Skip to main content

2022 | OriginalPaper | Buchkapitel

14. Applications to Device Physics—Photon Band Gap of Holographic Photonic Quasicrystals

verfasst von : Tian-You Fan, Wenge Yang, Hui Cheng, Xiao-Hong Sun

Erschienen in: Generalized Dynamics of Soft-Matter Quasicrystals

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The most attractive aspect of the application of soft-matter quasicrystals may be in photon band gap. The soft-matter quasicrystals observed so far are two-dimensional structures with quasiperiodic symmetry, and higher fold of orientational symmetry being greater than that of solid one appeared, there is superiority than solid quasicrystals in this respect.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rechtsman, M.C., Jeong, H.C., Chaikin, P.M., Torquato, S., Steinhardt, P.J.: Optimized structures for photonic quasicrystals. Phys. Rev. Lett. 101, 073902 (2008)ADSCrossRef Rechtsman, M.C., Jeong, H.C., Chaikin, P.M., Torquato, S., Steinhardt, P.J.: Optimized structures for photonic quasicrystals. Phys. Rev. Lett. 101, 073902 (2008)ADSCrossRef
2.
Zurück zum Zitat Romero-Vivas, J., Chigrin, D.N., Lavrinenko, A.V., Torres, C.S.: Resonant add-drop filter based on a photonic quasicrystal. Opt. Express 13, 826–835 (2005)ADSCrossRef Romero-Vivas, J., Chigrin, D.N., Lavrinenko, A.V., Torres, C.S.: Resonant add-drop filter based on a photonic quasicrystal. Opt. Express 13, 826–835 (2005)ADSCrossRef
3.
Zurück zum Zitat Hase, M., Miyazaki, H., Egashira, M., Shinya, N., Kojima, K.M., Uchida, S.I.: Isotropic photonic band-gap and anisotropic structures in transmission spectra of two-dimensional fivefold and eightfold symmetric quasiperiodic photonic crystals. Phys. Rev. B 66, 214205 (2002)ADSCrossRef Hase, M., Miyazaki, H., Egashira, M., Shinya, N., Kojima, K.M., Uchida, S.I.: Isotropic photonic band-gap and anisotropic structures in transmission spectra of two-dimensional fivefold and eightfold symmetric quasiperiodic photonic crystals. Phys. Rev. B 66, 214205 (2002)ADSCrossRef
4.
Zurück zum Zitat Jin, C., Cheng, B., Man, B., Li, Z., Zhang, Z., Ban, S., Sun, B.: Band-gap and wave guiding effect in a quasiperiodic photonic crystal. Appl. Phys. Lett. 75, 1848–1850 (1999)ADSCrossRef Jin, C., Cheng, B., Man, B., Li, Z., Zhang, Z., Ban, S., Sun, B.: Band-gap and wave guiding effect in a quasiperiodic photonic crystal. Appl. Phys. Lett. 75, 1848–1850 (1999)ADSCrossRef
5.
Zurück zum Zitat Yin, J., Huang, X., Liu, S., Hu, S.: Photonic band-gap properties of 8-fold symmetric photonic quasicrystals. Opt. Commun. 269, 385–388 (2007)ADSCrossRef Yin, J., Huang, X., Liu, S., Hu, S.: Photonic band-gap properties of 8-fold symmetric photonic quasicrystals. Opt. Commun. 269, 385–388 (2007)ADSCrossRef
6.
Zurück zum Zitat Mnaymneh, K., Gauthier, R.C.: Mode localization and band-gap formation in defect-free photonic quasicrystals. Opt. Express 14, 5089–5099 (2007)ADSCrossRef Mnaymneh, K., Gauthier, R.C.: Mode localization and band-gap formation in defect-free photonic quasicrystals. Opt. Express 14, 5089–5099 (2007)ADSCrossRef
7.
Zurück zum Zitat Rose, P., Zito, G., Di Gennaro, E., Abbate, G., Andreone, A.: Control of the light transmission through a quasiperiodic waveguide. Opt. Express 20, 26056–26061 (2012)ADSCrossRef Rose, P., Zito, G., Di Gennaro, E., Abbate, G., Andreone, A.: Control of the light transmission through a quasiperiodic waveguide. Opt. Express 20, 26056–26061 (2012)ADSCrossRef
8.
Zurück zum Zitat Wang, S., Sun, X., Wang, C., Peng, G., Qi, Y., Wang, X.: Liquid refractive index sensor based on a 2D 10-fold photonic quasicrystal. J. Phys. D Appl. Phys. 50, 365102 (2017)CrossRef Wang, S., Sun, X., Wang, C., Peng, G., Qi, Y., Wang, X.: Liquid refractive index sensor based on a 2D 10-fold photonic quasicrystal. J. Phys. D Appl. Phys. 50, 365102 (2017)CrossRef
9.
Zurück zum Zitat Ren, J., Sun, X., Wang, S.: A low threshold nanocavity in a two-dimensional 12-fold photonic quasicrystal. Opt. Laser Technol. 101, 42–48 (2018)ADSCrossRef Ren, J., Sun, X., Wang, S.: A low threshold nanocavity in a two-dimensional 12-fold photonic quasicrystal. Opt. Laser Technol. 101, 42–48 (2018)ADSCrossRef
10.
Zurück zum Zitat Ren, J., Sun, X., Wang, S.: A narrowband filter based on 2D 8-fold photonic quasicrystal. Superlattices Microstruct. 116, 221–226 (2018)ADSCrossRef Ren, J., Sun, X., Wang, S.: A narrowband filter based on 2D 8-fold photonic quasicrystal. Superlattices Microstruct. 116, 221–226 (2018)ADSCrossRef
11.
Zurück zum Zitat Florescu, M., Torquato, S., Steinhardt, P.J.: Complete band-gaps in two-dimensional photonic quasicrystals. Phys. Rev. B 80, 145112 (2009)CrossRef Florescu, M., Torquato, S., Steinhardt, P.J.: Complete band-gaps in two-dimensional photonic quasicrystals. Phys. Rev. B 80, 145112 (2009)CrossRef
12.
Zurück zum Zitat Sun, X., Wang, S., Liu, W., Jiang, L.: A simple configuration for fabrication of 2D and 3D photonic quasicrystals with complex structures. Opt. Commun. 369, 138–144 (2016)ADSCrossRef Sun, X., Wang, S., Liu, W., Jiang, L.: A simple configuration for fabrication of 2D and 3D photonic quasicrystals with complex structures. Opt. Commun. 369, 138–144 (2016)ADSCrossRef
13.
Zurück zum Zitat Sun, X., Liu, W., Wang, G., Tao, X.: Optics design of a top-cut prism interferometer for holographic photonic quasicrystals. Opt. Commun. 285, 4593–4598 (2012)ADSCrossRef Sun, X., Liu, W., Wang, G., Tao, X.: Optics design of a top-cut prism interferometer for holographic photonic quasicrystals. Opt. Commun. 285, 4593–4598 (2012)ADSCrossRef
14.
Zurück zum Zitat Xi, X.Y., Sun, X.H.: Photonic band-gap properties of two-dimensional photonic quasicrystals with multiple complex structures. Superlattices Microstruct. 129, 247–251 (2019)ADSCrossRef Xi, X.Y., Sun, X.H.: Photonic band-gap properties of two-dimensional photonic quasicrystals with multiple complex structures. Superlattices Microstruct. 129, 247–251 (2019)ADSCrossRef
15.
Zurück zum Zitat Sellers, S., Man, W., Sahba, S., Florescu, M.: Local self-uniformity in photonic networks. Nat. Commun. 8, 14439 (2017)ADSCrossRef Sellers, S., Man, W., Sahba, S., Florescu, M.: Local self-uniformity in photonic networks. Nat. Commun. 8, 14439 (2017)ADSCrossRef
16.
Zurück zum Zitat Wang, S., Sun, X.H., Li, W.Y., Liu, W., Jiang, L., Han, J.: Fabrication of photonic quasicrystalline structures in the sub-micrometer scale. Superlattices Microstruct. 93, 122–127 (2016)ADSCrossRef Wang, S., Sun, X.H., Li, W.Y., Liu, W., Jiang, L., Han, J.: Fabrication of photonic quasicrystalline structures in the sub-micrometer scale. Superlattices Microstruct. 93, 122–127 (2016)ADSCrossRef
17.
Zurück zum Zitat Dunmur, D., Toriyama, K.: In: Demus, D., et al. (ed.) Physical Properties of Liquid Crystals. Wiley-VCH, Weinheim, pp. 124–128 (1999) Dunmur, D., Toriyama, K.: In: Demus, D., et al. (ed.) Physical Properties of Liquid Crystals. Wiley-VCH, Weinheim, pp. 124–128 (1999)
18.
Zurück zum Zitat Mitova, M., Nouvet, E., Dessaud, N.: Polymer-stabilized cholesteric liquid crystals as switchable photonic broad band-gaps. Eur. Phys. J. E 14, 413–419 (2004)CrossRef Mitova, M., Nouvet, E., Dessaud, N.: Polymer-stabilized cholesteric liquid crystals as switchable photonic broad band-gaps. Eur. Phys. J. E 14, 413–419 (2004)CrossRef
19.
Zurück zum Zitat Hrozhyk, U.A., Serak, S.V., Tabiryan, N.V., White, T.J., Bunning, T.J.: Nonlinear optical properties of fast, photo-switchable cholesteric liquid crystal band-gaps. Opt. Mater. Express 1, 943–952 (2011)ADSCrossRef Hrozhyk, U.A., Serak, S.V., Tabiryan, N.V., White, T.J., Bunning, T.J.: Nonlinear optical properties of fast, photo-switchable cholesteric liquid crystal band-gaps. Opt. Mater. Express 1, 943–952 (2011)ADSCrossRef
20.
Zurück zum Zitat Hwang, J., Ha, N.Y., Chang, H.J., Park, B., Wu, J.W.: Enhanced optical nonlinearity near the photonic band-gap edges of a cholesteric liquid crystal. Opt. Lett. 29, 2644–2646 (2004)ADSCrossRef Hwang, J., Ha, N.Y., Chang, H.J., Park, B., Wu, J.W.: Enhanced optical nonlinearity near the photonic band-gap edges of a cholesteric liquid crystal. Opt. Lett. 29, 2644–2646 (2004)ADSCrossRef
21.
Zurück zum Zitat Costello, M.J., Meiboom, S., Sammon, M.: Electron microscopy of a cholesteric liquid crystal and its blue phase. Phys. Rev. A 29, 2957–2959 (1984)ADSCrossRef Costello, M.J., Meiboom, S., Sammon, M.: Electron microscopy of a cholesteric liquid crystal and its blue phase. Phys. Rev. A 29, 2957–2959 (1984)ADSCrossRef
Metadaten
Titel
Applications to Device Physics—Photon Band Gap of Holographic Photonic Quasicrystals
verfasst von
Tian-You Fan
Wenge Yang
Hui Cheng
Xiao-Hong Sun
Copyright-Jahr
2022
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-6628-5_14

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.