Skip to main content
Erschienen in: Acta Mechanica Sinica 3/2019

08.04.2019 | Research Paper

Applying resolved-scale linearly forced isotropic turbulence in rational subgrid-scale modeling

verfasst von: Chuhan Wang, Mingwei Ge

Erschienen in: Acta Mechanica Sinica | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In previous attempts of rational subgrid-scale (SGS) modeling by employing the Kolmogorov equation of filtered (KEF) quantities, it was necessary to assume that the resolved-scale second-order structure function is stationary. Forced isotropic turbulence is often used as a framework for establishing and validating such SGS models based on stationary restrictions, for it generates statistical stationary samples. However, traditional forcing method at low wavenumbers cannot provide an analytic form of forcing term for a complete KEF in physical space, which has been illustrated to be essential in the modeling of such SGS models. Thus, an alternative forcing method giving an analytic forcing term in physical space is needed for rational SGS modeling. Giving an analytic linear driving term in physical space, linearly forced isotropic turbulence should be considered an ideal theoretical framework for rational SGS modeling. In this paper, we demonstrate the feasibility of establishing a rational SGS model with stationary restriction based on linearly forced isotropic turbulence. The performance of this rational SGS model is validated. We, therefore, propose the use of linearly forced isotropic turbulence as a complement to free-decaying isotropic turbulence and low-wavenumber forced isotropic turbulence for SGS model validations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yang, X., Sadique, J., Mitta, R., et al.: Integral wall model for large eddy simulations of wall-bounded turbulent flows. Phys. Fluids 27, 025112 (2015)CrossRef Yang, X., Sadique, J., Mitta, R., et al.: Integral wall model for large eddy simulations of wall-bounded turbulent flows. Phys. Fluids 27, 025112 (2015)CrossRef
2.
Zurück zum Zitat Ge, M.W., Wu, Y., Liu, Y.Q., et al.: A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes. Appl. Energy 233–234, 975–984 (2019)CrossRef Ge, M.W., Wu, Y., Liu, Y.Q., et al.: A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes. Appl. Energy 233–234, 975–984 (2019)CrossRef
3.
Zurück zum Zitat Yang, X., Sadique, J., Mittal, R., et al.: Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements. J. Fluid Mech. 789, 127–165 (2016)MathSciNetCrossRef Yang, X., Sadique, J., Mittal, R., et al.: Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements. J. Fluid Mech. 789, 127–165 (2016)MathSciNetCrossRef
4.
Zurück zum Zitat Yang, X., Meneveau, C.: Large eddy simulations and parameterisation of roughness element orientation and flow direction effects in rough wall boundary layers. J. Turbul. 17, 1072–1085 (2016)MathSciNetCrossRef Yang, X., Meneveau, C.: Large eddy simulations and parameterisation of roughness element orientation and flow direction effects in rough wall boundary layers. J. Turbul. 17, 1072–1085 (2016)MathSciNetCrossRef
5.
Zurück zum Zitat Yang, X., Park, G., Moin, P.: Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations. Phys. Rev. Fluids 2, 104601 (2017)CrossRef Yang, X., Park, G., Moin, P.: Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations. Phys. Rev. Fluids 2, 104601 (2017)CrossRef
6.
Zurück zum Zitat Sagaut, P.: Large Eddy Simulation for Imcompressible Flows. Springer, Paris (2006)MATH Sagaut, P.: Large Eddy Simulation for Imcompressible Flows. Springer, Paris (2006)MATH
7.
Zurück zum Zitat Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32, 1–32 (2000)MathSciNetCrossRefMATH Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32, 1–32 (2000)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Fang, L., Shao, L., Bertoglio, J.P.: Recent understanding on the subgrid-scale modeling of large-eddy simulation in physical space. Sci. China Phys. Mech. 57, 2188–2193 (2014)CrossRef Fang, L., Shao, L., Bertoglio, J.P.: Recent understanding on the subgrid-scale modeling of large-eddy simulation in physical space. Sci. China Phys. Mech. 57, 2188–2193 (2014)CrossRef
9.
Zurück zum Zitat Lu, H., Rutland, C.J.: Structural subgrid-scale modeling for large-eddy simulation: a review. Acta Mech. Sin. 32, 567–578 (2016)MathSciNetCrossRefMATH Lu, H., Rutland, C.J.: Structural subgrid-scale modeling for large-eddy simulation: a review. Acta Mech. Sin. 32, 567–578 (2016)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Fang, L., Ge, M.W.: Mathematical constraints in multiscale subgrid-scale modeling of nonlinear systems. Chin. Phys. Lett. 34, 030501 (2017)CrossRef Fang, L., Ge, M.W.: Mathematical constraints in multiscale subgrid-scale modeling of nonlinear systems. Chin. Phys. Lett. 34, 030501 (2017)CrossRef
11.
Zurück zum Zitat Fang, L., Sun, X.Y., Liu, Y.W.: A criterion of orthogonality on the assumption and restrictions in subgrid-scale modelling of turbulence. Phys. Lett. A 380, 3988–3992 (2016)CrossRef Fang, L., Sun, X.Y., Liu, Y.W.: A criterion of orthogonality on the assumption and restrictions in subgrid-scale modelling of turbulence. Phys. Lett. A 380, 3988–3992 (2016)CrossRef
12.
Zurück zum Zitat Spalart, P.R.: Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21, 252–263 (2000)CrossRef Spalart, P.R.: Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21, 252–263 (2000)CrossRef
13.
Zurück zum Zitat Cui, G.X., Zhou, H.B., Zhang, Z.S., et al.: A new dynamic subgrid eddy viscosity model with application to turbulent channel flow. Phys. Fluids 16, 2835–2842 (2004)CrossRefMATH Cui, G.X., Zhou, H.B., Zhang, Z.S., et al.: A new dynamic subgrid eddy viscosity model with application to turbulent channel flow. Phys. Fluids 16, 2835–2842 (2004)CrossRefMATH
14.
Zurück zum Zitat Cui, G.X., Xu, C.X., Fang, L., et al.: A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence. J. Fluid Mech. 582, 377–397 (2007)MathSciNetCrossRefMATH Cui, G.X., Xu, C.X., Fang, L., et al.: A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence. J. Fluid Mech. 582, 377–397 (2007)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Fang, L., Shao, L., Bertoglio, J.P., et al.: An improved velocity increment model based on Kolmogorov equation of filtered velocity. Phys. Fluids 21, 065108 (2009)CrossRefMATH Fang, L., Shao, L., Bertoglio, J.P., et al.: An improved velocity increment model based on Kolmogorov equation of filtered velocity. Phys. Fluids 21, 065108 (2009)CrossRefMATH
16.
Zurück zum Zitat Fang, L., Shao, L., Bertoglio, J.P., et al.: The rapid-slow decomposition of the subgrid flux in inhomogeneous scalar turbulence. J. Turbul. 12, 1–23 (2011)MathSciNetCrossRefMATH Fang, L., Shao, L., Bertoglio, J.P., et al.: The rapid-slow decomposition of the subgrid flux in inhomogeneous scalar turbulence. J. Turbul. 12, 1–23 (2011)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Yang, Z.X., Cui, G.X., Zhang, Z.S., et al.: A modified nonlinear sub-grid scale model for large eddy simulation with application to rotating turbulent channel flows. Phys. Fluids 24, 075113 (2012)CrossRef Yang, Z.X., Cui, G.X., Zhang, Z.S., et al.: A modified nonlinear sub-grid scale model for large eddy simulation with application to rotating turbulent channel flows. Phys. Fluids 24, 075113 (2012)CrossRef
18.
Zurück zum Zitat Yang, Z.X., Cui, G.X., Xu, C.X., et al.: Large eddy simulation of rotating turbulent channel flow with a new dynamic global-coefficient nonlinear subgrid stress model. J. Turbul. 13, N48 (2012)MathSciNetCrossRef Yang, Z.X., Cui, G.X., Xu, C.X., et al.: Large eddy simulation of rotating turbulent channel flow with a new dynamic global-coefficient nonlinear subgrid stress model. J. Turbul. 13, N48 (2012)MathSciNetCrossRef
19.
Zurück zum Zitat Smagorinsky, J.: General circulation experiments with primitive equation. Mon. Weather Rev. 91, 99–164 (1963)CrossRef Smagorinsky, J.: General circulation experiments with primitive equation. Mon. Weather Rev. 91, 99–164 (1963)CrossRef
20.
Zurück zum Zitat Bardina, J., Ferziger, J., Reynolds, W.C.: Improved subgrid-scale models for large-eddy simulation. In: 13th Fluid and PlasmaDynamics Conference Snowmass, CO, USA, p. 1357 (1987) Bardina, J., Ferziger, J., Reynolds, W.C.: Improved subgrid-scale models for large-eddy simulation. In: 13th Fluid and PlasmaDynamics Conference Snowmass, CO, USA, p. 1357 (1987)
21.
Zurück zum Zitat Fang, L., Li, B., Lu, L.P.: Scaling law of resolved-scale isotropic turbulence and its application in large-eddy simulation. Acta Mech. Sin. 30, 339–350 (2014)CrossRef Fang, L., Li, B., Lu, L.P.: Scaling law of resolved-scale isotropic turbulence and its application in large-eddy simulation. Acta Mech. Sin. 30, 339–350 (2014)CrossRef
22.
Zurück zum Zitat Fang, L., Bos, W.J.T., Zhou, X.Z., et al.: Corrections to the scaling of the second-order structure function in isotropic turbulence. Acta Mech. Sin. 26, 151–157 (2010)MathSciNetCrossRefMATH Fang, L., Bos, W.J.T., Zhou, X.Z., et al.: Corrections to the scaling of the second-order structure function in isotropic turbulence. Acta Mech. Sin. 26, 151–157 (2010)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Wu, J.Z., Fang, L., Shao, L., et al.: Theories and applications of second-order correlation of longitudinal velocity increments at three points in isotropic turbulence. Phys. Lett. A 382, 1665–1671 (2018)MathSciNetCrossRef Wu, J.Z., Fang, L., Shao, L., et al.: Theories and applications of second-order correlation of longitudinal velocity increments at three points in isotropic turbulence. Phys. Lett. A 382, 1665–1671 (2018)MathSciNetCrossRef
24.
Zurück zum Zitat Germano, M., Piomelli, U., Moin, P., et al.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)CrossRefMATH Germano, M., Piomelli, U., Moin, P., et al.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)CrossRefMATH
25.
Zurück zum Zitat Meneveau, C.: Statistics of turbulence subgrid-scale stresses: necessary conditions and experimental tests. Phys. Fluids 6, 815–833 (1994)CrossRefMATH Meneveau, C.: Statistics of turbulence subgrid-scale stresses: necessary conditions and experimental tests. Phys. Fluids 6, 815–833 (1994)CrossRefMATH
26.
Zurück zum Zitat Brun, C., Friedrich, R., Da Silva, C.B.: A non-linear SGS model based on the spatial velocity increment. Theor. Comput. Fluid Dyn. 20, 1–21 (2006)CrossRefMATH Brun, C., Friedrich, R., Da Silva, C.B.: A non-linear SGS model based on the spatial velocity increment. Theor. Comput. Fluid Dyn. 20, 1–21 (2006)CrossRefMATH
27.
Zurück zum Zitat Shao, L., Zhang, Z.S., Cui, G.X., et al.: Subgrid modeling of anisotropic rotating homogeneous turbulence. Phys. Fluids 17, 115106 (2005)CrossRefMATH Shao, L., Zhang, Z.S., Cui, G.X., et al.: Subgrid modeling of anisotropic rotating homogeneous turbulence. Phys. Fluids 17, 115106 (2005)CrossRefMATH
28.
Zurück zum Zitat Fang, L., Zhu, Y., Liu, Y.W., et al.: Spectral non-equilibrium property in homogeneous isotropic turbulence and its implication in subgrid-scale modeling. Phys. Lett. A 379, 2331–2336 (2015)CrossRefMATH Fang, L., Zhu, Y., Liu, Y.W., et al.: Spectral non-equilibrium property in homogeneous isotropic turbulence and its implication in subgrid-scale modeling. Phys. Lett. A 379, 2331–2336 (2015)CrossRefMATH
29.
Zurück zum Zitat Orszag, S.A., Patterson, G.S.: Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 76–79 (1972)CrossRef Orszag, S.A., Patterson, G.S.: Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 76–79 (1972)CrossRef
30.
Zurück zum Zitat Ghosal, S., Lund, T.S., Moin, P., et al.: A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286, 229–255 (1995)MathSciNetCrossRefMATH Ghosal, S., Lund, T.S., Moin, P., et al.: A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286, 229–255 (1995)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Jeffrey, R., Chasnov, J.R.: Simulation of the kolmogorov inertial subrange using an improved subgrid model. Phys. Fluids A 3, 188–200 (1991)CrossRefMATH Jeffrey, R., Chasnov, J.R.: Simulation of the kolmogorov inertial subrange using an improved subgrid model. Phys. Fluids A 3, 188–200 (1991)CrossRefMATH
32.
Zurück zum Zitat Seror, C., Sagaut, P., Bailly, C., et al.: On the radiated noise computed by large-eddy simulation. Phys. Fluids 13, 476–487 (2001)CrossRefMATH Seror, C., Sagaut, P., Bailly, C., et al.: On the radiated noise computed by large-eddy simulation. Phys. Fluids 13, 476–487 (2001)CrossRefMATH
33.
Zurück zum Zitat Sullivan, N.P., Shankar, M.: Deterministic forcing of homogeneous, isotropic turbulence. Phys. Fluids 6, 1612–1614 (1994)CrossRef Sullivan, N.P., Shankar, M.: Deterministic forcing of homogeneous, isotropic turbulence. Phys. Fluids 6, 1612–1614 (1994)CrossRef
34.
Zurück zum Zitat Métais, O., Lesieur, M.: Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239, 157–194 (1992)MathSciNetCrossRefMATH Métais, O., Lesieur, M.: Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239, 157–194 (1992)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Lundgren, T.S.: Linearly forces isotropic turbulence. In: Annual Research Briefs. Center for Turbulence Research, Stanford (2003) Lundgren, T.S.: Linearly forces isotropic turbulence. In: Annual Research Briefs. Center for Turbulence Research, Stanford (2003)
36.
Zurück zum Zitat Rosales, C., Meneveau, C.: Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17, 095106 (2005)MathSciNetCrossRefMATH Rosales, C., Meneveau, C.: Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17, 095106 (2005)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Petersen, M.R., Livescu, D.: Forcing for statistically stationary compressible isotropic turbulence. Phys. Fluids 22, 116101 (2010)CrossRef Petersen, M.R., Livescu, D.: Forcing for statistically stationary compressible isotropic turbulence. Phys. Fluids 22, 116101 (2010)CrossRef
38.
Zurück zum Zitat Carroll, P.L., Verma, S., Blanquart, G.: Characteristics of linearly-forced scalar mixing in homogeneous, isotropic turbulence. In: ICCFD7, Hawaii, USA (2012) Carroll, P.L., Verma, S., Blanquart, G.: Characteristics of linearly-forced scalar mixing in homogeneous, isotropic turbulence. In: ICCFD7, Hawaii, USA (2012)
39.
Zurück zum Zitat Akylas, E.E., Kassinos, S.C., Rouson, D.W.I.: Accelerating stationarity in linearly forced isotropic turbulence. In: The Sixth International Symposium on Turbulence and Shear Flow Phenomena, Seoul, Korea (2009) Akylas, E.E., Kassinos, S.C., Rouson, D.W.I.: Accelerating stationarity in linearly forced isotropic turbulence. In: The Sixth International Symposium on Turbulence and Shear Flow Phenomena, Seoul, Korea (2009)
40.
Zurück zum Zitat Bassenne, M., Urzay, J., Park, G.I., et al.: Constant-energetics physical-space forcing methods for improved convergence to homogeneous-isotropic turbulence with application to particle-laden flows. Phys. Fluids 28, 035114 (2016)CrossRef Bassenne, M., Urzay, J., Park, G.I., et al.: Constant-energetics physical-space forcing methods for improved convergence to homogeneous-isotropic turbulence with application to particle-laden flows. Phys. Fluids 28, 035114 (2016)CrossRef
41.
Zurück zum Zitat Carroll, P.L., Blanquart, G.: A proposed modification to lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25, 105114 (2013)CrossRef Carroll, P.L., Blanquart, G.: A proposed modification to lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25, 105114 (2013)CrossRef
42.
Zurück zum Zitat Goldstein, D.E., Vasilyev, O.V.: Stochastic coherent adaptive large eddy simulation method. Phys. Fluids 16, 2497–2513 (2004)MathSciNetCrossRefMATH Goldstein, D.E., Vasilyev, O.V.: Stochastic coherent adaptive large eddy simulation method. Phys. Fluids 16, 2497–2513 (2004)MathSciNetCrossRefMATH
43.
Zurück zum Zitat De Stefano, G., Vasilyev, O.V.: Stochastic coherent adaptive large eddy simulation of forced isotropic turbulence. J. Fluid Mech. 646, 453–470 (2010)CrossRefMATH De Stefano, G., Vasilyev, O.V.: Stochastic coherent adaptive large eddy simulation of forced isotropic turbulence. J. Fluid Mech. 646, 453–470 (2010)CrossRefMATH
44.
Zurück zum Zitat de Laage de Meux, B., Audebert, B., Manceau, R., et al.: Anisotropic linear forcing for synthetic turbulence generation in large eddy simulation and hybrid RANS/LES modeling. Phys. Fluids 27, 035115 (2015)CrossRef de Laage de Meux, B., Audebert, B., Manceau, R., et al.: Anisotropic linear forcing for synthetic turbulence generation in large eddy simulation and hybrid RANS/LES modeling. Phys. Fluids 27, 035115 (2015)CrossRef
45.
Zurück zum Zitat Monin, A.S., Yaglom, A.M., Lumley, J., et al.: Statistical Fluid Mechanics. Mechanics of Turbulence. MIT Press, Cambridge (1975) Monin, A.S., Yaglom, A.M., Lumley, J., et al.: Statistical Fluid Mechanics. Mechanics of Turbulence. MIT Press, Cambridge (1975)
47.
Zurück zum Zitat Fang, L., Bos, W.J.T., Shao, L., et al.: Time reversibility of Navier–Stokes turbulence and its implication for subgrid scale models. J. Turbul. 13, N3 (2012)MathSciNetCrossRefMATH Fang, L., Bos, W.J.T., Shao, L., et al.: Time reversibility of Navier–Stokes turbulence and its implication for subgrid scale models. J. Turbul. 13, N3 (2012)MathSciNetCrossRefMATH
48.
Zurück zum Zitat Yao, S.Y., Fang, L., Lv, J.M., et al.: Multiscale three-point velocity increment correlation in turbulent flows. Phys. Lett. A 378, 886–891 (2014)CrossRefMATH Yao, S.Y., Fang, L., Lv, J.M., et al.: Multiscale three-point velocity increment correlation in turbulent flows. Phys. Lett. A 378, 886–891 (2014)CrossRefMATH
49.
Zurück zum Zitat Bos, W.T.S., Rubinstein, R., Fang, L.: Reduction of mean-square advection in turbulent passive scalar mixing. Phys. Fluids 24, 075104 (2012)CrossRef Bos, W.T.S., Rubinstein, R., Fang, L.: Reduction of mean-square advection in turbulent passive scalar mixing. Phys. Fluids 24, 075104 (2012)CrossRef
50.
Zurück zum Zitat Fang, L., Bos, W.J.T., Jin, G.D.: Short-time evolution of Lagrangian velocity gradient correlations in isotropic turbulence. Phys. Fluids 27, 125102 (2015)CrossRef Fang, L., Bos, W.J.T., Jin, G.D.: Short-time evolution of Lagrangian velocity gradient correlations in isotropic turbulence. Phys. Fluids 27, 125102 (2015)CrossRef
51.
Zurück zum Zitat Fang, L., Zhang, Y.J., Fang, J., et al.: Relation of the fourth-order statistical invariants of velocity gradient tensor in isotropic turbulence. Phys. Rev. E 94, 023114 (2016)CrossRef Fang, L., Zhang, Y.J., Fang, J., et al.: Relation of the fourth-order statistical invariants of velocity gradient tensor in isotropic turbulence. Phys. Rev. E 94, 023114 (2016)CrossRef
52.
Zurück zum Zitat Qin, Z.C., Fang, L., Fang, J.: How isotropic are turbulent flows generated by using periodic conditions in a cube? Phys. Lett. A 380, 1310–1317 (2016)CrossRef Qin, Z.C., Fang, L., Fang, J.: How isotropic are turbulent flows generated by using periodic conditions in a cube? Phys. Lett. A 380, 1310–1317 (2016)CrossRef
53.
Zurück zum Zitat Fang, L.: Background scalar-level anisotropy caused by low-wave-number truncation in turbulent flows. Phys. Rev. E 95, 033102 (2017)CrossRef Fang, L.: Background scalar-level anisotropy caused by low-wave-number truncation in turbulent flows. Phys. Rev. E 95, 033102 (2017)CrossRef
54.
Zurück zum Zitat Yang, Z.X., Wang, B.C.: On the topology of the eighenframe of the subgrid-scale stress tensor. J. Fluid Mech. 798, 598–627 (2016)MathSciNetCrossRef Yang, Z.X., Wang, B.C.: On the topology of the eighenframe of the subgrid-scale stress tensor. J. Fluid Mech. 798, 598–627 (2016)MathSciNetCrossRef
55.
Zurück zum Zitat Oskouie, S.N., Yang, Z.X., Wang, B.C.: Study of passive plume mixing due to two line source emission in isotropic turbulence. Phys. Fluids 30, 075105 (2018)CrossRef Oskouie, S.N., Yang, Z.X., Wang, B.C.: Study of passive plume mixing due to two line source emission in isotropic turbulence. Phys. Fluids 30, 075105 (2018)CrossRef
56.
Zurück zum Zitat He, G.W., Rubinstein, R., Wang, L.P.: Effects of subgrid-scale modeling on time correlations in large eddy simulation. Phys. Fluids 14, 2186–2193 (2002)CrossRefMATH He, G.W., Rubinstein, R., Wang, L.P.: Effects of subgrid-scale modeling on time correlations in large eddy simulation. Phys. Fluids 14, 2186–2193 (2002)CrossRefMATH
57.
Zurück zum Zitat He, G.W., Jin, G.D., Yang, Y.: Space-time correlations and dynamic coupling in turbulent flows. Annu. Rev. Fluid Mech. 49, 51–70 (2017)CrossRefMATH He, G.W., Jin, G.D., Yang, Y.: Space-time correlations and dynamic coupling in turbulent flows. Annu. Rev. Fluid Mech. 49, 51–70 (2017)CrossRefMATH
Metadaten
Titel
Applying resolved-scale linearly forced isotropic turbulence in rational subgrid-scale modeling
verfasst von
Chuhan Wang
Mingwei Ge
Publikationsdatum
08.04.2019
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 3/2019
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-019-00840-7

Weitere Artikel der Ausgabe 3/2019

Acta Mechanica Sinica 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.