Skip to main content

2021 | OriginalPaper | Buchkapitel

4. Applications of Nanozymes in Wastewater Treatment

verfasst von : Vinod Kumar Yata

Erschienen in: Nanozymes for Environmental Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hazardous waste containing wastewaters should be treated with efficient and economically feasible methods for sustainable water management. Adaptations of novel wastewater treatment methods are required to protect the environment and to provide a high level of health protection. Conventional methods need to be combined with advanced methods to remove the toxic contaminants from wastewater. Treatment of wastewater with enzymes has been shown to improve the treatment efficiency with reduced sludge volume and reduced odour. High cost and stability of the enzymes are major limitations for the implications of enzymes in wastewater treatment. Nanomaterials with an enzyme-like activity, which are called nanozymes, are emerging as potential alternatives for natural enzymes in wastewater treatment.
Nanozymes have been shown oxidase, peroxidase, superoxide dismutase and catalase enzymes like activity. Nanozymes are highly stable than natural enzymes and can exhibit the activity at a wide range of pH and temperatures. Production cost is less than that of natural enzymes, and nanozymes can be stored for longer periods. Multi functionalization and reusability are some of the important properties for wider applications of nanozymes in different types of wastewaters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abu-Elsaoud AM, Abdel-Azeem AM (2020) Light, electromagnetic spectrum, and photostimulation of microorganisms with special reference to Chaetomium. In: Recent developments on Genus Chaetomium. Springer, Cham, pp 377–393CrossRef Abu-Elsaoud AM, Abdel-Azeem AM (2020) Light, electromagnetic spectrum, and photostimulation of microorganisms with special reference to Chaetomium. In: Recent developments on Genus Chaetomium. Springer, Cham, pp 377–393CrossRef
Zurück zum Zitat Aitken MD (1993) Waste treatment applications of enzymes: opportunities and obstacles. Chem Eng J 52(2):B49–B58CrossRef Aitken MD (1993) Waste treatment applications of enzymes: opportunities and obstacles. Chem Eng J 52(2):B49–B58CrossRef
Zurück zum Zitat Aitken MD, Massey IJ, Chen T, Heck PE (1994) Characterization of reaction products from the enzyme catalyzed oxidation of phenolic pollutants. Water Res 28(9):1879–1889CrossRef Aitken MD, Massey IJ, Chen T, Heck PE (1994) Characterization of reaction products from the enzyme catalyzed oxidation of phenolic pollutants. Water Res 28(9):1879–1889CrossRef
Zurück zum Zitat Al-Saydeh SA, El-Naas MH, Zaidi SJ (2017) Copper removal from industrial wastewater: A comprehensive review. J Ind Eng Chem 56:35–44CrossRef Al-Saydeh SA, El-Naas MH, Zaidi SJ (2017) Copper removal from industrial wastewater: A comprehensive review. J Ind Eng Chem 56:35–44CrossRef
Zurück zum Zitat Bohdziewicz J (1998) Biodegradation of phenol by enzymes from Pseudomonas sp. immobilized onto ultrafiltration membranes. Process Biochem 33(8):811–818CrossRef Bohdziewicz J (1998) Biodegradation of phenol by enzymes from Pseudomonas sp. immobilized onto ultrafiltration membranes. Process Biochem 33(8):811–818CrossRef
Zurück zum Zitat Bolong N, Ismail AF, Salim MR, Matsuura T (2009) A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239(1–3):229–246CrossRef Bolong N, Ismail AF, Salim MR, Matsuura T (2009) A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239(1–3):229–246CrossRef
Zurück zum Zitat Burgess JE, Pletschke BI (2008) Hydrolytic enzymes in sewage sludge treatment: a mini-review. Water SA 34(3):343–350CrossRef Burgess JE, Pletschke BI (2008) Hydrolytic enzymes in sewage sludge treatment: a mini-review. Water SA 34(3):343–350CrossRef
Zurück zum Zitat Burton SG, Boshoff A, Edwards W, Rose PD (1998) Biotransformation of phenols using immobilized polyphenol oxidase. J Mol Catal B Enzym 5(1–4):411–416CrossRef Burton SG, Boshoff A, Edwards W, Rose PD (1998) Biotransformation of phenols using immobilized polyphenol oxidase. J Mol Catal B Enzym 5(1–4):411–416CrossRef
Zurück zum Zitat Cai K, Lv Z, Chen K, Huang L, Wang J, Shao F et al (2013) Aqueous synthesis of porous platinum nanotubes at room temperature and their intrinsic peroxidase-like activity. Chem Commun 49(54):6024–6026CrossRef Cai K, Lv Z, Chen K, Huang L, Wang J, Shao F et al (2013) Aqueous synthesis of porous platinum nanotubes at room temperature and their intrinsic peroxidase-like activity. Chem Commun 49(54):6024–6026CrossRef
Zurück zum Zitat Capeness MJ, Echavarri-Bravo V, Horsfall LE (2019) Production of biogenic nanoparticles for the reduction of 4-nitrophenol and oxidative laccase-like reactions. Front Microbiol 10:997CrossRef Capeness MJ, Echavarri-Bravo V, Horsfall LE (2019) Production of biogenic nanoparticles for the reduction of 4-nitrophenol and oxidative laccase-like reactions. Front Microbiol 10:997CrossRef
Zurück zum Zitat Chen W, Chen J, Liu AL, Wang LM, Li GW, Lin XH (2011) Peroxidase-like activity of cupric oxide nanoparticle. ChemCatChem 3(7):1151–1154CrossRef Chen W, Chen J, Liu AL, Wang LM, Li GW, Lin XH (2011) Peroxidase-like activity of cupric oxide nanoparticle. ChemCatChem 3(7):1151–1154CrossRef
Zurück zum Zitat Chen W, Li S, Wang J, Sun K, Si Y (2019) Metal and metal-oxide nanozymes: bioenzymatic characteristics, catalytic mechanism, and eco-environmental applications. Nanoscale 11(34):15783–15793CrossRef Chen W, Li S, Wang J, Sun K, Si Y (2019) Metal and metal-oxide nanozymes: bioenzymatic characteristics, catalytic mechanism, and eco-environmental applications. Nanoscale 11(34):15783–15793CrossRef
Zurück zum Zitat Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61(12):4374–4377CrossRef Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61(12):4374–4377CrossRef
Zurück zum Zitat Dec J, Bollag JM (1994) Use of plant material for the decontamination of water polluted with phenols. Biotechnol Bioeng 44(9):1132–1139CrossRef Dec J, Bollag JM (1994) Use of plant material for the decontamination of water polluted with phenols. Biotechnol Bioeng 44(9):1132–1139CrossRef
Zurück zum Zitat Dhir B (2014) Potential of biological materials for removing heavy metals from wastewater. Environ Sci Pollut Res 21(3):1614–1627CrossRef Dhir B (2014) Potential of biological materials for removing heavy metals from wastewater. Environ Sci Pollut Res 21(3):1614–1627CrossRef
Zurück zum Zitat Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28(2):83–99CrossRef Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28(2):83–99CrossRef
Zurück zum Zitat Edwards W, Bownes R, Leukes WD, Jacobs EP, Sanderson R, Rose PD, Burton SG (1999) A capillary membrane bioreactor using immobilized polyphenol oxidase for the removal of phenols from industrial effluents. Enzym Microb Technol 24(3–4):209–217CrossRef Edwards W, Bownes R, Leukes WD, Jacobs EP, Sanderson R, Rose PD, Burton SG (1999) A capillary membrane bioreactor using immobilized polyphenol oxidase for the removal of phenols from industrial effluents. Enzym Microb Technol 24(3–4):209–217CrossRef
Zurück zum Zitat Fan J, Yin JJ, Ning B, Wu X, Hu Y, Ferrari M et al (2011) Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles. Biomaterials 32(6):1611–1618CrossRef Fan J, Yin JJ, Ning B, Wu X, Hu Y, Ferrari M et al (2011) Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles. Biomaterials 32(6):1611–1618CrossRef
Zurück zum Zitat Ferrer I, Dezotti M, Durán N (1991) Decolorization of Kraft effluent by free and immobilized lignin peroxidases and horseradish peroxidase. Biotechnol Lett 13(8):577–582CrossRef Ferrer I, Dezotti M, Durán N (1991) Decolorization of Kraft effluent by free and immobilized lignin peroxidases and horseradish peroxidase. Biotechnol Lett 13(8):577–582CrossRef
Zurück zum Zitat Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N et al (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583CrossRef Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N et al (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583CrossRef
Zurück zum Zitat Ghernaout D, Ghernaout B (2012) Sweep flocculation as a second form of charge neutralization—a review. Desalin Water Treat 44(1–3):15–28CrossRef Ghernaout D, Ghernaout B (2012) Sweep flocculation as a second form of charge neutralization—a review. Desalin Water Treat 44(1–3):15–28CrossRef
Zurück zum Zitat Gianfreda L, Sannino F, Filazzola MT, Leonowicz A (1998) Catalytic behavior and detoxifying ability of a laccase from the fungal strain Cerrena unicolor. J Mol Catal B Enzym 4(1–2):13–23CrossRef Gianfreda L, Sannino F, Filazzola MT, Leonowicz A (1998) Catalytic behavior and detoxifying ability of a laccase from the fungal strain Cerrena unicolor. J Mol Catal B Enzym 4(1–2):13–23CrossRef
Zurück zum Zitat Grabski AC, Burgess RR, Rasmussen JK, Coleman PL (1996) Immobilization of manganese peroxidase from Lentinula edodes on alkylaminated Emphaze (TM) AB 1 polymer for generation of Mn3+ as an oxidizing agent. Appl Biochem Biotechnol 60(1):1–17 Grabski AC, Burgess RR, Rasmussen JK, Coleman PL (1996) Immobilization of manganese peroxidase from Lentinula edodes on alkylaminated Emphaze (TM) AB 1 polymer for generation of Mn3+ as an oxidizing agent. Appl Biochem Biotechnol 60(1):1–17
Zurück zum Zitat Gramss G, Voigt KD, Kirsche B (1999) Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material. Chemosphere 38(7):1481–1494CrossRef Gramss G, Voigt KD, Kirsche B (1999) Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material. Chemosphere 38(7):1481–1494CrossRef
Zurück zum Zitat Grey R, Höfer C, Schlosser D (1998) Degradation of 2-chlorophenol and formation of 2-chloro-1, 4-benzoquinone by mycelia and cell-free crude culture liquids of Trametes versicolor in relation to extracellular laccase activity. J Basic Microbiol 38(5–6):371–382CrossRef Grey R, Höfer C, Schlosser D (1998) Degradation of 2-chlorophenol and formation of 2-chloro-1, 4-benzoquinone by mycelia and cell-free crude culture liquids of Trametes versicolor in relation to extracellular laccase activity. J Basic Microbiol 38(5–6):371–382CrossRef
Zurück zum Zitat He W, Wu X, Liu J, Hu X, Zhang K, Hou S et al (2010) Design of AgM bimetallic alloy nanostructures (M= Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem Mater 22(9):2988–2994CrossRef He W, Wu X, Liu J, Hu X, Zhang K, Hou S et al (2010) Design of AgM bimetallic alloy nanostructures (M= Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem Mater 22(9):2988–2994CrossRef
Zurück zum Zitat He W, Jia H, Li X, Lei Y, Li J, Zhao H et al (2012) Understanding the formation of CuS concave superstructures with peroxidase-like activity. Nanoscale 4(11):3501–3506CrossRef He W, Jia H, Li X, Lei Y, Li J, Zhao H et al (2012) Understanding the formation of CuS concave superstructures with peroxidase-like activity. Nanoscale 4(11):3501–3506CrossRef
Zurück zum Zitat He W, Zhou YT, Wamer WG, Hu X, Wu X, Zheng Z et al (2013) Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 34(3):765–773CrossRef He W, Zhou YT, Wamer WG, Hu X, Wu X, Zheng Z et al (2013) Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 34(3):765–773CrossRef
Zurück zum Zitat Hofrichter M, Vares K, Scheibner K, Galkin S, Sipilä J, Hatakka A (1999) Mineralization and solubilization of synthetic lignin by manganese peroxidases from Nematoloma frowardii and Phlebia radiata. J Biotechnol 67(2–3):217–228CrossRef Hofrichter M, Vares K, Scheibner K, Galkin S, Sipilä J, Hatakka A (1999) Mineralization and solubilization of synthetic lignin by manganese peroxidases from Nematoloma frowardii and Phlebia radiata. J Biotechnol 67(2–3):217–228CrossRef
Zurück zum Zitat Hollender J, Hopp J, Dott W (1997) Degradation of 4-Chlorophenol via the meta cleavage pathway by Comamonas testosteroni JH5. Appl Environ Microbiol 63(11):4567–4572CrossRef Hollender J, Hopp J, Dott W (1997) Degradation of 4-Chlorophenol via the meta cleavage pathway by Comamonas testosteroni JH5. Appl Environ Microbiol 63(11):4567–4572CrossRef
Zurück zum Zitat Hu X, Saran A, Hou S, Wen T, Ji Y, Liu W et al (2013) Au@ PtAg core/shell nanorods: tailoring enzyme-like activities via alloying. RSC Adv 3(17):6095–6105CrossRef Hu X, Saran A, Hou S, Wen T, Ji Y, Liu W et al (2013) Au@ PtAg core/shell nanorods: tailoring enzyme-like activities via alloying. RSC Adv 3(17):6095–6105CrossRef
Zurück zum Zitat Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119(6):4357–4412CrossRef Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119(6):4357–4412CrossRef
Zurück zum Zitat Islam MA, Morton DW, Johnson BB, Mainali B, Angove MJ (2018) Manganese oxides and their application to metal ion and contaminant removal from wastewater. J Water Process Eng 26:264–280CrossRef Islam MA, Morton DW, Johnson BB, Mainali B, Angove MJ (2018) Manganese oxides and their application to metal ion and contaminant removal from wastewater. J Water Process Eng 26:264–280CrossRef
Zurück zum Zitat Jiao X, Song H, Zhao H, Bai W, Zhang L, Lv Y (2012) Well-redispersed ceria nanoparticles: promising peroxidase mimetics for H2O2 and glucose detection. Anal Methods 4(10):3261–3267CrossRef Jiao X, Song H, Zhao H, Bai W, Zhang L, Lv Y (2012) Well-redispersed ceria nanoparticles: promising peroxidase mimetics for H2O2 and glucose detection. Anal Methods 4(10):3261–3267CrossRef
Zurück zum Zitat Johjima T, Itoh N, Kabuto M, Tokimura F, Nakagawa T, Wariishi H, Tanaka H (1999) Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. Proc Natl Acad Sci 96(5):1989–1994CrossRef Johjima T, Itoh N, Kabuto M, Tokimura F, Nakagawa T, Wariishi H, Tanaka H (1999) Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. Proc Natl Acad Sci 96(5):1989–1994CrossRef
Zurück zum Zitat Karam J, Nicell JA (1997) Potential applications of enzymes in waste treatment. J Chem Technol Biotechnol 69(2):141–153CrossRef Karam J, Nicell JA (1997) Potential applications of enzymes in waste treatment. J Chem Technol Biotechnol 69(2):141–153CrossRef
Zurück zum Zitat Kim JE, Wang CJJ, Bollag JM (1997) Interaction of reactive and inert chemicals in the presence of oxidoreductases: Reaction of the herbicide bentazon and its metabolites with humic monomers. Biodegradation 8(6):387–392CrossRef Kim JE, Wang CJJ, Bollag JM (1997) Interaction of reactive and inert chemicals in the presence of oxidoreductases: Reaction of the herbicide bentazon and its metabolites with humic monomers. Biodegradation 8(6):387–392CrossRef
Zurück zum Zitat Kuo MY, Hsiao CF, Chiu YH, Lai TH, Fang MJ, Wu JY et al (2019) Au@ Cu2O core@ shell nanocrystals as dual-functional catalysts for sustainable environmental applications. Appl Catal B Environ 242:499–506CrossRef Kuo MY, Hsiao CF, Chiu YH, Lai TH, Fang MJ, Wu JY et al (2019) Au@ Cu2O core@ shell nanocrystals as dual-functional catalysts for sustainable environmental applications. Appl Catal B Environ 242:499–506CrossRef
Zurück zum Zitat Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303CrossRef Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303CrossRef
Zurück zum Zitat Li W, Chen B, Zhang H, Sun Y, Wang J, Zhang J, Fu Y (2015) BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury (II) ions. Biosens Bioelectron 66:251–258CrossRef Li W, Chen B, Zhang H, Sun Y, Wang J, Zhang J, Fu Y (2015) BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury (II) ions. Biosens Bioelectron 66:251–258CrossRef
Zurück zum Zitat Liang M, Yan X (2019) Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res 52(8):2190–2200CrossRef Liang M, Yan X (2019) Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res 52(8):2190–2200CrossRef
Zurück zum Zitat Liu S, Lu F, Xing R, Zhu JJ (2011) Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chem Eur J 17(2):620–625CrossRef Liu S, Lu F, Xing R, Zhu JJ (2011) Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chem Eur J 17(2):620–625CrossRef
Zurück zum Zitat Lu XF, Bian XJ, Li ZC, Chao DM, Wang C (2013) A facile strategy to decorate Cu 9 S 5 nanocrystals on polyaniline nanowires and their synergetic catalytic properties. Sci Rep 3:2955CrossRef Lu XF, Bian XJ, Li ZC, Chao DM, Wang C (2013) A facile strategy to decorate Cu 9 S 5 nanocrystals on polyaniline nanowires and their synergetic catalytic properties. Sci Rep 3:2955CrossRef
Zurück zum Zitat Ma F, Zheng L, Chi Y (2008) Applications of biological flocculants (BFs) for coagulation treatment in water purification: turbidity elimination. Chem Biochem Eng Q 22(3):321–326 Ma F, Zheng L, Chi Y (2008) Applications of biological flocculants (BFs) for coagulation treatment in water purification: turbidity elimination. Chem Biochem Eng Q 22(3):321–326
Zurück zum Zitat Ma M, Zhang Y, Gu N (2011) Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloids Surf A Physicochem Eng Asp 373(1–3):6–10CrossRef Ma M, Zhang Y, Gu N (2011) Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloids Surf A Physicochem Eng Asp 373(1–3):6–10CrossRef
Zurück zum Zitat Machuca A, Aoyama H, Durán N (1999) Isolation and partial characterization of an extracellular low-molecular mass component with high Phenoloxidase activity from Thermoascus aurantiacus. Biochem Biophys Res Commun 256(1):20–26CrossRef Machuca A, Aoyama H, Durán N (1999) Isolation and partial characterization of an extracellular low-molecular mass component with high Phenoloxidase activity from Thermoascus aurantiacus. Biochem Biophys Res Commun 256(1):20–26CrossRef
Zurück zum Zitat Mansilla HD, Rodriguez J, Ferraz A, Duran N (1997) Biodegradation of acidolysis lignins from Chilean hardwoods by the ascomycete Chrysonilia sitophila. World J Microbiol Biotechnol 13(5):545–548CrossRef Mansilla HD, Rodriguez J, Ferraz A, Duran N (1997) Biodegradation of acidolysis lignins from Chilean hardwoods by the ascomycete Chrysonilia sitophila. World J Microbiol Biotechnol 13(5):545–548CrossRef
Zurück zum Zitat Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides–a review. Int J Eng Sci Technol 2(8):127–146 Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides–a review. Int J Eng Sci Technol 2(8):127–146
Zurück zum Zitat Mu J, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co 3 O 4 nanoparticles. Chem Commun 48(19):2540–2542CrossRef Mu J, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co 3 O 4 nanoparticles. Chem Commun 48(19):2540–2542CrossRef
Zurück zum Zitat Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44(23):2577–2641CrossRef Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44(23):2577–2641CrossRef
Zurück zum Zitat Pickard MA, Kadima TA, Carmichael RD (1991) Chloroperoxidase, a peroxidase with potential. J Ind Microbiol 7(4):235–241CrossRef Pickard MA, Kadima TA, Carmichael RD (1991) Chloroperoxidase, a peroxidase with potential. J Ind Microbiol 7(4):235–241CrossRef
Zurück zum Zitat Prakash NB, Sockan V, Jayakaran P (2014) Waste water treatment by coagulation and flocculation. Int J Eng Sci Innov Technol 3(2):479–484 Prakash NB, Sockan V, Jayakaran P (2014) Waste water treatment by coagulation and flocculation. Int J Eng Sci Innov Technol 3(2):479–484
Zurück zum Zitat Qin T, Ma R, Yin Y, Miao X, Chen S, Fan K et al (2019) Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics 9(23):6920CrossRef Qin T, Ma R, Yin Y, Miao X, Chen S, Fan K et al (2019) Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics 9(23):6920CrossRef
Zurück zum Zitat Qin L, Hu Y, Wei H (2020) Nanozymes: preparation and characterization. In: Yan (ed) Nanozymology. Springer, Singapore, pp 79–101CrossRef Qin L, Hu Y, Wei H (2020) Nanozymes: preparation and characterization. In: Yan (ed) Nanozymology. Springer, Singapore, pp 79–101CrossRef
Zurück zum Zitat Rama R, Mougin C, Boyer FD, Kollmann A, Malosse C, Sigoillot JC (1998) Biotransformation of bezo [a] pyrene in bench scale reactor using laccase of Pycnoporus cinnabarinus. Biotechnol Lett 20(12):1101–1104CrossRef Rama R, Mougin C, Boyer FD, Kollmann A, Malosse C, Sigoillot JC (1998) Biotransformation of bezo [a] pyrene in bench scale reactor using laccase of Pycnoporus cinnabarinus. Biotechnol Lett 20(12):1101–1104CrossRef
Zurück zum Zitat Rodriguez E, Pickard MA, Vazquez-Duhalt R (1999) Industrial dye decolorization by laccases from ligninolytic fungi. Curr Microbiol 38(1):27–32CrossRef Rodriguez E, Pickard MA, Vazquez-Duhalt R (1999) Industrial dye decolorization by laccases from ligninolytic fungi. Curr Microbiol 38(1):27–32CrossRef
Zurück zum Zitat Saby C, Luong JH (1998) A biosensor system for chlorophenols using chloroperoxidase and a glucose oxidase based amperometric electrode. Electroanalysis 10(1):7–11CrossRef Saby C, Luong JH (1998) A biosensor system for chlorophenols using chloroperoxidase and a glucose oxidase based amperometric electrode. Electroanalysis 10(1):7–11CrossRef
Zurück zum Zitat Shen LH, Bao JF, Wang D, Wang YX, Chen ZW, Ren L et al (2013) One-step synthesis of monodisperse, water-soluble ultra-small Fe3 O4 nanoparticles for potential bio-application. Nanoscale 5(5):2133–2141CrossRef Shen LH, Bao JF, Wang D, Wang YX, Chen ZW, Ren L et al (2013) One-step synthesis of monodisperse, water-soluble ultra-small Fe3 O4 nanoparticles for potential bio-application. Nanoscale 5(5):2133–2141CrossRef
Zurück zum Zitat Shin HY, Park TJ, Kim MI (2015) Recent research trends and future prospects in nanozymes. J Nanomater 2015: 1–11 Shin HY, Park TJ, Kim MI (2015) Recent research trends and future prospects in nanozymes. J Nanomater 2015: 1–11 
Zurück zum Zitat Siddique MH, St Pierre CC, Biswas N, Bewtra JK, Taylor KE (1993) Immobilized enzyme catalyzed removal of 4-chlorophenol from aqueous solution. Water Res 27(5):883–890CrossRef Siddique MH, St Pierre CC, Biswas N, Bewtra JK, Taylor KE (1993) Immobilized enzyme catalyzed removal of 4-chlorophenol from aqueous solution. Water Res 27(5):883–890CrossRef
Zurück zum Zitat Stasinakis AS (2008) Use of selected advanced oxidation processes (AOPs) for wastewater treatment–a mini review. Global NEST J 10(3):376–385 Stasinakis AS (2008) Use of selected advanced oxidation processes (AOPs) for wastewater treatment–a mini review. Global NEST J 10(3):376–385
Zurück zum Zitat Vernekar AA, Das T, Ghosh S, Mugesh G (2016) A remarkably efficient MnFe2O4-based oxidase nanozyme. Chem Asian J 11(1):72–76CrossRef Vernekar AA, Das T, Ghosh S, Mugesh G (2016) A remarkably efficient MnFe2O4-based oxidase nanozyme. Chem Asian J 11(1):72–76CrossRef
Zurück zum Zitat Wan Y, Qi P, Zhang D, Wu J, Wang Y (2012) Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens Bioelectron 33(1):69–74CrossRef Wan Y, Qi P, Zhang D, Wu J, Wang Y (2012) Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens Bioelectron 33(1):69–74CrossRef
Zurück zum Zitat Wang W, Jiang X, Chen K (2012a) Iron phosphate microflowers as peroxidase mimic and superoxide dismutase mimic for biocatalysis and biosensing. Chem Commun 48(58):7289–7291CrossRef Wang W, Jiang X, Chen K (2012a) Iron phosphate microflowers as peroxidase mimic and superoxide dismutase mimic for biocatalysis and biosensing. Chem Commun 48(58):7289–7291CrossRef
Zurück zum Zitat Wang S, Chen W, Liu AL, Hong L, Deng HH, Lin XH (2012b) Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem 13(5):1199–1204CrossRef Wang S, Chen W, Liu AL, Hong L, Deng HH, Lin XH (2012b) Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem 13(5):1199–1204CrossRef
Zurück zum Zitat Wang X, Liu J, Qu R, Wang Z, Huang Q (2017) The laccase-like reactivity of manganese oxide nanomaterials for pollutant conversion: rate analysis and cyclic voltammetry. Sci Rep 7(1):1–10 Wang X, Liu J, Qu R, Wang Z, Huang Q (2017) The laccase-like reactivity of manganese oxide nanomaterials for pollutant conversion: rate analysis and cyclic voltammetry. Sci Rep 7(1):1–10
Zurück zum Zitat Wang Q, Wei H, Zhang Z, Wang E, Dong S (2018) Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal Chem 105:218–224CrossRef Wang Q, Wei H, Zhang Z, Wang E, Dong S (2018) Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal Chem 105:218–224CrossRef
Zurück zum Zitat Wang J, Huang R, Qi W, Su R, Binks BP, He Z (2019) Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl Catal B Environ 254:452–462CrossRef Wang J, Huang R, Qi W, Su R, Binks BP, He Z (2019) Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl Catal B Environ 254:452–462CrossRef
Zurück zum Zitat Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093CrossRef Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093CrossRef
Zurück zum Zitat Wu L, Wan G, Hu N, He Z, Shi S, Suo Y et al (2018) Synthesis of porous CoFe2O4 and its application as a peroxidase mimetic for colorimetric detection of H2O2 and organic pollutant degradation. Nano 8(7):451 Wu L, Wan G, Hu N, He Z, Shi S, Suo Y et al (2018) Synthesis of porous CoFe2O4 and its application as a peroxidase mimetic for colorimetric detection of H2O2 and organic pollutant degradation. Nano 8(7):451
Zurück zum Zitat Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH et al (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10CrossRef Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH et al (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10CrossRef
Zurück zum Zitat Zhang Y, Tian J, Liu S, Wang L, Qin X, Lu W et al (2012) Novel application of CoFe layered double hydroxide nanoplates for colorimetric detection of H2O2 and glucose. Analyst 137(6):1325–1328CrossRef Zhang Y, Tian J, Liu S, Wang L, Qin X, Lu W et al (2012) Novel application of CoFe layered double hydroxide nanoplates for colorimetric detection of H2O2 and glucose. Analyst 137(6):1325–1328CrossRef
Zurück zum Zitat Zhang X, He S, Chen Z, Huang Y (2013) CoFe2O4 nanoparticles as oxidase mimic-mediated chemiluminescence of aqueous luminol for sulfite in white wines. J Agric Food Chem 61(4):840–847CrossRef Zhang X, He S, Chen Z, Huang Y (2013) CoFe2O4 nanoparticles as oxidase mimic-mediated chemiluminescence of aqueous luminol for sulfite in white wines. J Agric Food Chem 61(4):840–847CrossRef
Zurück zum Zitat Zhang S, Li H, Wang Z, Liu J, Zhang H, Wang B, Yang Z (2015) A strongly coupled Au/Fe3O4/GO hybrid material with enhanced nanozyme activity for highly sensitive colorimetric detection, and rapid and efficient removal of Hg2+ in aqueous solutions. Nanoscale 7(18):8495–8502CrossRef Zhang S, Li H, Wang Z, Liu J, Zhang H, Wang B, Yang Z (2015) A strongly coupled Au/Fe3O4/GO hybrid material with enhanced nanozyme activity for highly sensitive colorimetric detection, and rapid and efficient removal of Hg2+ in aqueous solutions. Nanoscale 7(18):8495–8502CrossRef
Zurück zum Zitat Zinicovscaia I (2016) Conventional methods of wastewater treatment. In: Cyanobacteria for bioremediation of wastewaters. Springer, Cham, pp 17–25CrossRef Zinicovscaia I (2016) Conventional methods of wastewater treatment. In: Cyanobacteria for bioremediation of wastewaters. Springer, Cham, pp 17–25CrossRef
Metadaten
Titel
Applications of Nanozymes in Wastewater Treatment
verfasst von
Vinod Kumar Yata
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-68230-9_4