Skip to main content

2023 | OriginalPaper | Buchkapitel

12. Applications of MoS2 Nanostructures in Wastewater Treatment

verfasst von : Rashi Gusain, Neeraj Kumar, Suprakas Sinha Ray

Erschienen in: Two-Dimensional Materials for Environmental Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The fascinating properties of two-dimensional (2D) nanomaterial, such as excellent mechanical strength, a high portion of active sites, ease of functionalization and tuning the physical and chemical characteristics, are attracting researchers to host their applications in various fields, including wastewater treatment. Among various 2D nanomaterials, 2D MoS2 has stand out as a promising alternative inorganic analogue of most explored 2D graphene due to its unique characteristics such as high active surface area, low cost, excellent mechanical strength, small band gap and the possibility of surface functionalization. The excellent water remediation characteristics are attributed to the controlled morphology, specific nano-sized properties, abundant availability, and variable surface chemistry of MoS2 nanomaterials. Additionally, the selectivity of MoS2 towards water contaminants promotes its application in water purification. This chapter presents the recent progress, future prospects and challenges of 2D MoS2-based nanomaterials in water remediation techniques such as adsorbent, photocatalyst, membrane and antibacterial agent. The mechanism behind the water treatment process using 2D MoS2 is also explained. This chapter will provide a platform to the researchers, who are focused on exploring the application of MoS2-based materials in water purification. The research demands for future water applications of 2D MoS2 nanomaterials are also identified.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Ahmad, M. Yousaf, A. Nasir, I.A. Bhatti, A. Mahmood, X. Fang et al., Porous eleocharis@ MnPE layered hybrid for synergistic adsorption and catalytic biodegradation of toxic Azo dyes from industrial wastewater. Environ. Sci. Technol. 53, 2161–2170 (2019)CrossRef M. Ahmad, M. Yousaf, A. Nasir, I.A. Bhatti, A. Mahmood, X. Fang et al., Porous eleocharis@ MnPE layered hybrid for synergistic adsorption and catalytic biodegradation of toxic Azo dyes from industrial wastewater. Environ. Sci. Technol. 53, 2161–2170 (2019)CrossRef
2.
Zurück zum Zitat S.S. Ray, R. Gusain, N. Kumar, Chapter two - Classification of water contaminants, in Carbon Nanomaterial-Based Adsorbents for Water Purification, ed. By S.S Ray, R. Gusain, N. Kumar (Elsevier; 2020), pp. 11–36. S.S. Ray, R. Gusain, N. Kumar, Chapter two - Classification of water contaminants, in Carbon Nanomaterial-Based Adsorbents for Water Purification, ed. By S.S Ray, R. Gusain, N. Kumar (Elsevier; 2020), pp. 11–36.
3.
Zurück zum Zitat R. Gusain, K. Gupta, P. Joshi, O.P. Khatri, Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Adv. Coll. Interface. Sci. 272, 102009 (2019)CrossRef R. Gusain, K. Gupta, P. Joshi, O.P. Khatri, Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Adv. Coll. Interface. Sci. 272, 102009 (2019)CrossRef
4.
Zurück zum Zitat M. Kumar, A. Puri, A review of permissible limits of drinking water. Indian J. Occupat. Environment. Med. 16, 40 (2012)CrossRef M. Kumar, A. Puri, A review of permissible limits of drinking water. Indian J. Occupat. Environment. Med. 16, 40 (2012)CrossRef
5.
Zurück zum Zitat S.K. Sharma, Heavy metals in water: presence, removal and safety: R. Soc. Chem. (2014) S.K. Sharma, Heavy metals in water: presence, removal and safety: R. Soc. Chem. (2014)
6.
Zurück zum Zitat S.S. Ray, R. Gusain, N. Kumar, Carbon Nanomaterial-Based Adsorbents for Water Purification: Fundamentals and Applications (Elsevier; 2020) S.S. Ray, R. Gusain, N. Kumar, Carbon Nanomaterial-Based Adsorbents for Water Purification: Fundamentals and Applications (Elsevier; 2020)
7.
Zurück zum Zitat D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J. Environ. Manage. 219, 189–207 (2018)CrossRef D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J. Environ. Manage. 219, 189–207 (2018)CrossRef
8.
Zurück zum Zitat H. Rabiee, L. Ge, S. Hu , H. Wang, Z. Yuan, Microtubular electrodes: an emerging electrode configuration for electrocatalysis, bioelectrochemical and water treatment applications. Chem. Eng. J. 138476 (2022) H. Rabiee, L. Ge, S. Hu , H. Wang, Z. Yuan, Microtubular electrodes: an emerging electrode configuration for electrocatalysis, bioelectrochemical and water treatment applications. Chem. Eng. J. 138476 (2022)
9.
Zurück zum Zitat B.O. Orimolade, O.A. Arotiba, Bismuth vanadate in photoelectrocatalytic water treatment systems for the degradation of organics: a review on recent trends. J. Electroanal. Chem. 878, 114724 (2020)CrossRef B.O. Orimolade, O.A. Arotiba, Bismuth vanadate in photoelectrocatalytic water treatment systems for the degradation of organics: a review on recent trends. J. Electroanal. Chem. 878, 114724 (2020)CrossRef
10.
Zurück zum Zitat A. Zularisam, A. Ismail, R. Salim, Behaviours of natural organic matter in membrane filtration for surface water treatment—a review. Desalination 194, 211–231 (2006)CrossRef A. Zularisam, A. Ismail, R. Salim, Behaviours of natural organic matter in membrane filtration for surface water treatment—a review. Desalination 194, 211–231 (2006)CrossRef
11.
Zurück zum Zitat A. Magrí, M. Carreras-Sempere, C. Biel, J. Colprim, Recovery of phosphorus from waste water profiting from biological nitrogen treatment: Upstream, concomitant or downstream precipitation alternatives. Agronomy 10, 1039 (2020)CrossRef A. Magrí, M. Carreras-Sempere, C. Biel, J. Colprim, Recovery of phosphorus from waste water profiting from biological nitrogen treatment: Upstream, concomitant or downstream precipitation alternatives. Agronomy 10, 1039 (2020)CrossRef
12.
Zurück zum Zitat R. Yang, H. Li, M. Huang, H. Yang, A. Li, A review on chitosan-based flocculants and their applications in water treatment. Water Res. 95, 59–89 (2016)CrossRef R. Yang, H. Li, M. Huang, H. Yang, A. Li, A review on chitosan-based flocculants and their applications in water treatment. Water Res. 95, 59–89 (2016)CrossRef
13.
Zurück zum Zitat R.H. Hailemariam, Y.C. Woo, M.M. Damtie, B.C. Kim, K.-D. Park, J.-S. Choi, Reverse osmosis membrane fabrication and modification technologies and future trends: A review. Adv. Coll. Interface. Sci. 276, 102100 (2020)CrossRef R.H. Hailemariam, Y.C. Woo, M.M. Damtie, B.C. Kim, K.-D. Park, J.-S. Choi, Reverse osmosis membrane fabrication and modification technologies and future trends: A review. Adv. Coll. Interface. Sci. 276, 102100 (2020)CrossRef
14.
Zurück zum Zitat G.H. Jeong, S.P. Sasikala, T. Yun, G.Y. Lee, W.J. Lee, S.O. Kim, Nanoscale assembly of 2D materials for energy and environmental applications. Adv. Mater. 32, 1907006 (2020)CrossRef G.H. Jeong, S.P. Sasikala, T. Yun, G.Y. Lee, W.J. Lee, S.O. Kim, Nanoscale assembly of 2D materials for energy and environmental applications. Adv. Mater. 32, 1907006 (2020)CrossRef
15.
Zurück zum Zitat W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35, 52–71 (2010)CrossRef W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35, 52–71 (2010)CrossRef
16.
Zurück zum Zitat Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan, J. Gu, A mini-review of MXene porous films: preparation, mechanism and application. J. Mater. Sci. Technol. 103, 42–49 (2022)CrossRef Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan, J. Gu, A mini-review of MXene porous films: preparation, mechanism and application. J. Mater. Sci. Technol. 103, 42–49 (2022)CrossRef
17.
Zurück zum Zitat P.S. Jijoe, S.R. Yashas, H.P. Shivaraju, Fundamentals, synthesis, characterization and environmental applications of layered double hydroxides: a review. Environ. Chem. Lett. 19, 2643–2661 (2021)CrossRef P.S. Jijoe, S.R. Yashas, H.P. Shivaraju, Fundamentals, synthesis, characterization and environmental applications of layered double hydroxides: a review. Environ. Chem. Lett. 19, 2643–2661 (2021)CrossRef
18.
Zurück zum Zitat H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013)CrossRef H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013)CrossRef
19.
Zurück zum Zitat K. Gupta, P. Joshi, R. Gusain, O.P. Khatri, Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coord. Chem. Rev. 445, 214100 (2021)CrossRef K. Gupta, P. Joshi, R. Gusain, O.P. Khatri, Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coord. Chem. Rev. 445, 214100 (2021)CrossRef
20.
Zurück zum Zitat M. Dai, R. Wang, Synthesis and applications of nanostructured hollow transition metal chalcogenides. Small 17, 2006813 (2021)CrossRef M. Dai, R. Wang, Synthesis and applications of nanostructured hollow transition metal chalcogenides. Small 17, 2006813 (2021)CrossRef
21.
Zurück zum Zitat S. Kumari, R. Gusain, N. Kumar, O.P. Khatri, PEG-mediated hydrothermal synthesis of hierarchical microspheres of MoS2 nanosheets and their potential for lubrication application. J. Ind. Eng. Chem. 42, 87–94 (2016)CrossRef S. Kumari, R. Gusain, N. Kumar, O.P. Khatri, PEG-mediated hydrothermal synthesis of hierarchical microspheres of MoS2 nanosheets and their potential for lubrication application. J. Ind. Eng. Chem. 42, 87–94 (2016)CrossRef
22.
Zurück zum Zitat O. Samy, A. El Moutaouakil, A review on MoS2 energy applications: recent developments and challenges. Energies 14, 4586 (2021)CrossRef O. Samy, A. El Moutaouakil, A review on MoS2 energy applications: recent developments and challenges. Energies 14, 4586 (2021)CrossRef
23.
Zurück zum Zitat J. Mao, Y. Wang, Z. Zheng, D. Deng, The rise of two-dimensional MoS2 for catalysis. Front. Phys. 13, 138118 (2018)CrossRef J. Mao, Y. Wang, Z. Zheng, D. Deng, The rise of two-dimensional MoS2 for catalysis. Front. Phys. 13, 138118 (2018)CrossRef
24.
Zurück zum Zitat N. Kumar, S. Kumar, R. Gusain, N. Manyala, S. Eslava, S.S. Ray, Polypyrrole-promoted rGO–MoS2 nanocomposites for enhanced photocatalytic conversion of CO2 and H2O to CO, CH4, and H2 products. ACS Appl. Energy Mater. 3, 9897–9909 (2020)CrossRef N. Kumar, S. Kumar, R. Gusain, N. Manyala, S. Eslava, S.S. Ray, Polypyrrole-promoted rGO–MoS2 nanocomposites for enhanced photocatalytic conversion of CO2 and H2O to CO, CH4, and H2 products. ACS Appl. Energy Mater. 3, 9897–9909 (2020)CrossRef
25.
Zurück zum Zitat O. Samy, S. Zeng, M.D. Birowosuto, A. El Moutaouakil, A Review on MoS2 properties, synthesis. Sens. Appl. Chall. Cryst. 11, 355 (2021) O. Samy, S. Zeng, M.D. Birowosuto, A. El Moutaouakil, A Review on MoS2 properties, synthesis. Sens. Appl. Chall. Cryst. 11, 355 (2021)
26.
Zurück zum Zitat A.T. Massey, R. Gusain, S. Kumari, O.P. Khatri, Hierarchical microspheres of MoS2 nanosheets: efficient and regenerative adsorbent for removal of water-soluble dyes. Ind. Eng. Chem. Res. 55, 7124–7131 (2016)CrossRef A.T. Massey, R. Gusain, S. Kumari, O.P. Khatri, Hierarchical microspheres of MoS2 nanosheets: efficient and regenerative adsorbent for removal of water-soluble dyes. Ind. Eng. Chem. Res. 55, 7124–7131 (2016)CrossRef
27.
Zurück zum Zitat P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, H. Toulhoat, Structure, energetics, and electronic properties of the surface of a promoted MoS2 catalyst: an ab initio local density functional study. J. Catal. 190, 128–143 (2000)CrossRef P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, H. Toulhoat, Structure, energetics, and electronic properties of the surface of a promoted MoS2 catalyst: an ab initio local density functional study. J. Catal. 190, 128–143 (2000)CrossRef
28.
Zurück zum Zitat L.S. Byskov, J.K. Nørskov, B.S. Clausen, H. Topsøe, DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. J. Catal. 187, 109–122 (1999)CrossRef L.S. Byskov, J.K. Nørskov, B.S. Clausen, H. Topsøe, DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. J. Catal. 187, 109–122 (1999)CrossRef
29.
Zurück zum Zitat M. Takaoka, N. Takeda, Y. Shimaoka, T. Fujiwara, Removal of mercury in flue gas by the reaction with sulfide compounds. Toxicol. Environ. Chem. 73, 1–16 (1999)CrossRef M. Takaoka, N. Takeda, Y. Shimaoka, T. Fujiwara, Removal of mercury in flue gas by the reaction with sulfide compounds. Toxicol. Environ. Chem. 73, 1–16 (1999)CrossRef
30.
Zurück zum Zitat C. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713–2731 (2015)CrossRef C. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713–2731 (2015)CrossRef
31.
Zurück zum Zitat H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, K.I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013)CrossRef H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, K.I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013)CrossRef
32.
Zurück zum Zitat D. Voiry, A. Goswami, R. Kappera, C.D.C.C.E. Silva, D. Kaplan, T. Fujita et al., Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 7, 45–49 (2015) D. Voiry, A. Goswami, R. Kappera, C.D.C.C.E. Silva, D. Kaplan, T. Fujita et al., Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 7, 45–49 (2015)
33.
Zurück zum Zitat Z. Wang, B. Mi, Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol. 51, 8229–8244 (2017)CrossRef Z. Wang, B. Mi, Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol. 51, 8229–8244 (2017)CrossRef
34.
Zurück zum Zitat R. Gusain, N. Kumar, S.S. Ray, Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord. Chem. Rev. 405, 213111 (2020)CrossRef R. Gusain, N. Kumar, S.S. Ray, Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord. Chem. Rev. 405, 213111 (2020)CrossRef
35.
Zurück zum Zitat G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Graphene oxide and its application as an adsorbent for wastewater treatment. J. Chem. Technol. Biotechnol. 89, 196–205 (2014)CrossRef G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Graphene oxide and its application as an adsorbent for wastewater treatment. J. Chem. Technol. Biotechnol. 89, 196–205 (2014)CrossRef
36.
Zurück zum Zitat A. Jilani, M.H.D. Othman, M.O. Ansari, S.Z. Hussain, A.F. Ismail, I.U. Khan, Graphene and its derivatives: synthesis, modifications, and applications in wastewater treatment. Environ. Chem. Lett. 16, 1301–1323 (2018)CrossRef A. Jilani, M.H.D. Othman, M.O. Ansari, S.Z. Hussain, A.F. Ismail, I.U. Khan, Graphene and its derivatives: synthesis, modifications, and applications in wastewater treatment. Environ. Chem. Lett. 16, 1301–1323 (2018)CrossRef
37.
Zurück zum Zitat S. Dervin, D.D. Dionysiou, S.C. Pillai, 2D nanostructures for water purification: graphene and beyond. Nanoscale 8, 15115–15131 (2016)CrossRef S. Dervin, D.D. Dionysiou, S.C. Pillai, 2D nanostructures for water purification: graphene and beyond. Nanoscale 8, 15115–15131 (2016)CrossRef
38.
Zurück zum Zitat H. Wang, C. Li, P. Fang, Z. Zhang, J.Z. Zhang, Synthesis, properties, and optoelectronic applications of two-dimensional MoS 2 and MoS 2-based heterostructures. Chem. Soc. Rev. 47, 6101–6127 (2018)CrossRef H. Wang, C. Li, P. Fang, Z. Zhang, J.Z. Zhang, Synthesis, properties, and optoelectronic applications of two-dimensional MoS 2 and MoS 2-based heterostructures. Chem. Soc. Rev. 47, 6101–6127 (2018)CrossRef
39.
Zurück zum Zitat X. Wang, J. Ding, S. Yao, X. Wu, Q. Feng, Z. Wang et al., High supercapacitor and adsorption behaviors of flower-like MoS 2 nanostructures. J. Mater. Chem. A. 2, 15958–15963 (2014)CrossRef X. Wang, J. Ding, S. Yao, X. Wu, Q. Feng, Z. Wang et al., High supercapacitor and adsorption behaviors of flower-like MoS 2 nanostructures. J. Mater. Chem. A. 2, 15958–15963 (2014)CrossRef
40.
Zurück zum Zitat K. Ai, C. Ruan, M. Shen, L. Lu, MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems. Adv. Func. Mater. 26, 5542–5549 (2016)CrossRef K. Ai, C. Ruan, M. Shen, L. Lu, MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems. Adv. Func. Mater. 26, 5542–5549 (2016)CrossRef
41.
Zurück zum Zitat S.S. Chou, M. De, J. Kim, S. Byun, C. Dykstra, J. Yu et al., Ligand conjugation of chemically exfoliated MoS2. J. Am. Chem. Soc. 135, 4584–4587 (2013)CrossRef S.S. Chou, M. De, J. Kim, S. Byun, C. Dykstra, J. Yu et al., Ligand conjugation of chemically exfoliated MoS2. J. Am. Chem. Soc. 135, 4584–4587 (2013)CrossRef
42.
Zurück zum Zitat A.E. Gash, A.L. Spain, L.M. Dysleski, C.J. Flaschenriem, A. Kalaveshi, P.K. Dorhout et al., Efficient recovery of elemental mercury from Hg (II)-contaminated aqueous media using a redox-recyclable ion-exchange material. Environ. Sci. Technol. 32, 1007–1012 (1998)CrossRef A.E. Gash, A.L. Spain, L.M. Dysleski, C.J. Flaschenriem, A. Kalaveshi, P.K. Dorhout et al., Efficient recovery of elemental mercury from Hg (II)-contaminated aqueous media using a redox-recyclable ion-exchange material. Environ. Sci. Technol. 32, 1007–1012 (1998)CrossRef
43.
Zurück zum Zitat Y. Zhang, S. He, Y. Zhang, Y. Feng, Z. Pan, M. Zhang, Facile synthesis of PPy@ MoS2 hollow microtubes for removal of cationic and anionic dyes in water treatment. Colloids Surf., A 632, 127765 (2022)CrossRef Y. Zhang, S. He, Y. Zhang, Y. Feng, Z. Pan, M. Zhang, Facile synthesis of PPy@ MoS2 hollow microtubes for removal of cationic and anionic dyes in water treatment. Colloids Surf., A 632, 127765 (2022)CrossRef
44.
Zurück zum Zitat T. Krasian, W. Punyodom, P. Worajittiphon, A hybrid of 2D materials (MoS2 and WS2) as an effective performance enhancer for poly (lactic acid) fibrous mats in oil adsorption and oil/water separation. Chem. Eng. J. 369, 563–575 (2019)CrossRef T. Krasian, W. Punyodom, P. Worajittiphon, A hybrid of 2D materials (MoS2 and WS2) as an effective performance enhancer for poly (lactic acid) fibrous mats in oil adsorption and oil/water separation. Chem. Eng. J. 369, 563–575 (2019)CrossRef
45.
Zurück zum Zitat J. Joy, J. Abraham, J. Sunny, J. Mathew, S.C. George, Hydrophobic, superabsorbing materials from reduced graphene oxide/MoS2 polyurethane foam as a promising sorbent for oil and organic solvents. Polym. Testing 87, 106429 (2020)CrossRef J. Joy, J. Abraham, J. Sunny, J. Mathew, S.C. George, Hydrophobic, superabsorbing materials from reduced graphene oxide/MoS2 polyurethane foam as a promising sorbent for oil and organic solvents. Polym. Testing 87, 106429 (2020)CrossRef
46.
Zurück zum Zitat X. Gao, X. Wang, X. Ouyang, C. Wen, Flexible superhydrophobic and superoleophilic MoS2 sponge for highly efficient oil-water separation. Sci. Rep. 6, 1–8 (2016) X. Gao, X. Wang, X. Ouyang, C. Wen, Flexible superhydrophobic and superoleophilic MoS2 sponge for highly efficient oil-water separation. Sci. Rep. 6, 1–8 (2016)
47.
Zurück zum Zitat P.K. Chow, E. Singh, B.C. Viana, J. Gao, J. Luo, J. Li et al., Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. ACS Nano 9, 3023–3031 (2015)CrossRef P.K. Chow, E. Singh, B.C. Viana, J. Gao, J. Luo, J. Li et al., Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. ACS Nano 9, 3023–3031 (2015)CrossRef
48.
Zurück zum Zitat H.J. Song, S. You, X.H. Jia, J. Yang, MoS2 nanosheets decorated with magnetic Fe3O4 nanoparticles and their ultrafast adsorption for wastewater treatment. Ceram. Int. 41, 13896–13902 (2015)CrossRef H.J. Song, S. You, X.H. Jia, J. Yang, MoS2 nanosheets decorated with magnetic Fe3O4 nanoparticles and their ultrafast adsorption for wastewater treatment. Ceram. Int. 41, 13896–13902 (2015)CrossRef
49.
Zurück zum Zitat Z. Wang, J. Zhang, T. Wen, X. Liu, Y. Wang, H. Yang et al., Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS2 nanohybrid. Sci. Total Environ. 699, 134341 (2020)CrossRef Z. Wang, J. Zhang, T. Wen, X. Liu, Y. Wang, H. Yang et al., Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS2 nanohybrid. Sci. Total Environ. 699, 134341 (2020)CrossRef
50.
Zurück zum Zitat S. Tong, H. Deng, L. Wang, T. Huang, S. Liu, J. Wang, Multi-functional nanohybrid of ultrathin molybdenum disulfide nanosheets decorated with cerium oxide nanoparticles for preferential uptake of lead (II) ions. Chem. Eng. J. 335, 22–31 (2018)CrossRef S. Tong, H. Deng, L. Wang, T. Huang, S. Liu, J. Wang, Multi-functional nanohybrid of ultrathin molybdenum disulfide nanosheets decorated with cerium oxide nanoparticles for preferential uptake of lead (II) ions. Chem. Eng. J. 335, 22–31 (2018)CrossRef
51.
Zurück zum Zitat Z. Li, X. Meng, Z. Zhang, Equilibrium and kinetic modelling of adsorption of Rhodamine B on MoS2. Mater. Res. Bull. 111, 238–244 (2019)CrossRef Z. Li, X. Meng, Z. Zhang, Equilibrium and kinetic modelling of adsorption of Rhodamine B on MoS2. Mater. Res. Bull. 111, 238–244 (2019)CrossRef
52.
Zurück zum Zitat H. Song, S. You, X. Jia, Synthesis of fungus-like MoS2 nanosheets with ultrafast adsorption capacities toward organic dyes. Appl. Phys. A 121, 541–548 (2015)CrossRef H. Song, S. You, X. Jia, Synthesis of fungus-like MoS2 nanosheets with ultrafast adsorption capacities toward organic dyes. Appl. Phys. A 121, 541–548 (2015)CrossRef
53.
Zurück zum Zitat Y. Wu, M. Su, J. Chen, Z. Xu, J. Tang, X. Chang et al., Superior adsorption of methyl orange by h-MoS2 microspheres: Isotherm, kinetics, and thermodynamic studies. Dyes Pigm. 170, 107591 (2019)CrossRef Y. Wu, M. Su, J. Chen, Z. Xu, J. Tang, X. Chang et al., Superior adsorption of methyl orange by h-MoS2 microspheres: Isotherm, kinetics, and thermodynamic studies. Dyes Pigm. 170, 107591 (2019)CrossRef
54.
Zurück zum Zitat X. Xiao, Y. Wang, B. Cui, X. Zhang, D. Zhang, X. Xu, Preparation of MoS2 nanoflowers with rich active sites as an efficient adsorbent for aqueous organic dyes. New J. Chem. 44, 4558–4567 (2020)CrossRef X. Xiao, Y. Wang, B. Cui, X. Zhang, D. Zhang, X. Xu, Preparation of MoS2 nanoflowers with rich active sites as an efficient adsorbent for aqueous organic dyes. New J. Chem. 44, 4558–4567 (2020)CrossRef
55.
Zurück zum Zitat H. Yang, H. Yuan, Q. Hu, W. Liu, D. Zhang, Synthesis of mesoporous C/MoS2 for adsorption of methyl orange and photocatalytic sterilization. Appl. Surf. Sci. 504, 144445 (2020)CrossRef H. Yang, H. Yuan, Q. Hu, W. Liu, D. Zhang, Synthesis of mesoporous C/MoS2 for adsorption of methyl orange and photocatalytic sterilization. Appl. Surf. Sci. 504, 144445 (2020)CrossRef
56.
Zurück zum Zitat J. Chen, Y. Liao, X. Wan, S. Tie, B. Zhang, S. Lan et al., A high performance MoO3@MoS2 porous nanorods for adsorption and photodegradation of dye. J. Solid State Chem. 291, 121652 (2020)CrossRef J. Chen, Y. Liao, X. Wan, S. Tie, B. Zhang, S. Lan et al., A high performance MoO3@MoS2 porous nanorods for adsorption and photodegradation of dye. J. Solid State Chem. 291, 121652 (2020)CrossRef
57.
Zurück zum Zitat X. Liu, W. Zhang, L. Mao, Y. Yin, L. Hu, Synthesis of FeOCl-MoS2 with excellent adsorption performance for methyl orange. J. Mater. Sci. 56, 6704–6718 (2021)CrossRef X. Liu, W. Zhang, L. Mao, Y. Yin, L. Hu, Synthesis of FeOCl-MoS2 with excellent adsorption performance for methyl orange. J. Mater. Sci. 56, 6704–6718 (2021)CrossRef
58.
Zurück zum Zitat X.-Q. Qiao, F.-C. Hu, F.-Y. Tian, D.-F. Hou, D.-S. Li, Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS2 nanosheets. RSC Adv. 6, 11631–11636 (2016)CrossRef X.-Q. Qiao, F.-C. Hu, F.-Y. Tian, D.-F. Hou, D.-S. Li, Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS2 nanosheets. RSC Adv. 6, 11631–11636 (2016)CrossRef
59.
Zurück zum Zitat R. Li, H. Deng, X. Zhang, J.J. Wang, M.K. Awasthi, Q. Wang et al., High-efficiency removal of Pb(II) and humate by a CeO2–MoS2 hybrid magnetic biochar. Biores. Technol. 273, 335–340 (2019)CrossRef R. Li, H. Deng, X. Zhang, J.J. Wang, M.K. Awasthi, Q. Wang et al., High-efficiency removal of Pb(II) and humate by a CeO2–MoS2 hybrid magnetic biochar. Biores. Technol. 273, 335–340 (2019)CrossRef
60.
Zurück zum Zitat M.J. Aghagoli, F. Shemirani, Hybrid nanosheets composed of molybdenum disulfide and reduced graphene oxide for enhanced solid phase extraction of Pb(II) and Ni(II). Microchim. Acta 184, 237–244 (2017)CrossRef M.J. Aghagoli, F. Shemirani, Hybrid nanosheets composed of molybdenum disulfide and reduced graphene oxide for enhanced solid phase extraction of Pb(II) and Ni(II). Microchim. Acta 184, 237–244 (2017)CrossRef
61.
Zurück zum Zitat J. Liu, H. Lin, Y. Dong, Y. He, W. Liu, Y. Shi, The effective adsorption of tetracycline onto MoS2@Zeolite-5: Adsorption behavior and interfacial mechanism. J. Environ. Chem. Eng. 9, 105912 (2021)CrossRef J. Liu, H. Lin, Y. Dong, Y. He, W. Liu, Y. Shi, The effective adsorption of tetracycline onto MoS2@Zeolite-5: Adsorption behavior and interfacial mechanism. J. Environ. Chem. Eng. 9, 105912 (2021)CrossRef
62.
Zurück zum Zitat Y. Li, C. Tang, L. Yang, Y. Sun, W. Ju, Integrated roles of MoS2 nanosheets for water treatment and polymer flame retardant. Arab. J. Sci. Eng. 46, 6753–6763 (2021)CrossRef Y. Li, C. Tang, L. Yang, Y. Sun, W. Ju, Integrated roles of MoS2 nanosheets for water treatment and polymer flame retardant. Arab. J. Sci. Eng. 46, 6753–6763 (2021)CrossRef
63.
Zurück zum Zitat M.K. Uddin, F. Mashkoor, I.M. AlArifi, A. Nasar, Simple one-step synthesis process of novel MoS2@bentonite magnetic nanocomposite for efficient adsorption of crystal violet from aqueous solution. Mater. Res. Bull. 139, 111279 (2021)CrossRef M.K. Uddin, F. Mashkoor, I.M. AlArifi, A. Nasar, Simple one-step synthesis process of novel MoS2@bentonite magnetic nanocomposite for efficient adsorption of crystal violet from aqueous solution. Mater. Res. Bull. 139, 111279 (2021)CrossRef
64.
Zurück zum Zitat J. Luo, K. Fu, M. Sun, K. Yin, D. Wang, X. Liu et al., Phase-mediated heavy metal adsorption from aqueous solutions using two-dimensional layered MoS2. ACS Appl. Mater. Interfaces. 11, 38789–38797 (2019)CrossRef J. Luo, K. Fu, M. Sun, K. Yin, D. Wang, X. Liu et al., Phase-mediated heavy metal adsorption from aqueous solutions using two-dimensional layered MoS2. ACS Appl. Mater. Interfaces. 11, 38789–38797 (2019)CrossRef
65.
Zurück zum Zitat N. Kumar, E. Fosso-Kankeu, S.S. Ray, Achieving controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(II) from aquatic systems. ACS Appl. Mater. Interfaces. 11, 19141–19155 (2019)CrossRef N. Kumar, E. Fosso-Kankeu, S.S. Ray, Achieving controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(II) from aquatic systems. ACS Appl. Mater. Interfaces. 11, 19141–19155 (2019)CrossRef
66.
Zurück zum Zitat Y. Chao, W. Zhu, X. Wu, F. Hou, S. Xun, P. Wu et al., Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic. Chem. Eng. J. 243, 60–67 (2014)CrossRef Y. Chao, W. Zhu, X. Wu, F. Hou, S. Xun, P. Wu et al., Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic. Chem. Eng. J. 243, 60–67 (2014)CrossRef
67.
Zurück zum Zitat Z. Zeng, S. Ye, H. Wu, R. Xiao, G. Zeng, J. Liang et al., Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution. Sci. Total Environ. 648, 206–217 (2019)CrossRef Z. Zeng, S. Ye, H. Wu, R. Xiao, G. Zeng, J. Liang et al., Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution. Sci. Total Environ. 648, 206–217 (2019)CrossRef
68.
Zurück zum Zitat R. Gusain, N. Kumar, E. Fosso-Kankeu, S.S. Ray, Efficient removal of Pb(II) and Cd(II) from industrial mine water by a hierarchical MoS2/SH-MWCNT nanocomposite. ACS Omega 4, 13922–13935 (2019)CrossRef R. Gusain, N. Kumar, E. Fosso-Kankeu, S.S. Ray, Efficient removal of Pb(II) and Cd(II) from industrial mine water by a hierarchical MoS2/SH-MWCNT nanocomposite. ACS Omega 4, 13922–13935 (2019)CrossRef
69.
Zurück zum Zitat C. Wang, J. Jin, Y. Sun, J. Yao, G. Zhao, Y. Liu, In-situ synthesis and ultrasound enhanced adsorption properties of MoS2/graphene quantum dot nanocomposite. Chem. Eng. J. 327, 774–782 (2017)CrossRef C. Wang, J. Jin, Y. Sun, J. Yao, G. Zhao, Y. Liu, In-situ synthesis and ultrasound enhanced adsorption properties of MoS2/graphene quantum dot nanocomposite. Chem. Eng. J. 327, 774–782 (2017)CrossRef
70.
Zurück zum Zitat M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)CrossRef M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)CrossRef
71.
Zurück zum Zitat Y.J. Yuan, H.W. Lu, Z.T. Yu, Z.G. Zou, Noble-metal-free molybdenum disulfide cocatalyst for photocatalytic hydrogen production. Chemsuschem 8, 4113–4127 (2015)CrossRef Y.J. Yuan, H.W. Lu, Z.T. Yu, Z.G. Zou, Noble-metal-free molybdenum disulfide cocatalyst for photocatalytic hydrogen production. Chemsuschem 8, 4113–4127 (2015)CrossRef
72.
Zurück zum Zitat X. Jin, X. Fan, J. Tian, R. Cheng, M. Li, L. Zhang, MoS 2 quantum dot decorated gC 3 N 4 composite photocatalyst with enhanced hydrogen evolution performance. RSC Adv. 6, 52611–52619 (2016)CrossRef X. Jin, X. Fan, J. Tian, R. Cheng, M. Li, L. Zhang, MoS 2 quantum dot decorated gC 3 N 4 composite photocatalyst with enhanced hydrogen evolution performance. RSC Adv. 6, 52611–52619 (2016)CrossRef
73.
Zurück zum Zitat M. Ntakadzeni, W.W. Anku, N. Kumar, P.P. Govender, L. Reddy, PEGylated MoS2 Nanosheets: a dual functional photocatalyst for photodegradation of organic dyes and photoreduction of chromium from aqueous solution 2019, 11 (2019) M. Ntakadzeni, W.W. Anku, N. Kumar, P.P. Govender, L. Reddy, PEGylated MoS2 Nanosheets: a dual functional photocatalyst for photodegradation of organic dyes and photoreduction of chromium from aqueous solution 2019, 11 (2019)
74.
Zurück zum Zitat N. Singh, G. Jabbour, U. Schwingenschlögl, Optical and photocatalytic properties of two-dimensional MoS2. Europ. Phys. J. B. 85, 1–4 (2012)CrossRef N. Singh, G. Jabbour, U. Schwingenschlögl, Optical and photocatalytic properties of two-dimensional MoS2. Europ. Phys. J. B. 85, 1–4 (2012)CrossRef
75.
Zurück zum Zitat N. Shao, J. Wang, D. Wang, P. Corvini, Preparation of three-dimensional Ag3PO4/TiO2@ MoS2 for enhanced visible-light photocatalytic activity and anti-photocorrosion. Appl. Catal. B 203, 964–978 (2017)CrossRef N. Shao, J. Wang, D. Wang, P. Corvini, Preparation of three-dimensional Ag3PO4/TiO2@ MoS2 for enhanced visible-light photocatalytic activity and anti-photocorrosion. Appl. Catal. B 203, 964–978 (2017)CrossRef
76.
Zurück zum Zitat Y. Gao, C. Chen, X. Tan, H. Xu, K. Zhu, Polyaniline-modified 3D-flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr (VI). J. Colloid Interface Sci. 476, 62–70 (2016)CrossRef Y. Gao, C. Chen, X. Tan, H. Xu, K. Zhu, Polyaniline-modified 3D-flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr (VI). J. Colloid Interface Sci. 476, 62–70 (2016)CrossRef
77.
Zurück zum Zitat X. Wang, M. Hong, F. Zhang, Z. Zhuang, Y. Yu, Recyclable nanoscale zero valent iron doped g-C3N4/MoS2 for efficient photocatalysis of RhB and Cr(VI) driven by visible light. ACS Sustain. Chem. Eng. 4, 4055–4063 (2016)CrossRef X. Wang, M. Hong, F. Zhang, Z. Zhuang, Y. Yu, Recyclable nanoscale zero valent iron doped g-C3N4/MoS2 for efficient photocatalysis of RhB and Cr(VI) driven by visible light. ACS Sustain. Chem. Eng. 4, 4055–4063 (2016)CrossRef
78.
Zurück zum Zitat T. Thurston, J. Wilcoxon, Photooxidation of organic chemicals catalyzed by nanoscale MoS2. J. Phys. Chem. B 103, 11–17 (1999)CrossRef T. Thurston, J. Wilcoxon, Photooxidation of organic chemicals catalyzed by nanoscale MoS2. J. Phys. Chem. B 103, 11–17 (1999)CrossRef
79.
Zurück zum Zitat Q. Wang, S. Dong, D. Zhang, C. Yu, J. Lu, D. Wang et al., Magnetically recyclable visible-light-responsive MoS2@Fe3O4 photocatalysts targeting efficient wastewater treatment. J. Mater. Sci. 53, 1135–1147 (2018)CrossRef Q. Wang, S. Dong, D. Zhang, C. Yu, J. Lu, D. Wang et al., Magnetically recyclable visible-light-responsive MoS2@Fe3O4 photocatalysts targeting efficient wastewater treatment. J. Mater. Sci. 53, 1135–1147 (2018)CrossRef
80.
Zurück zum Zitat B. Sheng, J. Liu, Z. Li, M. Wang, K. Zhu, J. Qiu et al., Effects of excess sulfur source on the formation and photocatalytic properties of flower-like MoS2 spheres by hydrothermal synthesis. Mater. Lett. 144, 153–156 (2015)CrossRef B. Sheng, J. Liu, Z. Li, M. Wang, K. Zhu, J. Qiu et al., Effects of excess sulfur source on the formation and photocatalytic properties of flower-like MoS2 spheres by hydrothermal synthesis. Mater. Lett. 144, 153–156 (2015)CrossRef
81.
Zurück zum Zitat H. Lv, Y. Liu, H. Tang, P. Zhang, J. Wang, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic activity of BiPO4 nanoparticles. Appl. Surf. Sci. 425, 100–106 (2017)CrossRef H. Lv, Y. Liu, H. Tang, P. Zhang, J. Wang, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic activity of BiPO4 nanoparticles. Appl. Surf. Sci. 425, 100–106 (2017)CrossRef
82.
Zurück zum Zitat J. Liu, H. Lin, Y. He, Y. Dong, Gueret yadiberet menzembere ER. Novel CoS2/MoS2@Zeolite with excellent adsorption and photocatalytic performance for tetracycline removal in simulated wastewater. J. Cleaner Product. 260, 121047 (2020) J. Liu, H. Lin, Y. He, Y. Dong, Gueret yadiberet menzembere ER. Novel CoS2/MoS2@Zeolite with excellent adsorption and photocatalytic performance for tetracycline removal in simulated wastewater. J. Cleaner Product. 260, 121047 (2020)
83.
Zurück zum Zitat Y. Li, Z. Lai, Z. Huang, H. Wang, C. Zhao, G. Ruan et al., Fabrication of BiOBr/MoS2/graphene oxide composites for efficient adsorption and photocatalytic removal of tetracycline antibiotics. Appl. Surf. Sci. 550, 149342 (2021)CrossRef Y. Li, Z. Lai, Z. Huang, H. Wang, C. Zhao, G. Ruan et al., Fabrication of BiOBr/MoS2/graphene oxide composites for efficient adsorption and photocatalytic removal of tetracycline antibiotics. Appl. Surf. Sci. 550, 149342 (2021)CrossRef
84.
Zurück zum Zitat S. Cravanzola, F. Cesano, G. Magnacca, A. Zecchina, D. Scarano, Designing rGO/MoS2 hybrid nanostructures for photocatalytic applications. RSC Adv. 6, 59001–59008 (2016)CrossRef S. Cravanzola, F. Cesano, G. Magnacca, A. Zecchina, D. Scarano, Designing rGO/MoS2 hybrid nanostructures for photocatalytic applications. RSC Adv. 6, 59001–59008 (2016)CrossRef
85.
Zurück zum Zitat H. Wang, F. Wen, X. Li, X. Gan, Y. Yang, P. Chen et al., Cerium-doped MoS2 nanostructures: efficient visible photocatalysis for Cr(VI) removal. Sep. Purif. Technol. 170, 190–198 (2016)CrossRef H. Wang, F. Wen, X. Li, X. Gan, Y. Yang, P. Chen et al., Cerium-doped MoS2 nanostructures: efficient visible photocatalysis for Cr(VI) removal. Sep. Purif. Technol. 170, 190–198 (2016)CrossRef
86.
Zurück zum Zitat K. Talukdar, K. Saravanakumar, Y. Kim, A. Fayyaz, G. Kim, Y. Yoon et al., Rational construction of CeO2–ZrO2@MoS2 hybrid nanoflowers for enhanced sonophotocatalytic degradation of naproxen: mechanisms and degradation pathways. Compos. B Eng. 215, 108780 (2021)CrossRef K. Talukdar, K. Saravanakumar, Y. Kim, A. Fayyaz, G. Kim, Y. Yoon et al., Rational construction of CeO2–ZrO2@MoS2 hybrid nanoflowers for enhanced sonophotocatalytic degradation of naproxen: mechanisms and degradation pathways. Compos. B Eng. 215, 108780 (2021)CrossRef
87.
Zurück zum Zitat X. Lin, X. Wang, Q. Zhou, C. Wen, S. Su, J. Xiang et al., Magnetically recyclable MoS2/Fe3O4 hybrid composite as visible light responsive photocatalyst with enhanced photocatalytic performance. ACS Sustain. Chem. Eng. 7, 1673–1682 (2019)CrossRef X. Lin, X. Wang, Q. Zhou, C. Wen, S. Su, J. Xiang et al., Magnetically recyclable MoS2/Fe3O4 hybrid composite as visible light responsive photocatalyst with enhanced photocatalytic performance. ACS Sustain. Chem. Eng. 7, 1673–1682 (2019)CrossRef
88.
Zurück zum Zitat S. Wang, M.-R. Chen, S.-B. Shen, C.-H. Cheng, A.-J. Cai, A.-J. Song et al., Bifunctionalized Fe7S8@MoS2–O core-shell with efficient photocatalytic activity based on internal electric field. J. Cleaner Product. 335, 130375 (2022) S. Wang, M.-R. Chen, S.-B. Shen, C.-H. Cheng, A.-J. Cai, A.-J. Song et al., Bifunctionalized Fe7S8@MoS2–O core-shell with efficient photocatalytic activity based on internal electric field. J. Cleaner Product. 335, 130375 (2022)
89.
Zurück zum Zitat D. Lu, H. Wang, X. Zhao, K.K. Kondamareddy, J. Ding, C. Li et al., Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen. ACS Sustain. Chem. Eng. 5, 1436–1445 (2017)CrossRef D. Lu, H. Wang, X. Zhao, K.K. Kondamareddy, J. Ding, C. Li et al., Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen. ACS Sustain. Chem. Eng. 5, 1436–1445 (2017)CrossRef
90.
Zurück zum Zitat W.Y. Lim, M. Hong, G.W. Ho, In situ photo-assisted deposition and photocatalysis of ZnIn2S4/transition metal chalcogenides for enhanced degradation and hydrogen evolution under visible light. Dalton Trans. 45, 552–560 (2016)CrossRef W.Y. Lim, M. Hong, G.W. Ho, In situ photo-assisted deposition and photocatalysis of ZnIn2S4/transition metal chalcogenides for enhanced degradation and hydrogen evolution under visible light. Dalton Trans. 45, 552–560 (2016)CrossRef
91.
Zurück zum Zitat S. Fu, W. Yuan, Y. Yan, H. Liu, X. Shi, F. Zhao et al., Highly efficient visible-light photoactivity of Z-scheme MoS2/Ag2CO3 photocatalysts for organic pollutants degradation and bacterial inactivation. J. Environ. Manage. 252, 109654 (2019)CrossRef S. Fu, W. Yuan, Y. Yan, H. Liu, X. Shi, F. Zhao et al., Highly efficient visible-light photoactivity of Z-scheme MoS2/Ag2CO3 photocatalysts for organic pollutants degradation and bacterial inactivation. J. Environ. Manage. 252, 109654 (2019)CrossRef
92.
Zurück zum Zitat R. Dong, Y. Zhong, D. Chen, N. Li, Q. Xu, H. Li et al., Morphology-controlled fabrication of CNT@MoS2/SnS2 nanotubes for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. J. Alloy. Compd. 784, 282–292 (2019)CrossRef R. Dong, Y. Zhong, D. Chen, N. Li, Q. Xu, H. Li et al., Morphology-controlled fabrication of CNT@MoS2/SnS2 nanotubes for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. J. Alloy. Compd. 784, 282–292 (2019)CrossRef
93.
Zurück zum Zitat S. Chen, Y. Di, H. Li, M. Wang, B. Jia, R. Xu et al., Efficient photocatalytic dye degradation by flowerlike MoS2/SrFe12O19 heterojunction under visible light. Appl. Surf. Sci. 559, 149855 (2021)CrossRef S. Chen, Y. Di, H. Li, M. Wang, B. Jia, R. Xu et al., Efficient photocatalytic dye degradation by flowerlike MoS2/SrFe12O19 heterojunction under visible light. Appl. Surf. Sci. 559, 149855 (2021)CrossRef
94.
Zurück zum Zitat J. Piriyanon, T. Chankhanittha, S. Youngme, K. Hemavibool, S. Nijpanich, S. Juabrum et al., Fabrication of MoS2/Ag3PO4 S-scheme photocatalyst for visible-light-active degradation of organic dye and antibiotic in wastewater. J. Mater. Sci.: Mater. Electron. 32, 19798–19819 (2021) J. Piriyanon, T. Chankhanittha, S. Youngme, K. Hemavibool, S. Nijpanich, S. Juabrum et al., Fabrication of MoS2/Ag3PO4 S-scheme photocatalyst for visible-light-active degradation of organic dye and antibiotic in wastewater. J. Mater. Sci.: Mater. Electron. 32, 19798–19819 (2021)
95.
Zurück zum Zitat R. Gusain, N. Kumar, F. Opoku, P.P. Govender, S.S. Ray, MoS2 nanosheet/ZnS composites for the visible-light-assisted photocatalytic degradation of oxytetracycline. ACS Appl. Nano Mater. 4, 4721–4734 (2021)CrossRef R. Gusain, N. Kumar, F. Opoku, P.P. Govender, S.S. Ray, MoS2 nanosheet/ZnS composites for the visible-light-assisted photocatalytic degradation of oxytetracycline. ACS Appl. Nano Mater. 4, 4721–4734 (2021)CrossRef
96.
Zurück zum Zitat T. Qiang, L. Chen, Y. Xia, X. Qin, Dual modified MoS2/SnS2 photocatalyst with Z-scheme heterojunction and vacancies defects to achieve a superior performance in Cr (VI) reduction and dyes degradation. J. Clean. Prod. 291, 125213 (2021)CrossRef T. Qiang, L. Chen, Y. Xia, X. Qin, Dual modified MoS2/SnS2 photocatalyst with Z-scheme heterojunction and vacancies defects to achieve a superior performance in Cr (VI) reduction and dyes degradation. J. Clean. Prod. 291, 125213 (2021)CrossRef
97.
Zurück zum Zitat S.V.P. Vattikuti, C. Byon, S. Jeon, Enhanced photocatalytic activity of ZnS nanoparticles loaded with MoS2 nanoflakes by self-assembly approach. Phys. B 502, 103–112 (2016)CrossRef S.V.P. Vattikuti, C. Byon, S. Jeon, Enhanced photocatalytic activity of ZnS nanoparticles loaded with MoS2 nanoflakes by self-assembly approach. Phys. B 502, 103–112 (2016)CrossRef
98.
Zurück zum Zitat S. Yin, R. Chen, M. Ji, Q. Jiang, K. Li, Z. Chen et al., Construction of ultrathin MoS2/Bi5O7I composites: Effective charge separation and increased photocatalytic activity. J. Colloid Interface Sci. 560, 475–484 (2020)CrossRef S. Yin, R. Chen, M. Ji, Q. Jiang, K. Li, Z. Chen et al., Construction of ultrathin MoS2/Bi5O7I composites: Effective charge separation and increased photocatalytic activity. J. Colloid Interface Sci. 560, 475–484 (2020)CrossRef
99.
Zurück zum Zitat Z. Wang, Q. Tu, S. Zheng, J.J. Urban, S. Li, B. Mi, Understanding the aqueous stability and filtration capability of MoS2 membranes. Nano Lett. 17, 7289–7298 (2017)CrossRef Z. Wang, Q. Tu, S. Zheng, J.J. Urban, S. Li, B. Mi, Understanding the aqueous stability and filtration capability of MoS2 membranes. Nano Lett. 17, 7289–7298 (2017)CrossRef
100.
Zurück zum Zitat W. Hirunpinyopas, E. Prestat, S.D. Worrall, S.J. Haigh, R.A. Dryfe, M.A. Bissett, Desalination and nanofiltration through functionalized laminar MoS2 membranes. ACS Nano 11, 11082–11090 (2017)CrossRef W. Hirunpinyopas, E. Prestat, S.D. Worrall, S.J. Haigh, R.A. Dryfe, M.A. Bissett, Desalination and nanofiltration through functionalized laminar MoS2 membranes. ACS Nano 11, 11082–11090 (2017)CrossRef
101.
Zurück zum Zitat X. Lu, U.R. Gabinet, C.L. Ritt, X. Feng, A. Deshmukh, K. Kawabata et al., Relating selectivity and separation performance of lamellar two-dimensional molybdenum disulfide (MoS2) membranes to nanosheet stacking behavior. Environ. Sci. Technol. 54, 9640–9651 (2020)CrossRef X. Lu, U.R. Gabinet, C.L. Ritt, X. Feng, A. Deshmukh, K. Kawabata et al., Relating selectivity and separation performance of lamellar two-dimensional molybdenum disulfide (MoS2) membranes to nanosheet stacking behavior. Environ. Sci. Technol. 54, 9640–9651 (2020)CrossRef
102.
Zurück zum Zitat M.S. Sri Abirami Saraswathi, D. Rana, P. Vijayakumar, S. Alwarappan, A. Nagendran, Tailored PVDF nanocomposite membranes using exfoliated MoS2 nanosheets for improved permeation and antifouling performance. New J. Chem. 41, 14315–14324 (2017) M.S. Sri Abirami Saraswathi, D. Rana, P. Vijayakumar, S. Alwarappan, A. Nagendran, Tailored PVDF nanocomposite membranes using exfoliated MoS2 nanosheets for improved permeation and antifouling performance. New J. Chem. 41, 14315–14324 (2017)
103.
Zurück zum Zitat L. Zhang, X. He, Q. Zhou, X. Hu, Fabrication of 1T-MoS2 nanosheets and the high-efficiency removal of toxic metals in aquatic systems: performance and mechanisms. Chem. Eng. J. 386, 123996 (2020)CrossRef L. Zhang, X. He, Q. Zhou, X. Hu, Fabrication of 1T-MoS2 nanosheets and the high-efficiency removal of toxic metals in aquatic systems: performance and mechanisms. Chem. Eng. J. 386, 123996 (2020)CrossRef
104.
Zurück zum Zitat I. Singha, P.K. Mishrab, Nano-membrane filtration a novel application of nanotechnology for waste water treatment. Mater. Today: Proc. 29, 327–332 (2020) I. Singha, P.K. Mishrab, Nano-membrane filtration a novel application of nanotechnology for waste water treatment. Mater. Today: Proc. 29, 327–332 (2020)
105.
Zurück zum Zitat J. Kou, J. Yao, L. Wu, X. Zhou, H. Lu, F. Wu et al., Nanoporous two-dimensional MoS2 membranes for fast saline solution purification. Phys. Chem. Chem. Phys. 18, 22210–22216 (2016)CrossRef J. Kou, J. Yao, L. Wu, X. Zhou, H. Lu, F. Wu et al., Nanoporous two-dimensional MoS2 membranes for fast saline solution purification. Phys. Chem. Chem. Phys. 18, 22210–22216 (2016)CrossRef
106.
Zurück zum Zitat M. Heiranian, A.B. Farimani, N.R. Aluru, Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6, 8616 (2015)CrossRef M. Heiranian, A.B. Farimani, N.R. Aluru, Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6, 8616 (2015)CrossRef
107.
Zurück zum Zitat J. Kou, J. Yao, L. Wu, X. Zhou, H. Lu, F. Wu et al., Nanoporous two-dimensional MoS 2 membranes for fast saline solution purification. Phys. Chem. Chem. Phys. 18, 22210–22216 (2016)CrossRef J. Kou, J. Yao, L. Wu, X. Zhou, H. Lu, F. Wu et al., Nanoporous two-dimensional MoS 2 membranes for fast saline solution purification. Phys. Chem. Chem. Phys. 18, 22210–22216 (2016)CrossRef
108.
Zurück zum Zitat L. Sun, H. Huang, X. Peng, Laminar MoS 2 membranes for molecule separation. Chem. Commun. 49, 10718–10720 (2013)CrossRef L. Sun, H. Huang, X. Peng, Laminar MoS 2 membranes for molecule separation. Chem. Commun. 49, 10718–10720 (2013)CrossRef
109.
Zurück zum Zitat J. Sun, Y. Chen, C. Hu, H. Liu, J. Qu, Modulation of cation trans-membrane transport in GO-MoS2 membranes through simultaneous control of interlayer spacing and ion-nanochannel interactions. Chemosphere 222, 156–164 (2019)CrossRef J. Sun, Y. Chen, C. Hu, H. Liu, J. Qu, Modulation of cation trans-membrane transport in GO-MoS2 membranes through simultaneous control of interlayer spacing and ion-nanochannel interactions. Chemosphere 222, 156–164 (2019)CrossRef
110.
Zurück zum Zitat S.A. Wakelin, M.J. Colloff, R.S. Kookana, Effect of wastewater treatment plant effluent on microbial function and community structure in the sediment of a freshwater stream with variable seasonal flow. Appl. Environ. Microbiol. 74, 2659–2668 (2008)CrossRef S.A. Wakelin, M.J. Colloff, R.S. Kookana, Effect of wastewater treatment plant effluent on microbial function and community structure in the sediment of a freshwater stream with variable seasonal flow. Appl. Environ. Microbiol. 74, 2659–2668 (2008)CrossRef
111.
Zurück zum Zitat A. Sethulekshmi, A. Saritha, K. Joseph, A.S. Aprem, S.B. Sisupal, MoS2 based nanomaterials: Advanced antibacterial agents for future. J. Control. Release 348, 158–185 (2022)CrossRef A. Sethulekshmi, A. Saritha, K. Joseph, A.S. Aprem, S.B. Sisupal, MoS2 based nanomaterials: Advanced antibacterial agents for future. J. Control. Release 348, 158–185 (2022)CrossRef
112.
Zurück zum Zitat X. Tian, Y. Sun, S. Fan, M.D. Boudreau, C. Chen, C. Ge et al., Photogenerated charge carriers in molybdenum disulfide quantum dots with enhanced antibacterial activity. ACS Appl. Mater. Interfaces. 11, 4858–4866 (2019)CrossRef X. Tian, Y. Sun, S. Fan, M.D. Boudreau, C. Chen, C. Ge et al., Photogenerated charge carriers in molybdenum disulfide quantum dots with enhanced antibacterial activity. ACS Appl. Mater. Interfaces. 11, 4858–4866 (2019)CrossRef
113.
Zurück zum Zitat M. Zhang, K. Wang, S. Zeng, Y. Xu, W. Nie, P. Chen et al., Visible light-induced antibacterial effect of MoS2: effect of the synthesis methods. Chem. Eng. J. 411, 128517 (2021)CrossRef M. Zhang, K. Wang, S. Zeng, Y. Xu, W. Nie, P. Chen et al., Visible light-induced antibacterial effect of MoS2: effect of the synthesis methods. Chem. Eng. J. 411, 128517 (2021)CrossRef
114.
Zurück zum Zitat S. Roy, A. Mondal, V. Yadav, A. Sarkar, R. Banerjee, P. Sanpui et al., Mechanistic insight into the antibacterial activity of chitosan exfoliated MoS2 nanosheets: membrane damage, metabolic inactivation, and oxidative stress. ACS Appl. Bio Mater. 2, 2738–2755 (2019)CrossRef S. Roy, A. Mondal, V. Yadav, A. Sarkar, R. Banerjee, P. Sanpui et al., Mechanistic insight into the antibacterial activity of chitosan exfoliated MoS2 nanosheets: membrane damage, metabolic inactivation, and oxidative stress. ACS Appl. Bio Mater. 2, 2738–2755 (2019)CrossRef
115.
Zurück zum Zitat X. Yang, J. Li, T. Liang, C. Ma, Y. Zhang, H. Chen et al., Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 6, 10126–10133 (2014)CrossRef X. Yang, J. Li, T. Liang, C. Ma, Y. Zhang, H. Chen et al., Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 6, 10126–10133 (2014)CrossRef
116.
Zurück zum Zitat Q. Xu, P. Zhu, J. Zhang, Y. Liu, L. Cai, H. Jiang et al., Electrochemical formation of distinct nanostructured MoS2 with altered antibacterial activity. Mater. Lett. 271, 127809 (2020)CrossRef Q. Xu, P. Zhu, J. Zhang, Y. Liu, L. Cai, H. Jiang et al., Electrochemical formation of distinct nanostructured MoS2 with altered antibacterial activity. Mater. Lett. 271, 127809 (2020)CrossRef
117.
Zurück zum Zitat Y. Xiang, Y. Liu, B. Mi, Y. Leng, Hydrated polyamide membrane and its interaction with alginate: a molecular dynamics study. Langmuir 29, 11600–11608 (2013)CrossRef Y. Xiang, Y. Liu, B. Mi, Y. Leng, Hydrated polyamide membrane and its interaction with alginate: a molecular dynamics study. Langmuir 29, 11600–11608 (2013)CrossRef
118.
Zurück zum Zitat Y. Xiang, Y. Liu, B. Mi, Y. Leng, Molecular dynamics simulations of polyamide membrane, calcium alginate gel, and their interactions in aqueous solution. Langmuir 30, 9098–9106 (2014)CrossRef Y. Xiang, Y. Liu, B. Mi, Y. Leng, Molecular dynamics simulations of polyamide membrane, calcium alginate gel, and their interactions in aqueous solution. Langmuir 30, 9098–9106 (2014)CrossRef
Metadaten
Titel
Applications of MoS2 Nanostructures in Wastewater Treatment
verfasst von
Rashi Gusain
Neeraj Kumar
Suprakas Sinha Ray
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-28756-5_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.