Skip to main content

2015 | OriginalPaper | Buchkapitel

Applications of Fluorescence Anisotropy in Understanding Protein Conformational Disorder and Aggregation

verfasst von : Neha Jain, Samrat Mukhopadhyay

Erschienen in: Applied Spectroscopy and the Science of Nanomaterials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fluorescence spectroscopy is an ultra-sensitive multiparametric technique that provides key insights into protein conformational dynamics and size changes simultaneously. Fluorescence polarization (anisotropy) is one of the parameters related to the rotational dynamics of a fluorophore either intrinsic to the molecule or attached to a biomolecule. The anisotropy measurements can be utilized to unravel the structural and dynamical properties of biomolecules. The advantage of fluorescence anisotropy measurements is that it is a concentration-independent parameter; it can be measured either in the steady-state or in the time-resolved format. Steady-state fluorescence anisotropy provides important information about the overall size/dynamics of biomolecules, whereas the time-resolved fluorescence anisotropy can distinguish between the local and the global dynamics of a fluorophore. Therefore, the time-resolved anisotropy measurements allow one to determine the conformational flexibility as well as the size of biomolecules and assemblies. In recent years, it has been demonstrated that fluorescence anisotropy can be effectively utilized to obtain structural and dynamical information of protein-based assemblies such as aggregates, protein–lipid complexes etc. This chapter provides an overview of the applications of fluorescence anisotropy to study protein conformational disorder, misfolding and aggregation, leading to the formation of nanoscopic amyloid fibrils that are implicated in a range of human diseases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Steiner RF (1991) Fluorescence anisotropy: theory and applications. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 2: principles. Plenum Press, New York Steiner RF (1991) Fluorescence anisotropy: theory and applications. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 2: principles. Plenum Press, New York
2.
Zurück zum Zitat Kawski A (1993) Fluorescence anisotropy: theory and applications of rotational depolarization. Crit Rev Anal Chem 6:459–529CrossRef Kawski A (1993) Fluorescence anisotropy: theory and applications of rotational depolarization. Crit Rev Anal Chem 6:459–529CrossRef
3.
Zurück zum Zitat Munishkina LA, Fink AL (2007) Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins. Biochim Biophys Acta 1768:1862–1885CrossRef Munishkina LA, Fink AL (2007) Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins. Biochim Biophys Acta 1768:1862–1885CrossRef
4.
Zurück zum Zitat Jha A, Narayan S, Udgaonkar JB, Krishnamoorthy G (2012) Solvent-induced tuning of internal structure in a protein amyloid protofibril. Biophys J 103:797–806CrossRef Jha A, Narayan S, Udgaonkar JB, Krishnamoorthy G (2012) Solvent-induced tuning of internal structure in a protein amyloid protofibril. Biophys J 103:797–806CrossRef
5.
Zurück zum Zitat Sheynis T, Friediger A, Xue W-F, Hellewell AL, Tipping KW, Hewitt EW, Radford S, Jelinek R (2013) Aggregation modulators interfere with membrane interactions of β2-microglobulin fibrils. Biophys J 105:745–755CrossRef Sheynis T, Friediger A, Xue W-F, Hellewell AL, Tipping KW, Hewitt EW, Radford S, Jelinek R (2013) Aggregation modulators interfere with membrane interactions of β2-microglobulin fibrils. Biophys J 105:745–755CrossRef
6.
Zurück zum Zitat Yan Y, Marriott G (2003) Analysis of protein interactions using fluorescence technologies. Curr Opin Chem Biol 7:635–640CrossRef Yan Y, Marriott G (2003) Analysis of protein interactions using fluorescence technologies. Curr Opin Chem Biol 7:635–640CrossRef
7.
Zurück zum Zitat Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, New YorkCrossRef Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, New YorkCrossRef
8.
Zurück zum Zitat Valeur B (2001) Molecular fluorescence principles and applications. WILEY-VCH Verlag GmBH, Weinheim Valeur B (2001) Molecular fluorescence principles and applications. WILEY-VCH Verlag GmBH, Weinheim
9.
Zurück zum Zitat Brown MP, Royer C (1997) Fluorescence spectroscopy as a tool to investigate protein interactions. Curr Opin Biotechnol 8:45–49CrossRef Brown MP, Royer C (1997) Fluorescence spectroscopy as a tool to investigate protein interactions. Curr Opin Biotechnol 8:45–49CrossRef
10.
Zurück zum Zitat Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332CrossRef Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332CrossRef
11.
Zurück zum Zitat Luheshi LM, Crowther DC, Dobson CM (2008) Protein misfolding and disease: from the test tube to the organism. Curr Opin Chem Biol 12:25–31CrossRef Luheshi LM, Crowther DC, Dobson CM (2008) Protein misfolding and disease: from the test tube to the organism. Curr Opin Chem Biol 12:25–31CrossRef
12.
Zurück zum Zitat Kumar S, Udgaonkar JB (2010) Mechanisms of amyloid fibril formation by proteins. Curr Sci 98:639–656 Kumar S, Udgaonkar JB (2010) Mechanisms of amyloid fibril formation by proteins. Curr Sci 98:639–656
13.
Zurück zum Zitat Gradinaru CC, Marushchak DO, Samim M, Krull UJ (2010) Fluorescence anisotropy: from single molecules to live cells. Analyst 135:452–459CrossRef Gradinaru CC, Marushchak DO, Samim M, Krull UJ (2010) Fluorescence anisotropy: from single molecules to live cells. Analyst 135:452–459CrossRef
14.
Zurück zum Zitat Jameson DM, Ross JA (2010) Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev 110:2685–2708CrossRef Jameson DM, Ross JA (2010) Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev 110:2685–2708CrossRef
15.
Zurück zum Zitat Jameson DM, Sawyer WH (1995) Fluorescence anisotropy applied to biomolecular interactions. Methods Enzymol 246:283–300CrossRef Jameson DM, Sawyer WH (1995) Fluorescence anisotropy applied to biomolecular interactions. Methods Enzymol 246:283–300CrossRef
16.
Zurück zum Zitat Saxena A, Udgaonkar JB, Krishnamoorthy G (2005) In applications of fluorescence spectroscopy. In: Hof M, Hutterer R, Fidler V (eds). Springer, New York Saxena A, Udgaonkar JB, Krishnamoorthy G (2005) In applications of fluorescence spectroscopy. In: Hof M, Hutterer R, Fidler V (eds). Springer, New York
17.
Zurück zum Zitat Bright FV, Munson CA (2003) Time-resolved fluorescence spectroscopy for illuminating complex systems. Anal Chim Acta 500:71–104CrossRef Bright FV, Munson CA (2003) Time-resolved fluorescence spectroscopy for illuminating complex systems. Anal Chim Acta 500:71–104CrossRef
18.
Zurück zum Zitat Krishnamoorthy G (2012) Motional dynamics in proteins and nucleic acids control their function: revelation by time-domain fluorescence. Curr Sci 102:266–276 Krishnamoorthy G (2012) Motional dynamics in proteins and nucleic acids control their function: revelation by time-domain fluorescence. Curr Sci 102:266–276
19.
Zurück zum Zitat Vogel SS, Thaler C, Blank PS, Koushik SV (2009) Time-resolved fluorescence Anisotropy. In: Periasamy A, Clegg RM (eds) FLIM microscopy in biology and medicine. Taylor & Francis, Boca Raton Vogel SS, Thaler C, Blank PS, Koushik SV (2009) Time-resolved fluorescence Anisotropy. In: Periasamy A, Clegg RM (eds) FLIM microscopy in biology and medicine. Taylor & Francis, Boca Raton
20.
Zurück zum Zitat Sabaté R, Saupe SJ (2007) Thioflavin T fluorescence anisotropy: an alternative technique for the study of amyloid aggregation. Biochem Biophys Res Comm 360:135–138CrossRef Sabaté R, Saupe SJ (2007) Thioflavin T fluorescence anisotropy: an alternative technique for the study of amyloid aggregation. Biochem Biophys Res Comm 360:135–138CrossRef
21.
Zurück zum Zitat Matveeva EG, Rudolph A, Moll JR, Thompson RB (2012) Structure-selective anisotropy assay for amyloid beta oligomers. ACS Chem Neurosci 3:982–987CrossRef Matveeva EG, Rudolph A, Moll JR, Thompson RB (2012) Structure-selective anisotropy assay for amyloid beta oligomers. ACS Chem Neurosci 3:982–987CrossRef
22.
Zurück zum Zitat Deprez E, Tauc P, Leh H, Mouscadet J-F, Auclair C, Brochon J-C (2000) Oligomeric states of the HIV-1 integrase as measured by time-resolved fluorescence anisotropy. Biochemistry 39:9275–9284CrossRef Deprez E, Tauc P, Leh H, Mouscadet J-F, Auclair C, Brochon J-C (2000) Oligomeric states of the HIV-1 integrase as measured by time-resolved fluorescence anisotropy. Biochemistry 39:9275–9284CrossRef
23.
Zurück zum Zitat Wang Y, Goodson T III (2007) Early aggregation in prion peptide nanostructures investigated by nonlinear and ultrafast time-resolved fluorescence spectroscopy. J Phys Chem B 111:327–330CrossRef Wang Y, Goodson T III (2007) Early aggregation in prion peptide nanostructures investigated by nonlinear and ultrafast time-resolved fluorescence spectroscopy. J Phys Chem B 111:327–330CrossRef
24.
Zurück zum Zitat Zorrilla S, Rivas G, Lillo MP (2004) Fluorescence anisotropy as a probe to study tracer proteins in crowded solutions. J Mol Recognit 17:408–416CrossRef Zorrilla S, Rivas G, Lillo MP (2004) Fluorescence anisotropy as a probe to study tracer proteins in crowded solutions. J Mol Recognit 17:408–416CrossRef
25.
Zurück zum Zitat Otosu T, Nishimoto E, Yamashita S (2010) Multiple conformational state of human serum albumin around single tryptophan residue at various pH revealed by time-resolved fluorescence spectroscopy. J Biochem 14:191–200CrossRef Otosu T, Nishimoto E, Yamashita S (2010) Multiple conformational state of human serum albumin around single tryptophan residue at various pH revealed by time-resolved fluorescence spectroscopy. J Biochem 14:191–200CrossRef
26.
Zurück zum Zitat Jain N, Bhattacharya M, Mukhopadhyay S (2011) Chain collapse of an amyloidogenic intrinsically disordered protein. Biophys J 101:1720–1729CrossRef Jain N, Bhattacharya M, Mukhopadhyay S (2011) Chain collapse of an amyloidogenic intrinsically disordered protein. Biophys J 101:1720–1729CrossRef
27.
Zurück zum Zitat Bhattacharya M, Mukhopadhyay S (2012) Structural and dynamical insights into the molten-globule form of ovalbumin. J Phys Chem B 116:520–531CrossRef Bhattacharya M, Mukhopadhyay S (2012) Structural and dynamical insights into the molten-globule form of ovalbumin. J Phys Chem B 116:520–531CrossRef
28.
Zurück zum Zitat Narang D, Sharma PK, Mukhopadhyay S (2013) Dynamics and dimension of an amyloidogenic disordered state of human β2-microglobulin. Eur Biophys J 42:767–776CrossRef Narang D, Sharma PK, Mukhopadhyay S (2013) Dynamics and dimension of an amyloidogenic disordered state of human β2-microglobulin. Eur Biophys J 42:767–776CrossRef
29.
Zurück zum Zitat Allsop D, Swanson L, Moore S, Davies Y, York A, El-Agnaf OMA, Soutar I (2001) Fluorescence anisotropy: a method for early detection of Alzheimer and β-peptide (Aβ) aggregation. Biochem Biophys Res Comm 285:58–63CrossRef Allsop D, Swanson L, Moore S, Davies Y, York A, El-Agnaf OMA, Soutar I (2001) Fluorescence anisotropy: a method for early detection of Alzheimer and β-peptide (Aβ) aggregation. Biochem Biophys Res Comm 285:58–63CrossRef
30.
Zurück zum Zitat Mukhopadhyay S, Nayak PK, Udgaonkar JB, Krishnamoorthy G (2006) Characterization of the formation of amyloid protofibrils from barstar by mapping residue-specific fluorescence dynamics. J Mol Biol 358:935–942CrossRef Mukhopadhyay S, Nayak PK, Udgaonkar JB, Krishnamoorthy G (2006) Characterization of the formation of amyloid protofibrils from barstar by mapping residue-specific fluorescence dynamics. J Mol Biol 358:935–942CrossRef
31.
Zurück zum Zitat Ludescher RD, Peting L, Hudson S, Hudson B (1987) Time-resolved fluorescence anisotropy for systems with lifetime and dynamic heterogeneity. Biophys Chem 28:59–75CrossRef Ludescher RD, Peting L, Hudson S, Hudson B (1987) Time-resolved fluorescence anisotropy for systems with lifetime and dynamic heterogeneity. Biophys Chem 28:59–75CrossRef
32.
Zurück zum Zitat Bhattacharya M, Jain N, Mukhopadhyay S (2011) Insights into the mechanism of aggregation and fibril formation from bovine serum albumin. J Phys Chem B 115:4195–4205CrossRef Bhattacharya M, Jain N, Mukhopadhyay S (2011) Insights into the mechanism of aggregation and fibril formation from bovine serum albumin. J Phys Chem B 115:4195–4205CrossRef
33.
Zurück zum Zitat Jain N, Bhattacharya M, Mukhopadhyay S (2011) Kinetics of surfactant-induced aggregation of lysozyme studied by fluorescence spectroscopy. J Fluoresc 21:615–625CrossRef Jain N, Bhattacharya M, Mukhopadhyay S (2011) Kinetics of surfactant-induced aggregation of lysozyme studied by fluorescence spectroscopy. J Fluoresc 21:615–625CrossRef
35.
Zurück zum Zitat Ghosh S, Saha S, Goswami D, Bilgrami S, Mayor S (2012) Dynamic imaging of homo-FRET in live cells by fluorescence anisotropy microscopy. Methods Enzymol 505:291–327CrossRef Ghosh S, Saha S, Goswami D, Bilgrami S, Mayor S (2012) Dynamic imaging of homo-FRET in live cells by fluorescence anisotropy microscopy. Methods Enzymol 505:291–327CrossRef
37.
Zurück zum Zitat Ganguly S, Clayton AHA, Chattopadhyay A (2011) Organization of higher-order oligomers of the serotonin1A receptor explored utilizing homo-FRET in live cells. Biophys J 100:361–368CrossRef Ganguly S, Clayton AHA, Chattopadhyay A (2011) Organization of higher-order oligomers of the serotonin1A receptor explored utilizing homo-FRET in live cells. Biophys J 100:361–368CrossRef
38.
Zurück zum Zitat Devauges V, Marquer C, Lécart S, Cossec J-C, Potier M-C, Fort E, Suhling K, Lévêque-Fort S (2012) Homodimerization of amyloid precursor protein at the plasma membrane: a homoFRET study by time-resolved fluorescence anisotropy imaging. PLoS ONE 7(9):e44434. doi:10.1371/journal.pone.0044434 CrossRef Devauges V, Marquer C, Lécart S, Cossec J-C, Potier M-C, Fort E, Suhling K, Lévêque-Fort S (2012) Homodimerization of amyloid precursor protein at the plasma membrane: a homoFRET study by time-resolved fluorescence anisotropy imaging. PLoS ONE 7(9):e44434. doi:10.​1371/​journal.​pone.​0044434 CrossRef
Metadaten
Titel
Applications of Fluorescence Anisotropy in Understanding Protein Conformational Disorder and Aggregation
verfasst von
Neha Jain
Samrat Mukhopadhyay
Copyright-Jahr
2015
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-242-5_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.