Skip to main content

2013 | OriginalPaper | Buchkapitel

2. Applications of Electrochemistry in the Design and Development of Medical Technologies and Devices

verfasst von : Roy Asaf, Shany Blum

Erschienen in: Applications of Electrochemistry in Medicine

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Medicine comprise a vast field of research that has crossed the demarcation lines between disciplines over the past decades becoming a multidisciplinary milieu that encompasses a variety of fields from basic sciences (e.g., mathematics and physics) to engineering, and even social sciences and epidemiology. All of these directly contribute to the evolution of medical technologies. In other words, multidisciplinary is a key concept in the evolution of modern medical devices and technologies. It is clear now that the development of biocompatible and durable medical devices rests upon implementation of discoveries from all basic sciences rather than major breakthrough in one field. This will be the scarlet thread in the following sections of this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol. 1987;50:344–6. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol. 1987;50:344–6.
2.
Zurück zum Zitat Weaver FM, Follett K, Stern M, Hur K, Harris C, Jr Marks WJ, et al. Bilateral deep brain stimulation vs. best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009;301:63–73.CrossRef Weaver FM, Follett K, Stern M, Hur K, Harris C, Jr Marks WJ, et al. Bilateral deep brain stimulation vs. best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009;301:63–73.CrossRef
3.
Zurück zum Zitat Kleiner-Fisman G, Herzog J, Fisman DN, Tamma F, Lyons KE, Pahwa R, et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord. 2006;21 Suppl 14:S290–304.CrossRef Kleiner-Fisman G, Herzog J, Fisman DN, Tamma F, Lyons KE, Pahwa R, et al. Subthalamic nucleus deep brain stimulation: summary and meta-­analysis of outcomes. Mov Disord. 2006;21 Suppl 14:S290–304.CrossRef
4.
Zurück zum Zitat Geddes LA, Roeder R. Criteria for the selection of materials for implanted electrodes. Ann Biomed Eng. 2003;31:879–90.CrossRef Geddes LA, Roeder R. Criteria for the selection of materials for implanted electrodes. Ann Biomed Eng. 2003;31:879–90.CrossRef
5.
Zurück zum Zitat Stokes KB, Bornzin GA, Weabusch WA. A steroid-electing, low-threshold, low polarizing electrode. In: Steinkoff D, editor. Cardiac pacing. Darnstadt: Steinkoff; 1983. p. 369.CrossRef Stokes KB, Bornzin GA, Weabusch WA. A steroid-electing, low-threshold, low polarizing electrode. In: Steinkoff D, editor. Cardiac pacing. Darnstadt: Steinkoff; 1983. p. 369.CrossRef
6.
Zurück zum Zitat Schwan HP. Determination of biological impedances. In: Nastuk WL, editor. Physical techniques in biological research. New York: Academic; 1963. Schwan HP. Determination of biological impedances. In: Nastuk WL, editor. Physical techniques in biological research. New York: Academic; 1963.
7.
Zurück zum Zitat Ge Q, Yaxiong L, Hongzhong L, Yucheng D, Xiaping Q, Rukun D. Fabrication of bio-microelectrodes for deep-brain stimulation using microfabrication and electroplating process. Microsyst Technol. 2009;15:933–9.CrossRef Ge Q, Yaxiong L, Hongzhong L, Yucheng D, Xiaping Q, Rukun D. Fabrication of bio-microelectrodes for deep-brain stimulation using microfabrication and electroplating process. Microsyst Technol. 2009;15:933–9.CrossRef
8.
Zurück zum Zitat Motta PS, Judy JW. Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-D electroplating process. IEEE Trans Biomed Eng. 2005;52(5):923.CrossRef Motta PS, Judy JW. Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-D electroplating process. IEEE Trans Biomed Eng. 2005;52(5):923.CrossRef
9.
Zurück zum Zitat Cui X, Lee VA, Raphael Y, Wiler JA, Hetke JF, Anderson DJ, et al. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J Biomed Mater Res. 2001;56:261–72.CrossRef Cui X, Lee VA, Raphael Y, Wiler JA, Hetke JF, Anderson DJ, et al. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J Biomed Mater Res. 2001;56:261–72.CrossRef
10.
Zurück zum Zitat Lee KH, Blaha CD, Garris PA, Mohseni P, Horne AE, Bennet KE, et al. Evolution of deep brain stimulation: human electrometer and smart devices supporting the next generation of therapy. Neuromodulation. 2009;12(2):85–103.CrossRef Lee KH, Blaha CD, Garris PA, Mohseni P, Horne AE, Bennet KE, et al. Evolution of deep brain stimulation: human electrometer and smart devices supporting the next generation of therapy. Neuromodulation. 2009;12(2):85–103.CrossRef
11.
Zurück zum Zitat Perea G, Araque A. GLIA modulates synaptic transmission. Brain Res Rev. 2010;63:93–102.CrossRef Perea G, Araque A. GLIA modulates synaptic transmission. Brain Res Rev. 2010;63:93–102.CrossRef
12.
Zurück zum Zitat King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998;21:1414–31.CrossRef King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998;21:1414–31.CrossRef
13.
Zurück zum Zitat Iswantini D, Kano K, Ikeda T. Kinetics and thermodynamics of activation of quinoprotein glucose dehydrogenase apoenzyme in vivo and catalytic activity of the activated enzyme in Escherichia coli cells. Biochem J. 2000;350(Pt 3):917–23.CrossRef Iswantini D, Kano K, Ikeda T. Kinetics and thermodynamics of activation of quinoprotein glucose dehydrogenase apoenzyme in vivo and catalytic activity of the activated enzyme in Escherichia coli cells. Biochem J. 2000;350(Pt 3):917–23.CrossRef
14.
Zurück zum Zitat Heller A, Feldman B. Electrochemical glucose sensors and their applications in diabetes management. Chem Rev. 2008;108:2482–505.CrossRef Heller A, Feldman B. Electrochemical glucose sensors and their applications in diabetes management. Chem Rev. 2008;108:2482–505.CrossRef
15.
Zurück zum Zitat Malmstadt HV, Pardue HL. Specific enzymatic determination of glucose in blood serum or plasma by an automatic potentiometric reaction-rate method. Clin Chem. 1962;8:606–15. Malmstadt HV, Pardue HL. Specific enzymatic determination of glucose in blood serum or plasma by an automatic potentiometric reaction-rate method. Clin Chem. 1962;8:606–15.
16.
Zurück zum Zitat Pardue HL, Simon RK. Automatic amperometric assay of glucose oxidase. Anal Biochem. 1964;9:204–10.CrossRef Pardue HL, Simon RK. Automatic amperometric assay of glucose oxidase. Anal Biochem. 1964;9:204–10.CrossRef
17.
18.
Zurück zum Zitat Updike SJ, Hicks GP. Reagentless substrate analysis with immobilized enzymes. Science. 1967;158:270–2.CrossRef Updike SJ, Hicks GP. Reagentless substrate analysis with immobilized enzymes. Science. 1967;158:270–2.CrossRef
19.
Zurück zum Zitat Kulys J, Tetianec L, Ziemys AJ. Probing Aspergillus niger glucose oxidase with pentacyanoferrate (III) aza- and thia-complexes. Inorg Biochem. 2006;100:1614–22.CrossRef Kulys J, Tetianec L, Ziemys AJ. Probing Aspergillus niger glucose oxidase with pentacyanoferrate (III) aza- and thia-complexes. Inorg Biochem. 2006;100:1614–22.CrossRef
20.
Zurück zum Zitat Kulys JJ, Samalius AS, Svirmickas GJ. Electron exchange between the enzyme active center and organic metal. FEBS Lett. 1980;114:7–10.CrossRef Kulys JJ, Samalius AS, Svirmickas GJ. Electron exchange between the enzyme active center and organic metal. FEBS Lett. 1980;114:7–10.CrossRef
21.
Zurück zum Zitat Nikolaus N, Strehlitz B. Amperometric lactate biosensors and their application in (sports) medicine, or life quality and wellbeing. Microchim Acta. 2007;160(1–2):15–55. Nikolaus N, Strehlitz B. Amperometric lactate biosensors and their ­application in (sports) medicine, or life quality and wellbeing. Microchim Acta. 2007;160(1–2):15–55.
22.
Zurück zum Zitat Matthews DR, Holman RR, Bown E, Steemson EJ, Watson A, Hughes S, et al. Pen-sized digital 30-second blood glucose meter. Lancet. 1987;1:778–9.CrossRef Matthews DR, Holman RR, Bown E, Steemson EJ, Watson A, Hughes S, et al. Pen-sized digital 30-second blood glucose meter. Lancet. 1987;1:778–9.CrossRef
23.
Zurück zum Zitat Heller A. Integrated medical feedback systems for drug delivery. AIChE J. 2005;51:1054–66.CrossRef Heller A. Integrated medical feedback systems for drug delivery. AIChE J. 2005;51:1054–66.CrossRef
24.
Zurück zum Zitat Yang DT, Robetorye RS, Rodgers GM. Home prothrombin time monitoring: a literature analysis. Am J Hematol. 2004;77:177–86.CrossRef Yang DT, Robetorye RS, Rodgers GM. Home prothrombin time monitoring: a literature analysis. Am J Hematol. 2004;77:177–86.CrossRef
25.
Zurück zum Zitat Cook SD, Thomas KA, Harding AE, Thomas KA, Harding AE, Collins CL, et al. The in vivo performance of 250 internal fixation devices: a follow-up study. Biomaterials. 1987;8:177–84.CrossRef Cook SD, Thomas KA, Harding AE, Thomas KA, Harding AE, Collins CL, et al. The in vivo performance of 250 internal fixation devices: a follow-up study. Biomaterials. 1987;8:177–84.CrossRef
26.
Zurück zum Zitat Jacobs JJ, Gilbert JL, Urban RM. Current concepts review—corrosion of metal orthopaedic implants. J Bone Joint Surg Am. 1998;80:268–82. Jacobs JJ, Gilbert JL, Urban RM. Current concepts review—corrosion of metal orthopaedic implants. J Bone Joint Surg Am. 1998;80:268–82.
27.
Zurück zum Zitat Shabalovskaya S, Anderegg J, Van Humbeeck J. Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater. 2008;4:447–67.CrossRef Shabalovskaya S, Anderegg J, Van Humbeeck J. Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater. 2008;4:447–67.CrossRef
28.
Zurück zum Zitat Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;18:1621–39.CrossRef Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;18:1621–39.CrossRef
29.
Zurück zum Zitat Alkhateeb E, Virtanen S. Influence of surface self-modification in Ringer’s solution on the passive behavior of titanium. J Biomed Mater Res A. 2005;4:934–40. Alkhateeb E, Virtanen S. Influence of surface self-modification in Ringer’s solution on the passive behavior of titanium. J Biomed Mater Res A. 2005;4:934–40.
30.
Zurück zum Zitat Duan K, Wang R. Surface modifications of bone implants through wet chemistry. J Mater Chem. 2006;16:2309–21.CrossRef Duan K, Wang R. Surface modifications of bone implants through wet chemistry. J Mater Chem. 2006;16:2309–21.CrossRef
31.
Zurück zum Zitat Rajter A, Kaluza GL, Yang Q, Hakimi D, Liu D, Tsui M, et al. Hydroxyapatite-coated cardiovascular stents. Eurointervention. 2006;2:113–5. Rajter A, Kaluza GL, Yang Q, Hakimi D, Liu D, Tsui M, et al. Hydroxyapatite-coated cardiovascular stents. Eurointervention. 2006;2:113–5.
32.
Zurück zum Zitat Choi J, Bogdanski D, Köller M, Esenwein SA, Müller D, Muhr G, et al. Calcium phosphate coating of nickel–titanium shape-memory alloys. Coating procedure and adherence of leukocytes and platelets. Biomaterials. 2003;24:3689–96.CrossRef Choi J, Bogdanski D, Köller M, Esenwein SA, Müller D, Muhr G, et al. Calcium phosphate coating of nickel–titanium shape-memory alloys. Coating procedure and adherence of leukocytes and platelets. Biomaterials. 2003;24:3689–96.CrossRef
33.
Zurück zum Zitat Zhang Q, Leng Y. Electrochemical activation of titanium for biomimetic coating of calcium phosphate. Biomaterials. 2005;26:3853–9.CrossRef Zhang Q, Leng Y. Electrochemical activation of titanium for biomimetic coating of calcium phosphate. Biomaterials. 2005;26:3853–9.CrossRef
34.
Zurück zum Zitat Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. J Mater Sci Mater Med. 1998;9:67–72.CrossRef Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. J Mater Sci Mater Med. 1998;9:67–72.CrossRef
35.
Zurück zum Zitat Lin S, LeGeros RZ, LeGeros JP. Adherent octacalciumphosphate coating on titanium alloy using modulated electrochemical deposition method. J Biomed Mater Res. 2003;66A(4):819–28.CrossRef Lin S, LeGeros RZ, LeGeros JP. Adherent octacalciumphosphate coating on titanium alloy using modulated electrochemical deposition method. J Biomed Mater Res. 2003;66A(4):819–28.CrossRef
36.
Zurück zum Zitat Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 2008;108:4754–83.CrossRef Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 2008;108:4754–83.CrossRef
37.
Zurück zum Zitat Shu-Hua T, Eun-Jung L, Chee-Sung P, Won-Young C, Du-Sik S, Hyoun-Ee K. Bioactive nanocomposite coatings of collagen/hydroxyapatite on titanium substrates. J Mater Sci Mater Med. 2008;19:2453–61.CrossRef Shu-Hua T, Eun-Jung L, Chee-Sung P, Won-Young C, Du-Sik S, Hyoun-Ee K. Bioactive nanocomposite coatings of collagen/hydroxyapatite on titanium substrates. J Mater Sci Mater Med. 2008;19:2453–61.CrossRef
38.
Zurück zum Zitat Fattori R, Piva T. Drug-eluting stents in vascular intervention. Lancet. 2003;361(9353):247–9.CrossRef Fattori R, Piva T. Drug-eluting stents in vascular intervention. Lancet. 2003;361(9353):247–9.CrossRef
39.
Zurück zum Zitat Gertner ME, Schlesinger M. Drug delivery from electrochemically deposited thin metal films. Electrochem Solid-State Lett. 2003;6(4):4–6.CrossRef Gertner ME, Schlesinger M. Drug delivery from electrochemically deposited thin metal films. Electrochem Solid-State Lett. 2003;6(4):4–6.CrossRef
40.
Zurück zum Zitat Duan K, Fan Y, Wang R. Electrolytic deposition of calcium etidronate drug coating on titanium substrate. J Biomed Mater Res B Appl Biomater. 2005;72:43–51.CrossRef Duan K, Fan Y, Wang R. Electrolytic deposition of calcium etidronate drug coating on titanium substrate. J Biomed Mater Res B Appl Biomater. 2005;72:43–51.CrossRef
41.
Zurück zum Zitat Ghicov A, Tsuchiya H, Macak JM, Schmuki P. Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun. 2005;7:505–9.CrossRef Ghicov A, Tsuchiya H, Macak JM, Schmuki P. Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun. 2005;7:505–9.CrossRef
42.
Zurück zum Zitat Gultepe E, Nagesha D, Sridhar S, Amiji M. Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv Drug Deliv Rev. 2010;62:305–15.CrossRef Gultepe E, Nagesha D, Sridhar S, Amiji M. Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv Drug Deliv Rev. 2010;62:305–15.CrossRef
43.
Zurück zum Zitat Zilberman M, Eberhart RC. Drug-eluting bioresorbable stents for various applications. Annu Rev Biomed Eng. 2006;8:153–80.CrossRef Zilberman M, Eberhart RC. Drug-eluting bioresorbable stents for various applications. Annu Rev Biomed Eng. 2006;8:153–80.CrossRef
Metadaten
Titel
Applications of Electrochemistry in the Design and Development of Medical Technologies and Devices
verfasst von
Roy Asaf
Shany Blum
Copyright-Jahr
2013
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4614-6148-7_2