Skip to main content

2015 | OriginalPaper | Buchkapitel

3. Applications of Gold Nanostars: Nanosensing, Thermal Therapy, Delivery Systems

verfasst von : Piersandro Pallavicini, Elisa Cabrini, Mykola Borzenkov, Laura Sironi, Giuseppe Chirico

Erschienen in: Gold Nanostars

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter focuses on the most relevant applications of GNS in life science. The versatility of the GNS functionalization is combined with their optical properties to provide promising and prospective approaches in a variety of biomedical fields. Nanosensing assays, thermal treatments, and delivery systems based on GNS are discussed in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dykman LA, Khlebstov NG (2011) Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Nat 3:34–55 Dykman LA, Khlebstov NG (2011) Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Nat 3:34–55
2.
Zurück zum Zitat Zagar TM et al (2010) Hyperthermia combined with radiation therapy for superficial breast cancer and chest wall recurrence: a review of randomized data. Int J Hyperthermia 26:612–617CrossRef Zagar TM et al (2010) Hyperthermia combined with radiation therapy for superficial breast cancer and chest wall recurrence: a review of randomized data. Int J Hyperthermia 26:612–617CrossRef
3.
Zurück zum Zitat Huang X et al (2006) Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol 82:412–417CrossRef Huang X et al (2006) Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol 82:412–417CrossRef
4.
Zurück zum Zitat Chirico G, Pallavicini P, Collini M (2014) Gold nanostars for superficial diseases: a promising tool for localized hyperthermia? Nanomedicine 9:1–3CrossRef Chirico G, Pallavicini P, Collini M (2014) Gold nanostars for superficial diseases: a promising tool for localized hyperthermia? Nanomedicine 9:1–3CrossRef
5.
Zurück zum Zitat Indrasekara ASDS et al (2014) Gold nanostars substrates for SERS-based chemical sensing in the femtomolar regime. Nanoscale 6:8891–8899CrossRef Indrasekara ASDS et al (2014) Gold nanostars substrates for SERS-based chemical sensing in the femtomolar regime. Nanoscale 6:8891–8899CrossRef
6.
Zurück zum Zitat Esenturk NE, Walker ARH (2009) Surface-enhanced Raman scattering spectroscopy via gold nanostars. J Raman Spectrosc 40:86–91CrossRef Esenturk NE, Walker ARH (2009) Surface-enhanced Raman scattering spectroscopy via gold nanostars. J Raman Spectrosc 40:86–91CrossRef
7.
Zurück zum Zitat Shiohara A et al (2014) Solution processed/polydimethylsiloxane/gold nanostars flexible substrates for plasmonic sensing. Nanoscale 6:9817CrossRef Shiohara A et al (2014) Solution processed/polydimethylsiloxane/gold nanostars flexible substrates for plasmonic sensing. Nanoscale 6:9817CrossRef
8.
Zurück zum Zitat Mueller M et al (2012) Large-area organization of p-NIPAM coated nanostars as SERS platforms for polycyclic aromatic hydrocarbons sensing in gas phase. Langmuir 28:9168–9173CrossRef Mueller M et al (2012) Large-area organization of p-NIPAM coated nanostars as SERS platforms for polycyclic aromatic hydrocarbons sensing in gas phase. Langmuir 28:9168–9173CrossRef
9.
Zurück zum Zitat Liu Y et al (2014) Plasmonic gold nanostar for biomedical sensing. Proc SPIE 8957:895703-1 Liu Y et al (2014) Plasmonic gold nanostar for biomedical sensing. Proc SPIE 8957:895703-1
10.
Zurück zum Zitat Vo-Dinh T et al (2015) SERS nanosensors and nanoreporters: golden opportunities in biomedical application. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:17–33CrossRef Vo-Dinh T et al (2015) SERS nanosensors and nanoreporters: golden opportunities in biomedical application. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:17–33CrossRef
11.
Zurück zum Zitat Khoury CG, Vo-Dinh T (2008) Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J PhysChem C Nanometer Interfaces 112:18849–18859CrossRef Khoury CG, Vo-Dinh T (2008) Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J PhysChem C Nanometer Interfaces 112:18849–18859CrossRef
12.
Zurück zum Zitat Yuan H et al (2013) Spectral characterization and intracellular detection of surface-enhanced Raman scattering (SERS)-encoded plasmonic gold nanostars. J Raman Spectrosc 44:234–239CrossRef Yuan H et al (2013) Spectral characterization and intracellular detection of surface-enhanced Raman scattering (SERS)-encoded plasmonic gold nanostars. J Raman Spectrosc 44:234–239CrossRef
13.
Zurück zum Zitat Xie H et al (2014) Identification of intracellular gold nanoparticles using surface-enhanced Raman scattering. Nanoscale 6:12403–12407CrossRef Xie H et al (2014) Identification of intracellular gold nanoparticles using surface-enhanced Raman scattering. Nanoscale 6:12403–12407CrossRef
14.
Zurück zum Zitat Giorgetti E et al (2012) Tunable gold nanostars for surface enhanced Raman spectroscopy. Phys Stat Solidi 249:1188–1192CrossRef Giorgetti E et al (2012) Tunable gold nanostars for surface enhanced Raman spectroscopy. Phys Stat Solidi 249:1188–1192CrossRef
15.
Zurück zum Zitat Su Q et al (2011) A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars. ACS Appl Mater Interface 3:1873–1879CrossRef Su Q et al (2011) A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars. ACS Appl Mater Interface 3:1873–1879CrossRef
16.
Zurück zum Zitat Fales AM, Yuan H, Vo-Dinh T (2013) Cell-penetrating peptide enhanced intracellular Raman imaging and photodynamic therapy. Mol Pharm 10:2291–2298CrossRef Fales AM, Yuan H, Vo-Dinh T (2013) Cell-penetrating peptide enhanced intracellular Raman imaging and photodynamic therapy. Mol Pharm 10:2291–2298CrossRef
17.
Zurück zum Zitat Li M et al (2012) Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering. Anal Chem 84:2837–2842CrossRef Li M et al (2012) Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering. Anal Chem 84:2837–2842CrossRef
18.
Zurück zum Zitat Schutz M et al (2011) Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy. Chem Commun 47:4216–4218CrossRef Schutz M et al (2011) Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy. Chem Commun 47:4216–4218CrossRef
19.
Zurück zum Zitat Quaresma P et al (2014) Star-shaped magnetic@gold nanoparticles for protein magnetic separation and SERS detection. RSC Adv 4:3659–3667CrossRef Quaresma P et al (2014) Star-shaped magnetic@gold nanoparticles for protein magnetic separation and SERS detection. RSC Adv 4:3659–3667CrossRef
20.
Zurück zum Zitat Lee J (2014) Tailoring surface plasmons of high-density gold nanostars assemblies on metal films for surface-enhanced Raman spectroscopy. Nanoscale 6:616–623CrossRef Lee J (2014) Tailoring surface plasmons of high-density gold nanostars assemblies on metal films for surface-enhanced Raman spectroscopy. Nanoscale 6:616–623CrossRef
21.
Zurück zum Zitat Dondapati SK et al (2010) Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano 4:6318–6322CrossRef Dondapati SK et al (2010) Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano 4:6318–6322CrossRef
22.
Zurück zum Zitat Cennamo N et al (2013) Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Sensor 13:14676–14686CrossRef Cennamo N et al (2013) Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Sensor 13:14676–14686CrossRef
23.
Zurück zum Zitat Pesavento M et al (2014) A new approach for selective optical fiber sensor based on localized surface plasmon resonance of gold nanostars in molecularly imprinted polymer. Adv Biol Chem Eng Mater Sci 14:71–75, Proceedings of BBE ’14 Pesavento M et al (2014) A new approach for selective optical fiber sensor based on localized surface plasmon resonance of gold nanostars in molecularly imprinted polymer. Adv Biol Chem Eng Mater Sci 14:71–75, Proceedings of BBE ’14
24.
Zurück zum Zitat Nehl CL, Liao H, Hafner JF (2006) Plasmon resonant molecular sensing with single gold nanostars. Proc SPIE 6323:63230G–63231GCrossRef Nehl CL, Liao H, Hafner JF (2006) Plasmon resonant molecular sensing with single gold nanostars. Proc SPIE 6323:63230G–63231GCrossRef
25.
Zurück zum Zitat Rodriquez-Lorenzo L et al (2012) Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater 11:604–607CrossRef Rodriquez-Lorenzo L et al (2012) Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater 11:604–607CrossRef
26.
Zurück zum Zitat van der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13:1173–1184CrossRef van der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13:1173–1184CrossRef
27.
Zurück zum Zitat Hildebrandt B et al (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56CrossRef Hildebrandt B et al (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56CrossRef
28.
Zurück zum Zitat Milleron RS, Bratton SB (2007) ‘Heated’ debates in apoptosis. Cell Mol Life Sci 64:2329–2333CrossRef Milleron RS, Bratton SB (2007) ‘Heated’ debates in apoptosis. Cell Mol Life Sci 64:2329–2333CrossRef
29.
Zurück zum Zitat Wust P et al (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–497CrossRef Wust P et al (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–497CrossRef
30.
Zurück zum Zitat Hainfeld JF et al (2014) Gold nanoparticle hyperthermia reduces radiotherapy doses. Nanomed Nanotechnol Biol Med 10:1609–1617CrossRef Hainfeld JF et al (2014) Gold nanoparticle hyperthermia reduces radiotherapy doses. Nanomed Nanotechnol Biol Med 10:1609–1617CrossRef
31.
Zurück zum Zitat El-Sayed HI, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–135CrossRef El-Sayed HI, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–135CrossRef
32.
Zurück zum Zitat Rodriguez-Oliveros R, Sanchez-Gil JA (2012) Gold nanostars as thermoplasmonic nanoparticles for optical heating. Opt Express 20:621–626CrossRef Rodriguez-Oliveros R, Sanchez-Gil JA (2012) Gold nanostars as thermoplasmonic nanoparticles for optical heating. Opt Express 20:621–626CrossRef
33.
Zurück zum Zitat Yuan H et al (2012) In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomedicine 8:1355–1363CrossRef Yuan H et al (2012) In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomedicine 8:1355–1363CrossRef
34.
Zurück zum Zitat Pallavicini P et al (2014) Self-assembled monolayers of gold nanostars: a convenient tool for near-IR photothermal biofilm eradication. Chem Commun 50:1969–1971CrossRef Pallavicini P et al (2014) Self-assembled monolayers of gold nanostars: a convenient tool for near-IR photothermal biofilm eradication. Chem Commun 50:1969–1971CrossRef
35.
Zurück zum Zitat Chen H et al (2013) Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics 3:633–649CrossRef Chen H et al (2013) Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics 3:633–649CrossRef
36.
37.
Zurück zum Zitat Zharov V et al (2006) Photothermal nanotherapeutics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 90:612–627CrossRef Zharov V et al (2006) Photothermal nanotherapeutics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 90:612–627CrossRef
38.
Zurück zum Zitat Freddi S et al (2013) A molecular thermometer for nanoparticles for optical hyperthermia. Nano Lett 13:2004–2010CrossRef Freddi S et al (2013) A molecular thermometer for nanoparticles for optical hyperthermia. Nano Lett 13:2004–2010CrossRef
39.
Zurück zum Zitat Lepock JR (2003) Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. In J Hyperthermia 19:252–266CrossRef Lepock JR (2003) Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. In J Hyperthermia 19:252–266CrossRef
40.
Zurück zum Zitat Oh J, Yoon H, Park J (2013) Nanoparticle platforms for combined photothermal and photodynamic activity. Biomed Eng Lett 3:67–73CrossRef Oh J, Yoon H, Park J (2013) Nanoparticle platforms for combined photothermal and photodynamic activity. Biomed Eng Lett 3:67–73CrossRef
41.
Zurück zum Zitat Gibbons NB (2000) Heat-shock proteins inhibit induction of prostate cancer cells apoptosis. Prostate 45:58–65CrossRef Gibbons NB (2000) Heat-shock proteins inhibit induction of prostate cancer cells apoptosis. Prostate 45:58–65CrossRef
42.
Zurück zum Zitat Wang S et al (2013) Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv Mater 25:3055–3061CrossRef Wang S et al (2013) Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv Mater 25:3055–3061CrossRef
43.
Zurück zum Zitat Baginskiy I et al (2013) Chitosan-modified stable colloidal gold nanostars for the thermolysis of cancer cells. J Phys Chem 117:2396–2410CrossRef Baginskiy I et al (2013) Chitosan-modified stable colloidal gold nanostars for the thermolysis of cancer cells. J Phys Chem 117:2396–2410CrossRef
44.
Zurück zum Zitat Raghavan V et al (2014) Gold nanosensitisers for multimodal optical diagnostic imaging and therapy of cancer. J Nanomed Nanotechnol 5:6 Raghavan V et al (2014) Gold nanosensitisers for multimodal optical diagnostic imaging and therapy of cancer. J Nanomed Nanotechnol 5:6
45.
Zurück zum Zitat Nergiz SZ et al (2014) Multifunctional hybrid nanopatches of graphene oxide and gold nanostars for ultra efficient photothermal cancer therapy. Appl Mater Interfaces. doi:10.1021/am504795d Nergiz SZ et al (2014) Multifunctional hybrid nanopatches of graphene oxide and gold nanostars for ultra efficient photothermal cancer therapy. Appl Mater Interfaces. doi:10.​1021/​am504795d
46.
Zurück zum Zitat Jo H et al (2014) Ultra-effective photothermal therapy for prostate cancer cells using dual aptamer-modified gold nanostars. J Mater Chem B 2:4862–4867CrossRef Jo H et al (2014) Ultra-effective photothermal therapy for prostate cancer cells using dual aptamer-modified gold nanostars. J Mater Chem B 2:4862–4867CrossRef
47.
Zurück zum Zitat Van de Broek B et al (2011) Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 5:4319–4328CrossRef Van de Broek B et al (2011) Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 5:4319–4328CrossRef
48.
Zurück zum Zitat Veiseh O, Jonathan WG, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304CrossRef Veiseh O, Jonathan WG, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304CrossRef
49.
Zurück zum Zitat Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171CrossRef Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171CrossRef
50.
Zurück zum Zitat Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58:1532–1555CrossRef Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58:1532–1555CrossRef
51.
Zurück zum Zitat Park C et al (2009) Ceclodextrin-covered nanoparticles for targeted delivery of an anti-cancer drug. J Mater Chem 19:2310–2315CrossRef Park C et al (2009) Ceclodextrin-covered nanoparticles for targeted delivery of an anti-cancer drug. J Mater Chem 19:2310–2315CrossRef
52.
Zurück zum Zitat Han G, Ghosh P, Rotello VM (2007) Functionalized gold nanoparticles for drug delivery. Nanomedicine 2:113–123CrossRef Han G, Ghosh P, Rotello VM (2007) Functionalized gold nanoparticles for drug delivery. Nanomedicine 2:113–123CrossRef
53.
Zurück zum Zitat Podsiadlo P et al (2008) Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. Langmuir 24:568–574CrossRef Podsiadlo P et al (2008) Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. Langmuir 24:568–574CrossRef
54.
Zurück zum Zitat Alexander CM et al (2014) Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery. Bioconjug Chem 25:1261–1271CrossRef Alexander CM et al (2014) Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery. Bioconjug Chem 25:1261–1271CrossRef
55.
Zurück zum Zitat Kumar A, Zhang X, Liang X (2013) Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv 31:593–606CrossRef Kumar A, Zhang X, Liang X (2013) Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv 31:593–606CrossRef
56.
Zurück zum Zitat Li N et al (2014) Polysaccharide-gold nanocluster supramolecular conjugates as a versatile platform to the targeted delivery of anticancer drugs. Sci Rep 4, PMC3933908 Li N et al (2014) Polysaccharide-gold nanocluster supramolecular conjugates as a versatile platform to the targeted delivery of anticancer drugs. Sci Rep 4, PMC3933908
57.
Zurück zum Zitat Paciotti GF (2004) Colloidal gold: a novel nanoparticles vector for tumor directed drug delivery. Drug Deliv 11:169–183CrossRef Paciotti GF (2004) Colloidal gold: a novel nanoparticles vector for tumor directed drug delivery. Drug Deliv 11:169–183CrossRef
58.
Zurück zum Zitat Dam DH et al (2012) Direct observation of nanoparticles-cancer cell nucleus interaction. ACS Nano 6:3318–3326CrossRef Dam DH et al (2012) Direct observation of nanoparticles-cancer cell nucleus interaction. ACS Nano 6:3318–3326CrossRef
59.
Zurück zum Zitat Dam DH et al (2012) Shining light on nuclear-targeted therapy using gold nanostars constructs. Ther Deliv 3:1263–1267CrossRef Dam DH et al (2012) Shining light on nuclear-targeted therapy using gold nanostars constructs. Ther Deliv 3:1263–1267CrossRef
60.
Zurück zum Zitat Yuan H et al (2014) Plasmonics-enhanced and optically modulated delivery of gold nanostars into brain tumor. Nanoscale 6:4078–4082CrossRef Yuan H et al (2014) Plasmonics-enhanced and optically modulated delivery of gold nanostars into brain tumor. Nanoscale 6:4078–4082CrossRef
61.
Zurück zum Zitat Patel L, Zaro J, Shen WC (2007) Penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 24:1977–1992CrossRef Patel L, Zaro J, Shen WC (2007) Penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 24:1977–1992CrossRef
62.
Zurück zum Zitat Yuan H et al (2012) TAT-peptide functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc 134:11358–11361CrossRef Yuan H et al (2012) TAT-peptide functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc 134:11358–11361CrossRef
63.
Zurück zum Zitat Nie L et al (2014) Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. Small 10:1441CrossRef Nie L et al (2014) Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. Small 10:1441CrossRef
64.
Zurück zum Zitat Wang Y, Polavarapu L, Liz-Marzan L (2014) Reduced graphene oxide supported gold nanostars for improved SERS sensing and drug delivery. Appl Mater Interfaces 6:21798–21805CrossRef Wang Y, Polavarapu L, Liz-Marzan L (2014) Reduced graphene oxide supported gold nanostars for improved SERS sensing and drug delivery. Appl Mater Interfaces 6:21798–21805CrossRef
65.
Zurück zum Zitat Fales AM, Yuan H, Vo-Dinh T (2011) Silica coated gold nanostars for combined SERS detection and singlet oxygen generation: a potential platform for theranostics. Langmuir 27(19):12186–12190CrossRef Fales AM, Yuan H, Vo-Dinh T (2011) Silica coated gold nanostars for combined SERS detection and singlet oxygen generation: a potential platform for theranostics. Langmuir 27(19):12186–12190CrossRef
66.
Zurück zum Zitat Salinas K et al (2014) Transient extracellular application of gold nanostars increases hippocampal neuronal activity. J Nanobiotechnol 14:31CrossRef Salinas K et al (2014) Transient extracellular application of gold nanostars increases hippocampal neuronal activity. J Nanobiotechnol 14:31CrossRef
Metadaten
Titel
Applications of Gold Nanostars: Nanosensing, Thermal Therapy, Delivery Systems
verfasst von
Piersandro Pallavicini
Elisa Cabrini
Mykola Borzenkov
Laura Sironi
Giuseppe Chirico
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-20768-1_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.