Skip to main content

2018 | OriginalPaper | Buchkapitel

18. Applications of Flow-Induced Vibration in Porous Media

verfasst von : Khalil Khanafer, Mohamed Gaith, Abdalla AlAmiri

Erschienen in: Handbook of Thermal Science and Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter reviews the applications of flow-induced vibration using fluid-structure interaction in porous media. Two examples are discussed, namely, fluid structure interaction analysis of non-Darcian effects on natural convection in a porous enclosure and the analysis of pulsatile blood flow and heat transfer in living tissues during thermal therapy. The transport equations are solved for various pertinent parameters using a finite element formulation based on the Galerkin method of weighted residuals. The fluid domain is described by an Arbitrary Lagrangian–Eulerian (ALE) formulation that is fully coupled to the structure domain. Different flow models for porous media such as Darcy’s law model and Darcy-Forchheimer model are considered in this investigation. Comparisons of isotherms, streamlines, average Nusselt number, and vibration characteristics are presented. The results presented in this review show that the Rayleigh number and the elasticity of the flexible wall have a profound effect on vibration characteristics, the shape of the flexible wall, and consequently on the heat transfer enhancement within the enclosure. For hyperthermia application, larger vessels and flexible arterial wall models exhibited higher variation of the temperature within the treated tumor owning to the enhanced mixing in the vicinity of the bottom wall.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adjlout L, Imine O, Azzi A, Belkadi M (2002) Laminar natural convection in an inclined cavity with a wavy-wall. Int J Heat Mass Transf 45:2141–2152CrossRef Adjlout L, Imine O, Azzi A, Belkadi M (2002) Laminar natural convection in an inclined cavity with a wavy-wall. Int J Heat Mass Transf 45:2141–2152CrossRef
Zurück zum Zitat Ai L, Vafai K (2006) A coupling model for macromolecule transport in a stenosed arterial wall. Int J Heat Mass Transf 49:1568–1591CrossRef Ai L, Vafai K (2006) A coupling model for macromolecule transport in a stenosed arterial wall. Int J Heat Mass Transf 49:1568–1591CrossRef
Zurück zum Zitat AlAmiri A (2013) Fluid-structure interaction analysis of pulsatile blood flow and heat transfer in living tissues during thermal therapy. J Fluids Eng 135:041103–004110CrossRef AlAmiri A (2013) Fluid-structure interaction analysis of pulsatile blood flow and heat transfer in living tissues during thermal therapy. J Fluids Eng 135:041103–004110CrossRef
Zurück zum Zitat Alamiri A, Khanafer K (2011) Fluid-structure interaction analysis of mixed convection heat transfer in a lid-driven cavity with a flexible bottom wall. Int J Heat Mass Transf 54:3826–3836CrossRef Alamiri A, Khanafer K (2011) Fluid-structure interaction analysis of mixed convection heat transfer in a lid-driven cavity with a flexible bottom wall. Int J Heat Mass Transf 54:3826–3836CrossRef
Zurück zum Zitat AlAmiri A, Khanafer K, Vafai K (2014) Fluid-structure interactions in a tissue during hyperthermia. Numer Heat Transf 66:1–16CrossRef AlAmiri A, Khanafer K, Vafai K (2014) Fluid-structure interactions in a tissue during hyperthermia. Numer Heat Transf 66:1–16CrossRef
Zurück zum Zitat Amiri A, Vafai K (1994) Analysis of dispersion effects nonthermal equilibrium non-Darcian variable porosity incompressible-flow through porous-media. Int J Heat Mass Transf 37:939–954CrossRef Amiri A, Vafai K (1994) Analysis of dispersion effects nonthermal equilibrium non-Darcian variable porosity incompressible-flow through porous-media. Int J Heat Mass Transf 37:939–954CrossRef
Zurück zum Zitat Amiri A, Vafai K (1998) Transient analysis of incompressible flow through a packed bed. Int J Heat Mass Transf 41:4259–4279CrossRef Amiri A, Vafai K (1998) Transient analysis of incompressible flow through a packed bed. Int J Heat Mass Transf 41:4259–4279CrossRef
Zurück zum Zitat Arkin H, Xu LX, Holmes KR (1994) Recent developments in modeling heat transfer in blood perfused tissues. IEEE Trans Biomed Eng 41:97–107CrossRef Arkin H, Xu LX, Holmes KR (1994) Recent developments in modeling heat transfer in blood perfused tissues. IEEE Trans Biomed Eng 41:97–107CrossRef
Zurück zum Zitat Baytas AC, Pop I (1999) Free convection in oblique enclosures filled with a porous medium. Int J Heat Mass Transf 42:1047–1057CrossRef Baytas AC, Pop I (1999) Free convection in oblique enclosures filled with a porous medium. Int J Heat Mass Transf 42:1047–1057CrossRef
Zurück zum Zitat Charny CK, Levin RL (1989) Bioheat transfer in a branching countercurrent network during hyperthermia. ASME J Biomech Eng 111:263–270CrossRef Charny CK, Levin RL (1989) Bioheat transfer in a branching countercurrent network during hyperthermia. ASME J Biomech Eng 111:263–270CrossRef
Zurück zum Zitat Chung S, Vafai K (2012) Effect of the fluid-structure interactions on low-density lipoprotein within a multi-layered arterial wall. J Biomech 45:371–381CrossRef Chung S, Vafai K (2012) Effect of the fluid-structure interactions on low-density lipoprotein within a multi-layered arterial wall. J Biomech 45:371–381CrossRef
Zurück zum Zitat Craciunescu OI, Clegg ST (2001) Pulsatile blood flow effects on temperature distribution and heat transfer in rigid vessels. ASME J Biomech Eng 123:500–505CrossRef Craciunescu OI, Clegg ST (2001) Pulsatile blood flow effects on temperature distribution and heat transfer in rigid vessels. ASME J Biomech Eng 123:500–505CrossRef
Zurück zum Zitat Dalal A, Das MK (2006) Natural convection in a cavity with a wavy wall heated from below and uniformly cooled from the top and both sides. J Heat Transf 128:717–725CrossRef Dalal A, Das MK (2006) Natural convection in a cavity with a wavy wall heated from below and uniformly cooled from the top and both sides. J Heat Transf 128:717–725CrossRef
Zurück zum Zitat Das PK, Mahmud S (2003) Numerical investigation of natural convection inside a wavy enclosure. Int J Therm Sci 42:397–406CrossRef Das PK, Mahmud S (2003) Numerical investigation of natural convection inside a wavy enclosure. Int J Therm Sci 42:397–406CrossRef
Zurück zum Zitat Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94 Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94
Zurück zum Zitat Hadim H, Vafai K (2000) Overview of current computational studies of heat transfer in porous media and their applications-forced convection and multiphase transport. Adv Numer Heat Transfer 2:291–330. Taylor and Francis, NY Hadim H, Vafai K (2000) Overview of current computational studies of heat transfer in porous media and their applications-forced convection and multiphase transport. Adv Numer Heat Transfer 2:291–330. Taylor and Francis, NY
Zurück zum Zitat Iasiello M, Vafai K, Andreozzi A, Bianco N (2016) Low-density lipoprotein transport through an arterial wall under hyperthermia and hypertension conditions – an analytical solution. J Biomech 49:193–204CrossRef Iasiello M, Vafai K, Andreozzi A, Bianco N (2016) Low-density lipoprotein transport through an arterial wall under hyperthermia and hypertension conditions – an analytical solution. J Biomech 49:193–204CrossRef
Zurück zum Zitat Khakpour M, Vafai K (2008) A critical assessment of arterial transport models. Int J Heat Mass Transf 51:807–822CrossRef Khakpour M, Vafai K (2008) A critical assessment of arterial transport models. Int J Heat Mass Transf 51:807–822CrossRef
Zurück zum Zitat Khaled A-RA, Vafai K (2002) Flow and heat transfer inside thin films supported by soft seals in the presence of internal and external pressure pulsations. Int J Heat Mass Transf 45:5107–5115CrossRef Khaled A-RA, Vafai K (2002) Flow and heat transfer inside thin films supported by soft seals in the presence of internal and external pressure pulsations. Int J Heat Mass Transf 45:5107–5115CrossRef
Zurück zum Zitat Khaled A-RA, Vafai K (2003a) The role of porous media in modeling flow and heat transfer in biological tissues. Int J Heat Mass Transf 46:4989–5003CrossRef Khaled A-RA, Vafai K (2003a) The role of porous media in modeling flow and heat transfer in biological tissues. Int J Heat Mass Transf 46:4989–5003CrossRef
Zurück zum Zitat Khaled A-RA, Vafai K (2003b) Analysis of flow and heat transfer inside oscillatory squeezed thin films subject to a varying clearance. Int J Heat Mass Transf 46:631–641CrossRef Khaled A-RA, Vafai K (2003b) Analysis of flow and heat transfer inside oscillatory squeezed thin films subject to a varying clearance. Int J Heat Mass Transf 46:631–641CrossRef
Zurück zum Zitat Khaled ARA, Vafai K (2004a) Optimization modeling of analyte adhesion over an inclined microcantilever-based biosensor. J Micromech Microeng 14:1220–1229CrossRef Khaled ARA, Vafai K (2004a) Optimization modeling of analyte adhesion over an inclined microcantilever-based biosensor. J Micromech Microeng 14:1220–1229CrossRef
Zurück zum Zitat Khaled ARA, Vafai K (2004b) Analysis of oscillatory flow disturbances and thermal characteristics inside fluidic cells due to fluid leakage and wall slip conditions. J Biomech 3:721–729CrossRef Khaled ARA, Vafai K (2004b) Analysis of oscillatory flow disturbances and thermal characteristics inside fluidic cells due to fluid leakage and wall slip conditions. J Biomech 3:721–729CrossRef
Zurück zum Zitat Khaled ARA, Vafai K, Yang M, Zhang X, Ozkan CS (2003) Analysis, control and augmentation of microcantilever deflections in bio-sensing systems. J Sens Actuators B 94:103–115CrossRef Khaled ARA, Vafai K, Yang M, Zhang X, Ozkan CS (2003) Analysis, control and augmentation of microcantilever deflections in bio-sensing systems. J Sens Actuators B 94:103–115CrossRef
Zurück zum Zitat Khanafer K (2013) Fluid-structure interaction analysis of non-Darcian effects on natural convection in a porous enclosure. Int J Heat Mass Transf 58:382–394CrossRef Khanafer K (2013) Fluid-structure interaction analysis of non-Darcian effects on natural convection in a porous enclosure. Int J Heat Mass Transf 58:382–394CrossRef
Zurück zum Zitat Khanafer K, Berguer R (2009) Fluid–structure interaction analysis of turbulent pulsatile flow within a layered aortic wall as related to aortic dissection. J Biomech 42:2642–2648CrossRef Khanafer K, Berguer R (2009) Fluid–structure interaction analysis of turbulent pulsatile flow within a layered aortic wall as related to aortic dissection. J Biomech 42:2642–2648CrossRef
Zurück zum Zitat Khanafer K, Vafai K (2001) Isothermal surface production and regulation for high heat flux applications utilizing porous inserts. Int J Heat Mass Transf 44:2933–2947CrossRef Khanafer K, Vafai K (2001) Isothermal surface production and regulation for high heat flux applications utilizing porous inserts. Int J Heat Mass Transf 44:2933–2947CrossRef
Zurück zum Zitat Khanafer K, Vafai K (2006) The role of porous media in biomedical engineering as related to magnetic resonance imaging and drug delivery. Heat Mass Transf 42:939–953CrossRef Khanafer K, Vafai K (2006) The role of porous media in biomedical engineering as related to magnetic resonance imaging and drug delivery. Heat Mass Transf 42:939–953CrossRef
Zurück zum Zitat Khanafer K, Vafai K (2009) Synthesis of mathematical models representing bioheat transport, Chapter 1. In: Advances in numerical heat transfer, vol III. CRC Press, New York, pp 1–28 Khanafer K, Vafai K (2009) Synthesis of mathematical models representing bioheat transport, Chapter 1. In: Advances in numerical heat transfer, vol III. CRC Press, New York, pp 1–28
Zurück zum Zitat Khanafer K, Khaled ARA, Vafai K (2004) Spatial optimization of an array of aligned microcantilever biosensors. J Micromech Microeng 14:1328–1336CrossRef Khanafer K, Khaled ARA, Vafai K (2004) Spatial optimization of an array of aligned microcantilever biosensors. J Micromech Microeng 14:1328–1336CrossRef
Zurück zum Zitat Khanafer K, Bull JL, Pop I, Berguer R (2007) Influence of pulsative blood flow and heating scheme on the temperature distribution during hyperthermia treatment. Int J Heat Mass Transf 50:4883–4890CrossRef Khanafer K, Bull JL, Pop I, Berguer R (2007) Influence of pulsative blood flow and heating scheme on the temperature distribution during hyperthermia treatment. Int J Heat Mass Transf 50:4883–4890CrossRef
Zurück zum Zitat Khanafer K, Al-Azmi B, Marafie A, Pop I (2009a) Non-Darcian effects on natural convection heat transfer in a wavy porous enclosure. Int J Heat Mass Transf 52:1887–1896CrossRef Khanafer K, Al-Azmi B, Marafie A, Pop I (2009a) Non-Darcian effects on natural convection heat transfer in a wavy porous enclosure. Int J Heat Mass Transf 52:1887–1896CrossRef
Zurück zum Zitat Khanafer K, Bull JL, Berguer R (2009b) Fluid–structure interaction of turbulent pulsatile flow within a flexible wall axisymmetric aortic aneurysm model. Eur J Mech B-Fluids 28:88–102CrossRef Khanafer K, Bull JL, Berguer R (2009b) Fluid–structure interaction of turbulent pulsatile flow within a flexible wall axisymmetric aortic aneurysm model. Eur J Mech B-Fluids 28:88–102CrossRef
Zurück zum Zitat Khanafer K, Alamiri A, Pop I (2010) Fluid-structure interaction analysis of flow and heat transfer characteristics around a flexible microcantilever in a fluidic cell. Int J Heat Mass Transf 53:1646–1653CrossRef Khanafer K, Alamiri A, Pop I (2010) Fluid-structure interaction analysis of flow and heat transfer characteristics around a flexible microcantilever in a fluidic cell. Int J Heat Mass Transf 53:1646–1653CrossRef
Zurück zum Zitat Khanafer K, Vafai K, Gaith M (2016) Fluid–structure interaction analysis of flow and heat transfer characteristics around a flexible microcantilever in a fluidic cell. Int Commun Heat Mass Transf 75:315–322CrossRef Khanafer K, Vafai K, Gaith M (2016) Fluid–structure interaction analysis of flow and heat transfer characteristics around a flexible microcantilever in a fluidic cell. Int Commun Heat Mass Transf 75:315–322CrossRef
Zurück zum Zitat Kumar BVR (2000) A study of free convection induced by a vertical wavy surface with heat flux in a porous enclosure. Numer Heat Transfer A: Appl 37:493–510CrossRef Kumar BVR (2000) A study of free convection induced by a vertical wavy surface with heat flux in a porous enclosure. Numer Heat Transfer A: Appl 37:493–510CrossRef
Zurück zum Zitat Kumar BVR, Shalini RKBV (2003) Free convection in a non-Darcian wavy porous enclosure. Int J Eng Sci 41:1827–1848CrossRef Kumar BVR, Shalini RKBV (2003) Free convection in a non-Darcian wavy porous enclosure. Int J Eng Sci 41:1827–1848CrossRef
Zurück zum Zitat Lauriat G, Prasad V (1989) Non-Darcian effects on natural convection in a vertical porous enclosure. Int J Heat Mass Transf 32:2135–2148CrossRef Lauriat G, Prasad V (1989) Non-Darcian effects on natural convection in a vertical porous enclosure. Int J Heat Mass Transf 32:2135–2148CrossRef
Zurück zum Zitat Mahjoob S, Vafai K (2009) Analytical characterization of heat transfer through biological media incorporating hyperthermia treatment. Int J Heat Mass Transf 52:1608–1618CrossRef Mahjoob S, Vafai K (2009) Analytical characterization of heat transfer through biological media incorporating hyperthermia treatment. Int J Heat Mass Transf 52:1608–1618CrossRef
Zurück zum Zitat Mahmud S, Das PK, Hyder N, Islam AK (2002) Free convection in an enclosure with vertical wavy walls. Int J Therm Sci 41:440–446CrossRef Mahmud S, Das PK, Hyder N, Islam AK (2002) Free convection in an enclosure with vertical wavy walls. Int J Therm Sci 41:440–446CrossRef
Zurück zum Zitat Misirlioglu A, Baytas AC, Pop I (2005) Free convection in a wavy cavity filled with a porous medium. Int J Heat Mass Transf 48:1840–1850CrossRef Misirlioglu A, Baytas AC, Pop I (2005) Free convection in a wavy cavity filled with a porous medium. Int J Heat Mass Transf 48:1840–1850CrossRef
Zurück zum Zitat Misirlioglu A, Baytas AC, Pop I (2006) Natural convection inside an inclined wavy enclosure filled with a porous medium. Transport Porous Med 64:229–246CrossRef Misirlioglu A, Baytas AC, Pop I (2006) Natural convection inside an inclined wavy enclosure filled with a porous medium. Transport Porous Med 64:229–246CrossRef
Zurück zum Zitat Moya SL, Ramos E, Sen M (1987) Numerical study of natural convection in a tilted rectangular porous material. Int J Heat Mass Transf 30:741–756CrossRef Moya SL, Ramos E, Sen M (1987) Numerical study of natural convection in a tilted rectangular porous material. Int J Heat Mass Transf 30:741–756CrossRef
Zurück zum Zitat Murthy PVSN, Kumar BVR, Singh P (1997) Natural convection heat transfer from a horizontal wavy surface in a porous enclosure. Numer Heat Transf A Appl 31:207–221CrossRef Murthy PVSN, Kumar BVR, Singh P (1997) Natural convection heat transfer from a horizontal wavy surface in a porous enclosure. Numer Heat Transf A Appl 31:207–221CrossRef
Zurück zum Zitat Nakamura M, Nakamura T, Tanaka T (2000) A computational study of viscous flow in a transversely oscillating channel. JSME Int J Ser C 434:837–844CrossRef Nakamura M, Nakamura T, Tanaka T (2000) A computational study of viscous flow in a transversely oscillating channel. JSME Int J Ser C 434:837–844CrossRef
Zurück zum Zitat Nakamura M, Sugawara M, Kozuka M (2001) Heat transfer characteristics in a two-dimensional channel with oscillating wall. Heat Trans Asian Res 304:280–292CrossRef Nakamura M, Sugawara M, Kozuka M (2001) Heat transfer characteristics in a two-dimensional channel with oscillating wall. Heat Trans Asian Res 304:280–292CrossRef
Zurück zum Zitat Nakayama A, Kuwahara F (2008) A general bioheat transfer model based on the theory of porous media. Int J Heat Mass Transf 51:3190–3199CrossRef Nakayama A, Kuwahara F (2008) A general bioheat transfer model based on the theory of porous media. Int J Heat Mass Transf 51:3190–3199CrossRef
Zurück zum Zitat Nield DA, Bejan A (1995) Convection in porous media, 2nd edn. Springer, Berlin/Heidelberg/New YorkMATH Nield DA, Bejan A (1995) Convection in porous media, 2nd edn. Springer, Berlin/Heidelberg/New YorkMATH
Zurück zum Zitat Nithiarasu P, Seetharamu KN, Sundararajan T (1997) Natural convective heat transfer in a fluid saturated variable porosity medium. Int J Heat Mass Transf 40:3955–3967CrossRef Nithiarasu P, Seetharamu KN, Sundararajan T (1997) Natural convective heat transfer in a fluid saturated variable porosity medium. Int J Heat Mass Transf 40:3955–3967CrossRef
Zurück zum Zitat Pennes HH (1948) Analysis of tissue and arterial blood temperature in the resting human forearm. J Appl Physiol 1:93–122CrossRef Pennes HH (1948) Analysis of tissue and arterial blood temperature in the resting human forearm. J Appl Physiol 1:93–122CrossRef
Zurück zum Zitat Prosi M, Zunino P, Perktold K, Quarteroni A (2005) Mathematical and numerical models for transfer of low-density lipoprotein through the arterial walls: a new methodology for the model set up with applications to the study of disturbed laminar flow. J Biomech 38:903–917CrossRef Prosi M, Zunino P, Perktold K, Quarteroni A (2005) Mathematical and numerical models for transfer of low-density lipoprotein through the arterial walls: a new methodology for the model set up with applications to the study of disturbed laminar flow. J Biomech 38:903–917CrossRef
Zurück zum Zitat Shih TC, Horng TL, Huang HW, Ju KC, Huang TC, Chen P (2012) Numerical analysis of coupled effects of pulsatile blood flow and thermal relaxation time during thermal therapy. Int J Heat Mass Transf 55:3763–3773CrossRef Shih TC, Horng TL, Huang HW, Ju KC, Huang TC, Chen P (2012) Numerical analysis of coupled effects of pulsatile blood flow and thermal relaxation time during thermal therapy. Int J Heat Mass Transf 55:3763–3773CrossRef
Zurück zum Zitat Vafai K (2000) Handbook of porous media, 1st edn. Marcel Dekker, New YorkMATH Vafai K (2000) Handbook of porous media, 1st edn. Marcel Dekker, New YorkMATH
Zurück zum Zitat Vafai K (2005) Handbook of porous media, 2nd edn. Taylor and Francis Group, New YorkMATH Vafai K (2005) Handbook of porous media, 2nd edn. Taylor and Francis Group, New YorkMATH
Zurück zum Zitat Vafai K, Hadim H (2000) Overview of current computational studies of heat transfer in porous media and their applications – natural convection and mixed convection. Adv Numer Heat Transfer 2:331–371. Taylor and Francis, NY Vafai K, Hadim H (2000) Overview of current computational studies of heat transfer in porous media and their applications – natural convection and mixed convection. Adv Numer Heat Transfer 2:331–371. Taylor and Francis, NY
Zurück zum Zitat Vafai K, Tien CL (1981) Boundary and inertia effects on flow and heat transfer in porous media. Int J Heat Mass Transf 24:195–203CrossRef Vafai K, Tien CL (1981) Boundary and inertia effects on flow and heat transfer in porous media. Int J Heat Mass Transf 24:195–203CrossRef
Zurück zum Zitat Vafai K, Tien CL (1982) Boundary and inertia effects on convective mass transfer in porous media. Int J Heat Mass Transf 25:1183–1190CrossRef Vafai K, Tien CL (1982) Boundary and inertia effects on convective mass transfer in porous media. Int J Heat Mass Transf 25:1183–1190CrossRef
Zurück zum Zitat Xu XY, Collins MW, Jones CJH (1992) Flow studies in canine artery bifurcations using a numerical simulation method. ASME J Biomech Eng 114:504–511CrossRef Xu XY, Collins MW, Jones CJH (1992) Flow studies in canine artery bifurcations using a numerical simulation method. ASME J Biomech Eng 114:504–511CrossRef
Zurück zum Zitat Xuan YM, Roetzel W (1997) Bioheat equation of the human thermal system. Chem Eng Technol 20:268–276CrossRef Xuan YM, Roetzel W (1997) Bioheat equation of the human thermal system. Chem Eng Technol 20:268–276CrossRef
Zurück zum Zitat Xuan YM, Roetzel W (1998) Transfer response of the human limb to an external stimulus. Int J Heat Mass Transf 41:229–239CrossRef Xuan YM, Roetzel W (1998) Transfer response of the human limb to an external stimulus. Int J Heat Mass Transf 41:229–239CrossRef
Zurück zum Zitat Yang N, Vafai K (2006) Modeling of low-density lipoprotein (LDL) transport in the artery – effects of hypertension. Int J Heat Mass Transf 49:850–867CrossRef Yang N, Vafai K (2006) Modeling of low-density lipoprotein (LDL) transport in the artery – effects of hypertension. Int J Heat Mass Transf 49:850–867CrossRef
Zurück zum Zitat Yang N, Vafai K (2008) Low density lipoprotein (LDL) transport in an artery – a simplified analytical solution. Int J Heat Mass Transf 51:497–505CrossRef Yang N, Vafai K (2008) Low density lipoprotein (LDL) transport in an artery – a simplified analytical solution. Int J Heat Mass Transf 51:497–505CrossRef
Zurück zum Zitat Yang M, Zhang X, Vafai K, Ozkan C (2003) High sensitivity piezoresistive cantilever design and optimization for analyte-receptor binding. J Micromech Microeng 13:864–872CrossRef Yang M, Zhang X, Vafai K, Ozkan C (2003) High sensitivity piezoresistive cantilever design and optimization for analyte-receptor binding. J Micromech Microeng 13:864–872CrossRef
Metadaten
Titel
Applications of Flow-Induced Vibration in Porous Media
verfasst von
Khalil Khanafer
Mohamed Gaith
Abdalla AlAmiri
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-26695-4_37

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.