Skip to main content

2016 | OriginalPaper | Buchkapitel

4. Applications of Acid–Base Blend Concepts to Intermediate Temperature Membranes

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, an overview is given about the scientific work done so far in the synthesis, characterization, and fuel cell application of acid–base blends from different polybenzimidazoles as the major blend component and different kinds of acidic polymers such as sulfonated and phosphonated polymers as the minor blend component. In these blends, ionical cross-links are formed by proton transfer from the acidic group to the polybenzimidazole imidazole-N, forming ionical cross-links by the electrostatic interaction between the acidic anions and the imidazolium cations, which leads to improvement of mechanical and chemical membrane stability, compared to pure polybenzimidazoles. The chapter is concluded by a short comparative study between differently cross-linked polybenzimidazoles in terms of their properties such as thermal stability, stability in Fenton’s Reagent, and proton conductivity when doped with phosphoric acid. The outcome of this study was that the properties of all the different polybenzimidazole blends were quite similar.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Grot WG (1994) Perfluorinated ion-exchange polymers and their use in research and industry. Macromol Symp 82:161–172CrossRef Grot WG (1994) Perfluorinated ion-exchange polymers and their use in research and industry. Macromol Symp 82:161–172CrossRef
2.
Zurück zum Zitat Kreuer KD (1996) Proton conductivity: materials and applications. Chem Mater 8:610–641CrossRef Kreuer KD (1996) Proton conductivity: materials and applications. Chem Mater 8:610–641CrossRef
3.
Zurück zum Zitat Vogel H, Marvel CS (1961) Polybenzimidazoles, new thermally stable polymers. J Polym Sci 50:511–539CrossRef Vogel H, Marvel CS (1961) Polybenzimidazoles, new thermally stable polymers. J Polym Sci 50:511–539CrossRef
4.
Zurück zum Zitat Vogel H, Marvel CS (1963) Polybenzimidazoles 2. J Polym Sci A 1:1531–1541 Vogel H, Marvel CS (1963) Polybenzimidazoles 2. J Polym Sci A 1:1531–1541
5.
Zurück zum Zitat Wainright JS, Wang JT, Savinell RF et al (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142:L121–L123CrossRef Wainright JS, Wang JT, Savinell RF et al (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142:L121–L123CrossRef
6.
Zurück zum Zitat Kreuer KD, Paddison S, Spohr E et al (2004) Toward a new type of anhydrous organic proton conductor based on immobilized imidazole. Chem Rev 104:4637–4678CrossRef Kreuer KD, Paddison S, Spohr E et al (2004) Toward a new type of anhydrous organic proton conductor based on immobilized imidazole. Chem Rev 104:4637–4678CrossRef
7.
Zurück zum Zitat Yu S, Xiao L, Benicewicz BC (2008) Durability studies of PBI-based high temperature PEMFCs. Fuel Cells 8:165–174CrossRef Yu S, Xiao L, Benicewicz BC (2008) Durability studies of PBI-based high temperature PEMFCs. Fuel Cells 8:165–174CrossRef
8.
Zurück zum Zitat Liao J, Li QF, Rudbeck HC et al (2011) Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells. Fuel Cells 11:745–755CrossRef Liao J, Li QF, Rudbeck HC et al (2011) Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells. Fuel Cells 11:745–755CrossRef
9.
Zurück zum Zitat Ghosh S, Maity S, Jana T (2011) Polybenzimidazole/silica nanocomposites: organic-inorganic hybrid membranes for PEM fuel cell. J Mater Chem 21:14897–14906CrossRef Ghosh S, Maity S, Jana T (2011) Polybenzimidazole/silica nanocomposites: organic-inorganic hybrid membranes for PEM fuel cell. J Mater Chem 21:14897–14906CrossRef
10.
Zurück zum Zitat Zhang R, Shi ZX, Liu Y et al (2012) Synthesis and characterization of polybenzimidazole–nanodiamond hybrids via in situ polymerization method. J Appl Polym Sci 125:3191–3199CrossRef Zhang R, Shi ZX, Liu Y et al (2012) Synthesis and characterization of polybenzimidazole–nanodiamond hybrids via in situ polymerization method. J Appl Polym Sci 125:3191–3199CrossRef
11.
Zurück zum Zitat Mao L, Mishra AK, Kim NH et al (2012) Poly(2,5-benzimidazole)–silica nanocomposite membranes for high temperature proton exchange membrane fuel cell. J Membr Sci 411–412:91–98 Mao L, Mishra AK, Kim NH et al (2012) Poly(2,5-benzimidazole)–silica nanocomposite membranes for high temperature proton exchange membrane fuel cell. J Membr Sci 411–412:91–98
12.
Zurück zum Zitat Ossiander T, Heinzl C, Gleich S et al (2014) Influence of the size and shape of silica nanoparticles on the properties and degradation of a PBI-based high temperature polymer electrolyte membrane. J Membr Sci 454:12–19CrossRef Ossiander T, Heinzl C, Gleich S et al (2014) Influence of the size and shape of silica nanoparticles on the properties and degradation of a PBI-based high temperature polymer electrolyte membrane. J Membr Sci 454:12–19CrossRef
13.
Zurück zum Zitat Plackett D, Siu A, Li Q et al (2011) High-temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells. J Membr Sci 383:78–87CrossRef Plackett D, Siu A, Li Q et al (2011) High-temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells. J Membr Sci 383:78–87CrossRef
14.
Zurück zum Zitat He R, Li Q, Xiao G et al (2003) Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. J Membr Sci 226:169–184CrossRef He R, Li Q, Xiao G et al (2003) Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. J Membr Sci 226:169–184CrossRef
15.
Zurück zum Zitat Wang S, Zhang G, Han M et al (2011) Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 36:8412–8421CrossRef Wang S, Zhang G, Han M et al (2011) Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 36:8412–8421CrossRef
16.
Zurück zum Zitat Aili D, Li Q, Christensen E et al (2011) Crosslinking of polybenzimidazole membranes by divinylsulfone post-treatment for high-temperature proton exchange membrane fuel cell applications. Polym Int 60:1201–1207CrossRef Aili D, Li Q, Christensen E et al (2011) Crosslinking of polybenzimidazole membranes by divinylsulfone post-treatment for high-temperature proton exchange membrane fuel cell applications. Polym Int 60:1201–1207CrossRef
17.
Zurück zum Zitat Xu HJ, Chen KC, Guo XX et al (2007) Synthesis of hyperbranched polybenzimidazoles and their membrane formation. J Membr Sci 288:255–260CrossRef Xu HJ, Chen KC, Guo XX et al (2007) Synthesis of hyperbranched polybenzimidazoles and their membrane formation. J Membr Sci 288:255–260CrossRef
18.
Zurück zum Zitat Wang KY, Xiao YC, Chung TS (2006) Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin. Chem Eng Sci 61:5807–5817CrossRef Wang KY, Xiao YC, Chung TS (2006) Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin. Chem Eng Sci 61:5807–5817CrossRef
19.
Zurück zum Zitat Noyé P, Li QF, Pan C et al (2008) Cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells with dichloromethyl phosphoric acid as a cross-linker. Polym Adv Technol 19:1270–1275CrossRef Noyé P, Li QF, Pan C et al (2008) Cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells with dichloromethyl phosphoric acid as a cross-linker. Polym Adv Technol 19:1270–1275CrossRef
20.
Zurück zum Zitat Yang J, Li Q, Cleemann LN et al (2013) Crosslinked hexafluoropropylidene polybenzimidazole membranes with chloromethyl polysulfone for fuel cell applications. Adv Energy Mater 3:622–630CrossRef Yang J, Li Q, Cleemann LN et al (2013) Crosslinked hexafluoropropylidene polybenzimidazole membranes with chloromethyl polysulfone for fuel cell applications. Adv Energy Mater 3:622–630CrossRef
21.
Zurück zum Zitat Wang S, Zhao C, Ma W et al (2013) Macromolecular cross-linked polybenzimidazole based on bromomethylated poly (aryl ether ketone) with enhanced stability for high temperature fuel cell applications. J Power Sources 243:102–109CrossRefMATH Wang S, Zhao C, Ma W et al (2013) Macromolecular cross-linked polybenzimidazole based on bromomethylated poly (aryl ether ketone) with enhanced stability for high temperature fuel cell applications. J Power Sources 243:102–109CrossRefMATH
22.
Zurück zum Zitat Cui W, Kerres J (2001) Acid-base polymer blends and their application in membrane processes. US Patent 6,194,474 Cui W, Kerres J (2001) Acid-base polymer blends and their application in membrane processes. US Patent 6,194,474
23.
Zurück zum Zitat Kerres J, Ullrich A, Häring T (2004) Engineering ionomer blends and engineering ionomer blend membranes. European Patent 1,076,676; US Patent 6,723,757 Kerres J, Ullrich A, Häring T (2004) Engineering ionomer blends and engineering ionomer blend membranes. European Patent 1,076,676; US Patent 6,723,757
24.
Zurück zum Zitat Cui W, Kerres J, Eigenberger G (1998) Development and characterization of ion-exchange polymer blend membranes. Sep Purif Technol 14:145–154CrossRef Cui W, Kerres J, Eigenberger G (1998) Development and characterization of ion-exchange polymer blend membranes. Sep Purif Technol 14:145–154CrossRef
25.
Zurück zum Zitat Kerres J, Ullrich A, Meier F et al (1999) Synthesis and characterization of novel acid-base polymer blends for the application in membrane fuel cells. Solid State Ionics 125:243–249CrossRef Kerres J, Ullrich A, Meier F et al (1999) Synthesis and characterization of novel acid-base polymer blends for the application in membrane fuel cells. Solid State Ionics 125:243–249CrossRef
26.
Zurück zum Zitat Kerres J, Ullrich A, Häring T et al (2000) Preparation, characterization, and fuel cell application of new acid-base blend membranes. J New Mater Electrochem Syst 3:229–239 Kerres J, Ullrich A, Häring T et al (2000) Preparation, characterization, and fuel cell application of new acid-base blend membranes. J New Mater Electrochem Syst 3:229–239
27.
Zurück zum Zitat Kerres JA (2001) Development of ionomer membranes for fuel cells. J Membr Sci 185:3–27CrossRef Kerres JA (2001) Development of ionomer membranes for fuel cells. J Membr Sci 185:3–27CrossRef
28.
Zurück zum Zitat Kerres J, Tang CM, Graf C (2004) Improvement of properties of polyetherketone ionomer membranes by blending and cross-linking. Ind Eng Chem Res 43:4571–4579CrossRef Kerres J, Tang CM, Graf C (2004) Improvement of properties of polyetherketone ionomer membranes by blending and cross-linking. Ind Eng Chem Res 43:4571–4579CrossRef
29.
Zurück zum Zitat Kerres J, Xing D, Schönberger F (2006) Comparative investigation of novel PBI blend ionomer membranes from nonfluorinated and partially fluorinated polyarylene ethers. J Polym Sci B Polym Phys 44:2311–2326CrossRef Kerres J, Xing D, Schönberger F (2006) Comparative investigation of novel PBI blend ionomer membranes from nonfluorinated and partially fluorinated polyarylene ethers. J Polym Sci B Polym Phys 44:2311–2326CrossRef
30.
Zurück zum Zitat Hasiotis C, Li Q, Deimede V et al (2001) Development and characterization of acid-doped polybenzimidazole-sulfonated polysulfone blend polymer electrolytes for fuel cells. J Electrochem Soc 148:A513–A519CrossRef Hasiotis C, Li Q, Deimede V et al (2001) Development and characterization of acid-doped polybenzimidazole-sulfonated polysulfone blend polymer electrolytes for fuel cells. J Electrochem Soc 148:A513–A519CrossRef
31.
Zurück zum Zitat Kawahara M, Rikukawa M, Sanui K (2000) Relationship between absorbed water and proton conductivity in sulfopropylated polybenzimidazole. Polym Adv Technol 11:544–547CrossRef Kawahara M, Rikukawa M, Sanui K (2000) Relationship between absorbed water and proton conductivity in sulfopropylated polybenzimidazole. Polym Adv Technol 11:544–547CrossRef
32.
Zurück zum Zitat Pu H, Liu Q (2004) Methanol permeability and proton conductivity of polybenzimidazole and sulfonated polybenzimidazole. Polym Int 53:1512–1516CrossRef Pu H, Liu Q (2004) Methanol permeability and proton conductivity of polybenzimidazole and sulfonated polybenzimidazole. Polym Int 53:1512–1516CrossRef
33.
Zurück zum Zitat Papadimitriou KD, Andreopoulou AK, Kallitsis JK (2010) Phosphonated fully aromatic polyethers for PEMFCs applications. J Polym Sci A Polym Chem 48:2817–2827CrossRef Papadimitriou KD, Andreopoulou AK, Kallitsis JK (2010) Phosphonated fully aromatic polyethers for PEMFCs applications. J Polym Sci A Polym Chem 48:2817–2827CrossRef
34.
Zurück zum Zitat Kalamaras I, Daletou MK, Gregoriou VG et al (2011) Sulfonated aromatic polyethers containing pyridine units as electrolytes for high temperature fuel cells. Fuel Cells 11:921–931CrossRef Kalamaras I, Daletou MK, Gregoriou VG et al (2011) Sulfonated aromatic polyethers containing pyridine units as electrolytes for high temperature fuel cells. Fuel Cells 11:921–931CrossRef
35.
Zurück zum Zitat Thomas OD, Peckham TJ, Thanganathan U et al (2010) Sulfonated polybenzimidazoles: proton conduction and acid-base crosslinking. J Polym Chem A Polym Chem 48:3640–3650CrossRef Thomas OD, Peckham TJ, Thanganathan U et al (2010) Sulfonated polybenzimidazoles: proton conduction and acid-base crosslinking. J Polym Chem A Polym Chem 48:3640–3650CrossRef
36.
Zurück zum Zitat Ng F, Peron J, Jones DJ et al (2011) Synthesis of novel proton-conducting highly sulfonated polybenzimidazoles for PEMFC and the effect of the type of bisphenyl bridge on polymer and membrane properties. J Polym Sci A Polym Chem 49:2107–2117CrossRef Ng F, Peron J, Jones DJ et al (2011) Synthesis of novel proton-conducting highly sulfonated polybenzimidazoles for PEMFC and the effect of the type of bisphenyl bridge on polymer and membrane properties. J Polym Sci A Polym Chem 49:2107–2117CrossRef
37.
Zurück zum Zitat Angioni S, Villa DC, Dal Barco S et al (2014) Polysulfonation of PBI-based membranes for HTPEMFCs: a possible way to maintain high proton transport at a low H3PO4 doping level. J Mater Chem A 2:663–671CrossRef Angioni S, Villa DC, Dal Barco S et al (2014) Polysulfonation of PBI-based membranes for HTPEMFCs: a possible way to maintain high proton transport at a low H3PO4 doping level. J Mater Chem A 2:663–671CrossRef
38.
Zurück zum Zitat Sukumar PR, Wu W, Markova D et al (2007) Functionalized polybenzimidazoles as membrane materials for fuel cells. Macromol Chem Phys 208:2258–2267CrossRef Sukumar PR, Wu W, Markova D et al (2007) Functionalized polybenzimidazoles as membrane materials for fuel cells. Macromol Chem Phys 208:2258–2267CrossRef
39.
Zurück zum Zitat Gubler L, Kramer D, Belack J et al (2007) Celtec-V, a polybenzimidazole-based membrane for the direct methanol fuel cell. J Electrochem Soc 154:B981–B987CrossRef Gubler L, Kramer D, Belack J et al (2007) Celtec-V, a polybenzimidazole-based membrane for the direct methanol fuel cell. J Electrochem Soc 154:B981–B987CrossRef
40.
Zurück zum Zitat Sinigersky V, Budurova D, Penchev H et al (2013) Polybenzimidazole-graft-polyvinylphosphonic acid proton-conducting fuel cell membranes. J Appl Polym Sci 129:1223–1231CrossRef Sinigersky V, Budurova D, Penchev H et al (2013) Polybenzimidazole-graft-polyvinylphosphonic acid proton-conducting fuel cell membranes. J Appl Polym Sci 129:1223–1231CrossRef
41.
Zurück zum Zitat Ng F, Bae B, Miyatake K et al (2011) Polybenzimidazole block sulfonated poly(arylene ether sulfone) ionomers. Chem Commun 47:8895–8897CrossRef Ng F, Bae B, Miyatake K et al (2011) Polybenzimidazole block sulfonated poly(arylene ether sulfone) ionomers. Chem Commun 47:8895–8897CrossRef
42.
Zurück zum Zitat Hasiotis C, Li Q, Deimede V et al (2001) New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole. Electrochim Acta 46:2401–2406CrossRef Hasiotis C, Li Q, Deimede V et al (2001) New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole. Electrochim Acta 46:2401–2406CrossRef
43.
Zurück zum Zitat Noshay A, Robeson LM (1976) Sulfonated polysulfone. J Appl Polym Sci 20:1885–1903CrossRef Noshay A, Robeson LM (1976) Sulfonated polysulfone. J Appl Polym Sci 20:1885–1903CrossRef
44.
Zurück zum Zitat Xing D, Kerres J (2006) Improved performance of sulfonated polyarylene ethers for proton exchange membrane fuel cells. Polym Adv Technol 17:1–7CrossRef Xing D, Kerres J (2006) Improved performance of sulfonated polyarylene ethers for proton exchange membrane fuel cells. Polym Adv Technol 17:1–7CrossRef
45.
Zurück zum Zitat Takamuku S, Jannasch P (2012) Properties and degradation of hydrocarbon fuel cell membranes: a comparative study of sulfonated poly(arylene ether sulfone)s with different positions of the acid groups. Polym Chem 3:1202–1214CrossRef Takamuku S, Jannasch P (2012) Properties and degradation of hydrocarbon fuel cell membranes: a comparative study of sulfonated poly(arylene ether sulfone)s with different positions of the acid groups. Polym Chem 3:1202–1214CrossRef
46.
Zurück zum Zitat Kerres J, Schönberger F, Chromik A et al (2008) Partially fluorinated arylene polyethers and their ternary blend membranes with PBI and H3PO4: Part I. Synthesis and characterization of polymers and binary blend membranes. Fuel Cells 8:175–187CrossRef Kerres J, Schönberger F, Chromik A et al (2008) Partially fluorinated arylene polyethers and their ternary blend membranes with PBI and H3PO4: Part I. Synthesis and characterization of polymers and binary blend membranes. Fuel Cells 8:175–187CrossRef
47.
Zurück zum Zitat Walling C (1975) Fenton’s reagent revisited. Acc Chem Res 8:125–131CrossRef Walling C (1975) Fenton’s reagent revisited. Acc Chem Res 8:125–131CrossRef
48.
Zurück zum Zitat Li Q, Jensen JO, Pan C et al (2008) Partially fluorinated arylene polyethers and their ternary blends with PBI and H3PO4: Part II. Characterizations and fuel cell tests of the ternary membranes. Fuel Cells 8:188–199CrossRef Li Q, Jensen JO, Pan C et al (2008) Partially fluorinated arylene polyethers and their ternary blends with PBI and H3PO4: Part II. Characterizations and fuel cell tests of the ternary membranes. Fuel Cells 8:188–199CrossRef
49.
Zurück zum Zitat Li QF, Rudbeck HC, Chromik A et al (2010) Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes. J Membr Sci 347:260–270CrossRef Li QF, Rudbeck HC, Chromik A et al (2010) Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes. J Membr Sci 347:260–270CrossRef
50.
Zurück zum Zitat Henschel C (2006) Membranes and electrodes for fuel cells as PEMEAS merges with E-TEK. Fuel Cells Bull 2:12–15 Henschel C (2006) Membranes and electrodes for fuel cells as PEMEAS merges with E-TEK. Fuel Cells Bull 2:12–15
51.
Zurück zum Zitat Qi ZQ, Buelte S (2006) Effect of open circuit voltage on performance and degradation of high temperature PBI-H3PO4 fuel cells. J Power Sources 161:1126–1132CrossRef Qi ZQ, Buelte S (2006) Effect of open circuit voltage on performance and degradation of high temperature PBI-H3PO4 fuel cells. J Power Sources 161:1126–1132CrossRef
54.
Zurück zum Zitat Kerres J, Ullrich A, Hein M et al (2004) Cross-linked polyaryl blend membranes for polymer electrolyte fuel cells. Fuel Cells 4:105–112CrossRef Kerres J, Ullrich A, Hein M et al (2004) Cross-linked polyaryl blend membranes for polymer electrolyte fuel cells. Fuel Cells 4:105–112CrossRef
55.
Zurück zum Zitat Chromik A, Kerres JA (2013) Degradation studies on acid-base blends for both LT and intermediate T fuel cells. Solid State Ionics 252:140–151CrossRef Chromik A, Kerres JA (2013) Degradation studies on acid-base blends for both LT and intermediate T fuel cells. Solid State Ionics 252:140–151CrossRef
56.
Zurück zum Zitat Liu G, Zhang H, Hu J et al (2006) Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI. J Power Sources 162:547–552CrossRef Liu G, Zhang H, Hu J et al (2006) Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI. J Power Sources 162:547–552CrossRef
57.
Zurück zum Zitat Steenberg T, Hjuler HA, Terkelsen C et al (2012) Roll-to-roll coated PBI membranes for high temperature PEM fuel cells. Energy Environ Sci 5:6076–6080CrossRef Steenberg T, Hjuler HA, Terkelsen C et al (2012) Roll-to-roll coated PBI membranes for high temperature PEM fuel cells. Energy Environ Sci 5:6076–6080CrossRef
58.
Zurück zum Zitat Kerres JA, Katzfuß A, Chromik A et al (2014) J Appl Polym Sci 131:39889CrossRef Kerres JA, Katzfuß A, Chromik A et al (2014) J Appl Polym Sci 131:39889CrossRef
59.
Zurück zum Zitat Hübner G, Roduner E (1999) EPR investigation of HO/radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes. J Mater Chem 9:409–418CrossRef Hübner G, Roduner E (1999) EPR investigation of HO/radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes. J Mater Chem 9:409–418CrossRef
60.
Zurück zum Zitat Assink RA, Arnold C, Hollandsworth RPJ (1991) Preparation of oxidatively stable cation-exchange membranes by the elimination of tertiary hydrogens. J Membr Sci 56:143–151CrossRef Assink RA, Arnold C, Hollandsworth RPJ (1991) Preparation of oxidatively stable cation-exchange membranes by the elimination of tertiary hydrogens. J Membr Sci 56:143–151CrossRef
61.
Zurück zum Zitat Ding J, Day M (2006) Novel highly fluorinated poly(arylene ether-1,3,4-oxadiazole)s, their preparation, and sensory properties to fluoride anion. Macromolecules 39:6054–6062CrossRef Ding J, Day M (2006) Novel highly fluorinated poly(arylene ether-1,3,4-oxadiazole)s, their preparation, and sensory properties to fluoride anion. Macromolecules 39:6054–6062CrossRef
62.
Zurück zum Zitat Hajdok I, Bona A, Werner HJ et al (2014) Synthesis and characterization of fluorinated and sulfonated poly(arylene ether-1,3,4-oxadiazole) derivatives and their blend membranes. Eur Polym J 52:76–87CrossRef Hajdok I, Bona A, Werner HJ et al (2014) Synthesis and characterization of fluorinated and sulfonated poly(arylene ether-1,3,4-oxadiazole) derivatives and their blend membranes. Eur Polym J 52:76–87CrossRef
63.
Zurück zum Zitat Sartori P, Bauer G (1978) 2,3,5,6-Tetrafluorbenzoldisulfonsäure aus Pentafluorbenzol-sulfonsäure. J Fluorine Chem 12:203–210CrossRef Sartori P, Bauer G (1978) 2,3,5,6-Tetrafluorbenzoldisulfonsäure aus Pentafluorbenzol-sulfonsäure. J Fluorine Chem 12:203–210CrossRef
64.
Zurück zum Zitat Banks RE, Burgess JE, Cheng WM et al (1965) Heterocyclic polyfluoro-compounds. Part IV. Nucleophilic substitution in pentafluoropyridine: the preparation and properties of some 4-substituted 2,3,5,6-tetrafluoro-pyridines. J Chem Soc (resumed)1965:575–581 Banks RE, Burgess JE, Cheng WM et al (1965) Heterocyclic polyfluoro-compounds. Part IV. Nucleophilic substitution in pentafluoropyridine: the preparation and properties of some 4-substituted 2,3,5,6-tetrafluoro-pyridines. J Chem Soc (resumed)1965:575–581
65.
Zurück zum Zitat Chambers RD, Hutchinson J, Musgrave WKR (1964) Polyfluoroheterocyclic compounds. Part II: Nucleophilic substitution in pentafluoropyridine. J Chem Soc (resumed)1964:3736–3739 Chambers RD, Hutchinson J, Musgrave WKR (1964) Polyfluoroheterocyclic compounds. Part II: Nucleophilic substitution in pentafluoropyridine. J Chem Soc (resumed)1964:3736–3739
66.
Zurück zum Zitat Alsop DJ, Burdon J, Tatlow JC (1962) Aromatic polyfluorocompounds. Part XI: Some replacement reactions of octafluorotoluene. J Chem Soc (resumed) 1962:1801–1805 Alsop DJ, Burdon J, Tatlow JC (1962) Aromatic polyfluorocompounds. Part XI: Some replacement reactions of octafluorotoluene. J Chem Soc (resumed) 1962:1801–1805
67.
Zurück zum Zitat Seyb C, Kerres J (2013) Novel partially fluorinated sulfonated poly(arylenethioether)s and poly(aryleneether)s prepared from octafluorotoluene and pentafluoropyridine, and their blends with PBI-Celazol. Eur Polym J 49:518–531CrossRef Seyb C, Kerres J (2013) Novel partially fluorinated sulfonated poly(arylenethioether)s and poly(aryleneether)s prepared from octafluorotoluene and pentafluoropyridine, and their blends with PBI-Celazol. Eur Polym J 49:518–531CrossRef
68.
Zurück zum Zitat Seyb C (2014) Synthese und Charakterisierung von teilfluorierten sulfonierten poly(arylen)-Ionomeren für den Einsatz in Mitteltemperaturbrennstoffzellen. Dissertation, Universität Stuttgart Seyb C (2014) Synthese und Charakterisierung von teilfluorierten sulfonierten poly(arylen)-Ionomeren für den Einsatz in Mitteltemperaturbrennstoffzellen. Dissertation, Universität Stuttgart
69.
Zurück zum Zitat Nakano T, Nagaoka T, Kawakami H (2005) Preparation of novel sulfonated block copolyimides for proton conductivity membranes. Polym Adv Technol 16:753–757CrossRef Nakano T, Nagaoka T, Kawakami H (2005) Preparation of novel sulfonated block copolyimides for proton conductivity membranes. Polym Adv Technol 16:753–757CrossRef
70.
Zurück zum Zitat Iizuka Y, Tanaka M, Kawakami H (2013) Preparation and proton conductivity of phosphoric acid-doped blend membranes composed of sulfonated block copolyimides and polybenzimidazole. Polym Int 62:703–708CrossRef Iizuka Y, Tanaka M, Kawakami H (2013) Preparation and proton conductivity of phosphoric acid-doped blend membranes composed of sulfonated block copolyimides and polybenzimidazole. Polym Int 62:703–708CrossRef
71.
Zurück zum Zitat Einsla ML, Kim YS, Hawley M et al (2008) Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity. Chem Mater 20:5636–5642CrossRef Einsla ML, Kim YS, Hawley M et al (2008) Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity. Chem Mater 20:5636–5642CrossRef
72.
Zurück zum Zitat Atanasov V, Kerres J (2011) Highly phosphonated polypentafluorostyrene. Macromolecules 44:6416–6423CrossRef Atanasov V, Kerres J (2011) Highly phosphonated polypentafluorostyrene. Macromolecules 44:6416–6423CrossRef
73.
Zurück zum Zitat Atanasov V, Gudat D, Ruffmann B et al (2013) Highly phosphonated polypentafluoro-styrene: characterization and blends with polybenzimidazole. Eur Polym J 49:3977–3985CrossRef Atanasov V, Gudat D, Ruffmann B et al (2013) Highly phosphonated polypentafluoro-styrene: characterization and blends with polybenzimidazole. Eur Polym J 49:3977–3985CrossRef
74.
Zurück zum Zitat Berber MR, Fujigaya T, Sasaki K et al (2011) Remarkably durable high temperature polymer electrolyte fuel cell based on poly(vinylphosphonic acid)-doped polybenzimidazole. Sci Rep 3:1–7 Berber MR, Fujigaya T, Sasaki K et al (2011) Remarkably durable high temperature polymer electrolyte fuel cell based on poly(vinylphosphonic acid)-doped polybenzimidazole. Sci Rep 3:1–7
75.
Zurück zum Zitat Matsumoto K, Fujigaya T, Yanagi H et al (2011) Very high performance alkali anion-exchange membrane fuel cells. Adv Funct Mater 21:1089–1094CrossRef Matsumoto K, Fujigaya T, Yanagi H et al (2011) Very high performance alkali anion-exchange membrane fuel cells. Adv Funct Mater 21:1089–1094CrossRef
76.
Zurück zum Zitat Galbiati S, Baricci A, Casalegno A et al (2013) Degradation in phosphoric acid doped polymer fuel cells: a 6000 h parametric investigation. Int J Hydrogen Energy 38:6469–6480CrossRef Galbiati S, Baricci A, Casalegno A et al (2013) Degradation in phosphoric acid doped polymer fuel cells: a 6000 h parametric investigation. Int J Hydrogen Energy 38:6469–6480CrossRef
77.
Zurück zum Zitat Papadimitriou KD, Geormezi M, Neophytides SG et al (2013) Covalent cross-linking in phosphoric acid of pyridine based aromatic polyethers bearing side double bonds for use in high temperature polymer electrolyte membrane fuel cells. J Membr Sci 433:1–9CrossRef Papadimitriou KD, Geormezi M, Neophytides SG et al (2013) Covalent cross-linking in phosphoric acid of pyridine based aromatic polyethers bearing side double bonds for use in high temperature polymer electrolyte membrane fuel cells. J Membr Sci 433:1–9CrossRef
78.
Zurück zum Zitat Kerres J, Zhang W, Häring T (2004) Covalently cross-linked ionomer (blend) membranes for fuel cells. J New Mater Electrochem Syst 7:299–309 Kerres J, Zhang W, Häring T (2004) Covalently cross-linked ionomer (blend) membranes for fuel cells. J New Mater Electrochem Syst 7:299–309
79.
Zurück zum Zitat Yang JS, Cleemann LN, Steenberg T et al (2014) High molecular weight polybenzimidazole membranes for high temperature PEMFC. Fuel Cells 14:7–15CrossRef Yang JS, Cleemann LN, Steenberg T et al (2014) High molecular weight polybenzimidazole membranes for high temperature PEMFC. Fuel Cells 14:7–15CrossRef
Metadaten
Titel
Applications of Acid–Base Blend Concepts to Intermediate Temperature Membranes
verfasst von
Jochen Kerres
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-17082-4_4