang
Wai-Yeung Wong
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-89105-3_9