Skip to main content

2016 | OriginalPaper | Buchkapitel

18. Approaches for the Modeling of PBI/H3PO4 Based HT-PEM Fuel Cells

verfasst von : Christian Siegel, Sebastian Lang, Ed Fontes, Peter Beckhaus

Erschienen in: High Temperature Polymer Electrolyte Membrane Fuel Cells

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modeling and simulation of all components of high temperature polymer electrolyte (HT-PEM) fuel cells are important tools to provide additional understanding of the operation behavior. The use of mathematical models is one possibility for analyzing species concentrations, temperature gradients, and pressure distributions for predicting the internal workings of HT-PEM fuel cells for different operating conditions and designs. This work reviews phosphoric acid fuel cell (PAFC) and HT-PEM fuel cell modeling and simulation activities since both technologies are very similar. The current state-of-the-art PAFC and HT-PEM fuel cell technology is overviewed. Selected literature is discussed and dedicated modeling equations listed. Next, electrolyte modeling and simulation possibilities are highlighted including the physicochemical properties of phosphoric acid (H3PO4), description of the vapor–liquid equilibrium (VLE), non-equilibrium effects at the interphase, and the coupling to electrochemistry and mass transport properties. Finally, numerical aspects are shortly presented, examples of practical implications given, and input parameters and experimental data for model validation listed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Carter D, Wing J (2013) Fuel cell today—the fuel cell industry review 2013. Wonderberry UK Ltd, London Carter D, Wing J (2013) Fuel cell today—the fuel cell industry review 2013. Wonderberry UK Ltd, London
2.
Zurück zum Zitat Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: part I. Fundamental scientific aspects. J Power Sources 102:242–252CrossRef Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: part I. Fundamental scientific aspects. J Power Sources 102:242–252CrossRef
3.
Zurück zum Zitat Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: part II. Engineering, technology development and application aspects. J Power Sources 102:253–269CrossRef Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: part II. Engineering, technology development and application aspects. J Power Sources 102:253–269CrossRef
4.
Zurück zum Zitat Weber AZ, Newman J (2004) Modeling transport in polymer-electrolyte fuel cells. Chem Rev 104:4679–4726CrossRef Weber AZ, Newman J (2004) Modeling transport in polymer-electrolyte fuel cells. Chem Rev 104:4679–4726CrossRef
5.
Zurück zum Zitat Wang CY (2004) Fundamental models for fuel cell engineering. Chem Rev 104:4727–4766CrossRef Wang CY (2004) Fundamental models for fuel cell engineering. Chem Rev 104:4727–4766CrossRef
6.
Zurück zum Zitat Haraldsson K, Wipke K (2004) Evaluating PEM fuel cell system models. J Power Sources 126:88–97CrossRef Haraldsson K, Wipke K (2004) Evaluating PEM fuel cell system models. J Power Sources 126:88–97CrossRef
7.
Zurück zum Zitat Yao KZ, Karan K, McAuley KB et al (2004) A review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells. Fuel Cells 4:3–29CrossRef Yao KZ, Karan K, McAuley KB et al (2004) A review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells. Fuel Cells 4:3–29CrossRef
8.
Zurück zum Zitat Bıyıkoğlu A (2005) Review of proton exchange membrane fuel cell models. Int J Hydrogen Energy 30:1181–1212CrossRef Bıyıkoğlu A (2005) Review of proton exchange membrane fuel cell models. Int J Hydrogen Energy 30:1181–1212CrossRef
9.
Zurück zum Zitat Faghri A, Guo Z (2005) Challenges and opportunities of thermal management issues related to fuel cell technology and modeling. Int J Heat Mass Transfer 48:3891–3920CrossRef Faghri A, Guo Z (2005) Challenges and opportunities of thermal management issues related to fuel cell technology and modeling. Int J Heat Mass Transfer 48:3891–3920CrossRef
10.
Zurück zum Zitat Cheddie D, Munroe N (2005) Review and comparison of approaches to proton exchange membrane fuel cell modeling. J Power Sources 147:72–84CrossRef Cheddie D, Munroe N (2005) Review and comparison of approaches to proton exchange membrane fuel cell modeling. J Power Sources 147:72–84CrossRef
11.
Zurück zum Zitat Tao WQ, Min CH, Liu XL et al (2006) Parameter sensitivity examination and discussion of PEM fuel cell simulation model validation: part I. Current status of modeling research and model development. J Power Sources 160:359–373CrossRef Tao WQ, Min CH, Liu XL et al (2006) Parameter sensitivity examination and discussion of PEM fuel cell simulation model validation: part I. Current status of modeling research and model development. J Power Sources 160:359–373CrossRef
12.
Zurück zum Zitat Djilali N (2007) Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities. Energy 32:269–280CrossRef Djilali N (2007) Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities. Energy 32:269–280CrossRef
13.
Zurück zum Zitat Siegel C (2008) Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells. Energy 33:1331–1352CrossRef Siegel C (2008) Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells. Energy 33:1331–1352CrossRef
14.
Zurück zum Zitat Kulikovsky AA (2010) Analytical modelling of fuel cells, 1st edn. Elsevier, Amsterdam Kulikovsky AA (2010) Analytical modelling of fuel cells, 1st edn. Elsevier, Amsterdam
15.
Zurück zum Zitat Mench MM (2010) Advanced modeling in fuel cell systems: a review of modeling approaches. In: Stolten D (ed) Hydrogen and fuel cells—fundamentals, technologies and application. Wiley-VCH, Weinheim, pp 89–118 Mench MM (2010) Advanced modeling in fuel cell systems: a review of modeling approaches. In: Stolten D (ed) Hydrogen and fuel cells—fundamentals, technologies and application. Wiley-VCH, Weinheim, pp 89–118
16.
Zurück zum Zitat Wannek C (2010) High-temperature PEM fuel cells: electrolytes, cells, and stacks. In: Stolten D (ed) Hydrogen and fuel cells—fundamentals, technologies and applications. Wiley-VCH, Weinheim, pp 17–40 Wannek C (2010) High-temperature PEM fuel cells: electrolytes, cells, and stacks. In: Stolten D (ed) Hydrogen and fuel cells—fundamentals, technologies and applications. Wiley-VCH, Weinheim, pp 17–40
17.
Zurück zum Zitat Kulikovsky A (2012) Messages from analytical modeling of fuel cells. In: Stolten D, Emonts B (eds) Fuel cell science and engineering—materials, processes, systems and technology. Wiley-VCH, Weinheim, pp 647–668 Kulikovsky A (2012) Messages from analytical modeling of fuel cells. In: Stolten D, Emonts B (eds) Fuel cell science and engineering—materials, processes, systems and technology. Wiley-VCH, Weinheim, pp 647–668
18.
Zurück zum Zitat Reimer U (2012) High-temperature polymer electrolyte fuel-cell modeling. In: Stolten D, Emonts B (eds) Fuel cell science and engineering—materials, processes, systems and technology. Wiley-VCH, Weinheim, pp 819–838CrossRef Reimer U (2012) High-temperature polymer electrolyte fuel-cell modeling. In: Stolten D, Emonts B (eds) Fuel cell science and engineering—materials, processes, systems and technology. Wiley-VCH, Weinheim, pp 819–838CrossRef
19.
Zurück zum Zitat Anahara R (1990) Fuji electric phosphoric acid fuel cell activities. J Power Sources 29:109–117CrossRef Anahara R (1990) Fuji electric phosphoric acid fuel cell activities. J Power Sources 29:109–117CrossRef
20.
Zurück zum Zitat Anahara R (1992) A perspective on PAFC commercialization by Fuji Electric. J Power Sources 37:119–131CrossRef Anahara R (1992) A perspective on PAFC commercialization by Fuji Electric. J Power Sources 37:119–131CrossRef
21.
Zurück zum Zitat Shibata K, Watanabe K (1994) Philosophies and experiences of PAFC field trials. J Power Sources 49:77–102CrossRef Shibata K, Watanabe K (1994) Philosophies and experiences of PAFC field trials. J Power Sources 49:77–102CrossRef
22.
Zurück zum Zitat Nymoen H (1994) PAFC demonstration plants in Europe: first results. J Power Sources 49:63–76CrossRef Nymoen H (1994) PAFC demonstration plants in Europe: first results. J Power Sources 49:63–76CrossRef
23.
Zurück zum Zitat Hojo N, Okuda M, Nakamura M (1996) Phosphoric acid fuel cells in Japan. J Power Sources 61:73–77CrossRef Hojo N, Okuda M, Nakamura M (1996) Phosphoric acid fuel cells in Japan. J Power Sources 61:73–77CrossRef
24.
Zurück zum Zitat Vanhanen JP, Kauranen PS, Lund PD (1997) Operation experiences of a phosphoric acid fuel cell in a solar hydrogen energy system. Int J Hydrogen Energy 22:707–713CrossRef Vanhanen JP, Kauranen PS, Lund PD (1997) Operation experiences of a phosphoric acid fuel cell in a solar hydrogen energy system. Int J Hydrogen Energy 22:707–713CrossRef
25.
Zurück zum Zitat Whitaker R (1998) Investment in volume building: the ‘virtuous cycle’ in PAFC. J Power Sources 71:71–74CrossRef Whitaker R (1998) Investment in volume building: the ‘virtuous cycle’ in PAFC. J Power Sources 71:71–74CrossRef
26.
Zurück zum Zitat Kasahara K, Morioka M, Yoshida H et al (2000) PAFC operating performance verified by Japanese gas utilities. J Power Sources 86:298–301CrossRef Kasahara K, Morioka M, Yoshida H et al (2000) PAFC operating performance verified by Japanese gas utilities. J Power Sources 86:298–301CrossRef
27.
Zurück zum Zitat Spiegel RJ, Preston JL (2003) Technical assessment of fuel cell operation on anaerobic digester gas at the Yonkers, NY, wastewater treatment plant. Waste Manag 23:709–717CrossRef Spiegel RJ, Preston JL (2003) Technical assessment of fuel cell operation on anaerobic digester gas at the Yonkers, NY, wastewater treatment plant. Waste Manag 23:709–717CrossRef
28.
Zurück zum Zitat Sammes N, Bove R, Stahl K (2004) Phosphoric acid fuel cells: fundamentals and applications. Curr Opin Solid State Mater Sci 8:372–378CrossRef Sammes N, Bove R, Stahl K (2004) Phosphoric acid fuel cells: fundamentals and applications. Curr Opin Solid State Mater Sci 8:372–378CrossRef
32.
Zurück zum Zitat Wainright JS, Wang JT, Weng D et al (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142:L121–L123CrossRef Wainright JS, Wang JT, Weng D et al (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142:L121–L123CrossRef
33.
Zurück zum Zitat Samms SR, Wasmus S, Savinell RF (1996) Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments. J Electrochem Soc 143:1225–1232CrossRef Samms SR, Wasmus S, Savinell RF (1996) Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments. J Electrochem Soc 143:1225–1232CrossRef
34.
Zurück zum Zitat Wang JT, Savinell RF, Wainright JS et al (1996) A H2/O2 fuel cell using acid doped polybenzimidazole as a polymer electrolyte. Electrochim Acta 41:193–197CrossRef Wang JT, Savinell RF, Wainright JS et al (1996) A H2/O2 fuel cell using acid doped polybenzimidazole as a polymer electrolyte. Electrochim Acta 41:193–197CrossRef
40.
Zurück zum Zitat Li Q, He R, Jensen JO et al (2004) PBI-based polymer membranes for high temperature fuel cells—preparation, characterization and fuel cell operation. Fuel Cells 4:147–159CrossRef Li Q, He R, Jensen JO et al (2004) PBI-based polymer membranes for high temperature fuel cells—preparation, characterization and fuel cell operation. Fuel Cells 4:147–159CrossRef
41.
Zurück zum Zitat Zhang J, Xie Z, Zhang J et al (2006) High temperature PEM fuel cells. J Power Sources 160:872–891CrossRef Zhang J, Xie Z, Zhang J et al (2006) High temperature PEM fuel cells. J Power Sources 160:872–891CrossRef
42.
Zurück zum Zitat Li QF, Rudbeck HC, Chromik A et al (2010) Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes. J Membr Sci 347:260–270CrossRef Li QF, Rudbeck HC, Chromik A et al (2010) Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes. J Membr Sci 347:260–270CrossRef
43.
Zurück zum Zitat Aili D, Hansen MK, Pan C et al (2011) Phosphoric acid doped membranes based on Nafion®, PBI and their blends—membrane preparation, characterization and steam electrolysis testing. Int J Hydrogen Energy 36:6985–6993CrossRef Aili D, Hansen MK, Pan C et al (2011) Phosphoric acid doped membranes based on Nafion®, PBI and their blends—membrane preparation, characterization and steam electrolysis testing. Int J Hydrogen Energy 36:6985–6993CrossRef
44.
Zurück zum Zitat Bose S, Kuila T, Nguyen TXH et al (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36:813–836CrossRef Bose S, Kuila T, Nguyen TXH et al (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36:813–836CrossRef
45.
Zurück zum Zitat Chandan A, Hattenberger M, El-kharouf A et al (2013) High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—a review. J Power Sources 231:264–278CrossRef Chandan A, Hattenberger M, El-kharouf A et al (2013) High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—a review. J Power Sources 231:264–278CrossRef
46.
Zurück zum Zitat Sugano N, Ishiwata T, Kawai S et al (1994) Investigation on dynamic characteristics of fuel cell stack cooling system. Trans Jpn Soc Mech Eng 60:1597–1601CrossRef Sugano N, Ishiwata T, Kawai S et al (1994) Investigation on dynamic characteristics of fuel cell stack cooling system. Trans Jpn Soc Mech Eng 60:1597–1601CrossRef
47.
Zurück zum Zitat Miki H, Shimizu A (1998) Dynamic characteristics of phosphoric-acid fuel-cell stack cooling system. Appl Energy 61:41–56CrossRef Miki H, Shimizu A (1998) Dynamic characteristics of phosphoric-acid fuel-cell stack cooling system. Appl Energy 61:41–56CrossRef
48.
Zurück zum Zitat Kwak HY, Lee HS, Jung JY et al (2004) Exergetic and thermoeconomic analysis of a 200-kW phosphoric acid fuel cell plant. Fuel 83:2087–2094CrossRef Kwak HY, Lee HS, Jung JY et al (2004) Exergetic and thermoeconomic analysis of a 200-kW phosphoric acid fuel cell plant. Fuel 83:2087–2094CrossRef
49.
Zurück zum Zitat Zervas PL, Tatsis A, Sarimveis H et al (2008) Development of a novel computational tool for optimizing the operation of fuel cells systems: application for phosphoric acid fuel cells. J Power Sources 185:345–355CrossRef Zervas PL, Tatsis A, Sarimveis H et al (2008) Development of a novel computational tool for optimizing the operation of fuel cells systems: application for phosphoric acid fuel cells. J Power Sources 185:345–355CrossRef
50.
Zurück zum Zitat Zhang H, Lin G, Chen J (2012) Multi-objective optimization analysis and load matching of a phosphoric acid fuel cell system. Int J Hydrogen Energy 37:3438–3446CrossRef Zhang H, Lin G, Chen J (2012) Multi-objective optimization analysis and load matching of a phosphoric acid fuel cell system. Int J Hydrogen Energy 37:3438–3446CrossRef
51.
Zurück zum Zitat Tanni MA, Arifujjaman M, Iqbal T (2013) Dynamic modeling of a phosphoric acid fuel cell (PAFC) and its power conditioning system. J Clean Energy Technol 1:178–183CrossRef Tanni MA, Arifujjaman M, Iqbal T (2013) Dynamic modeling of a phosphoric acid fuel cell (PAFC) and its power conditioning system. J Clean Energy Technol 1:178–183CrossRef
52.
Zurück zum Zitat Iczkowski RP, Cutlip MB (1980) Voltage losses in fuel cell cathodes. J Electrochem Soc 127:1433–1440CrossRef Iczkowski RP, Cutlip MB (1980) Voltage losses in fuel cell cathodes. J Electrochem Soc 127:1433–1440CrossRef
53.
Zurück zum Zitat Yang SC, Cutlip MB, Stonehart P (1990) Simulation and optimization of porous gas-diffusion electrodes used in hydrogen/oxygen phosphoric acid fuel cells. Electrochim Acta 35:869–878CrossRef Yang SC, Cutlip MB, Stonehart P (1990) Simulation and optimization of porous gas-diffusion electrodes used in hydrogen/oxygen phosphoric acid fuel cells. Electrochim Acta 35:869–878CrossRef
54.
Zurück zum Zitat Yang SC (2000) Modeling and simulation of steady-state polarization and impedance response of phosphoric acid fuel-cell cathodes with catalyst-layer microstructure consideration. J Electrochem Soc 147:71–77CrossRef Yang SC (2000) Modeling and simulation of steady-state polarization and impedance response of phosphoric acid fuel-cell cathodes with catalyst-layer microstructure consideration. J Electrochem Soc 147:71–77CrossRef
55.
Zurück zum Zitat Abdul-Aziz A, Alkasab KA (1994) Performance of serpentine passages in the cooling system of a phosphoric fuel cell stack. Exp Therm Fluid Sci 8:101–111CrossRef Abdul-Aziz A, Alkasab KA (1994) Performance of serpentine passages in the cooling system of a phosphoric fuel cell stack. Exp Therm Fluid Sci 8:101–111CrossRef
56.
Zurück zum Zitat Yoshioka S, Mitsuda K, Horiuchi H et al (1997) Mechanism of vaporization of phosphoric acid in a PAFC. Denki Kagaku 65:314–319 Yoshioka S, Mitsuda K, Horiuchi H et al (1997) Mechanism of vaporization of phosphoric acid in a PAFC. Denki Kagaku 65:314–319
57.
Zurück zum Zitat Yoshioka S, Mitsuda K, Horiuchi H et al (1998) Condensation of vaporized phosphoric acid in a PAFC cathode. Denki Kagaku 66:41–47 Yoshioka S, Mitsuda K, Horiuchi H et al (1998) Condensation of vaporized phosphoric acid in a PAFC cathode. Denki Kagaku 66:41–47
58.
Zurück zum Zitat Yamashita K, Taniguchi T (1998) Agglomerate model for DC and AC response of phosphoric acid fuel cell cathode. J Electrochem Soc 145:45–49CrossRef Yamashita K, Taniguchi T (1998) Agglomerate model for DC and AC response of phosphoric acid fuel cell cathode. J Electrochem Soc 145:45–49CrossRef
59.
Zurück zum Zitat Maggio G (1999) Modelling of phosphoric acid fuel cell cathode behaviour. J Appl Electrochem 29:171–176CrossRef Maggio G (1999) Modelling of phosphoric acid fuel cell cathode behaviour. J Appl Electrochem 29:171–176CrossRef
60.
Zurück zum Zitat Choudhury SR, Deshmukh MB, Rengaswamy R (2002) A two-dimensional steady-state model for phosphoric acid fuel cells (PAFC). J Power Sources 112:137–152CrossRef Choudhury SR, Deshmukh MB, Rengaswamy R (2002) A two-dimensional steady-state model for phosphoric acid fuel cells (PAFC). J Power Sources 112:137–152CrossRef
61.
Zurück zum Zitat Choudhury SR, Choudhury SR, Rangarajan J et al (2005) Step response analysis of phosphoric acid fuel cell (PAFC) cathode through a transient model. J Power Sources 140:274–279CrossRef Choudhury SR, Choudhury SR, Rangarajan J et al (2005) Step response analysis of phosphoric acid fuel cell (PAFC) cathode through a transient model. J Power Sources 140:274–279CrossRef
62.
Zurück zum Zitat Psofogiannakis G, Bourgault Y, Conway BE et al (2006) Mathematical model for a direct propane phosphoric acid fuel cell. J Appl Electrochem 36:115–130CrossRef Psofogiannakis G, Bourgault Y, Conway BE et al (2006) Mathematical model for a direct propane phosphoric acid fuel cell. J Appl Electrochem 36:115–130CrossRef
63.
Zurück zum Zitat Choudhury SR, Rengaswamy R (2006) Characterization and fault diagnosis of PAFC cathode by EIS technique and a novel mathematical model approach. J Power Sources 161:971–986CrossRef Choudhury SR, Rengaswamy R (2006) Characterization and fault diagnosis of PAFC cathode by EIS technique and a novel mathematical model approach. J Power Sources 161:971–986CrossRef
64.
Zurück zum Zitat Zervas PL, Koukou MK, Markatos NC (2006) Predicting the effects of process parameters on the performance of phosphoric acid fuel cells using a 3-D numerical approach. Energy Convers Manag 47:2883–2899CrossRef Zervas PL, Koukou MK, Markatos NC (2006) Predicting the effects of process parameters on the performance of phosphoric acid fuel cells using a 3-D numerical approach. Energy Convers Manag 47:2883–2899CrossRef
65.
Zurück zum Zitat Hirata H, Aoki T, Nakajima K (2011) Numerical study on the evaporative and condensational dissipation of phosphoric acid in PAFC. J Power Sources 196:8004–8011CrossRef Hirata H, Aoki T, Nakajima K (2011) Numerical study on the evaporative and condensational dissipation of phosphoric acid in PAFC. J Power Sources 196:8004–8011CrossRef
66.
Zurück zum Zitat Hirata H, Aoki T, Nakajima K (2012) Liquid phase migration effects on the evaporative and condensational dissipation of phosphoric acid in phosphoric acid fuel cell. J Power Sources 199:110–116CrossRef Hirata H, Aoki T, Nakajima K (2012) Liquid phase migration effects on the evaporative and condensational dissipation of phosphoric acid in phosphoric acid fuel cell. J Power Sources 199:110–116CrossRef
67.
Zurück zum Zitat Paul T, Seal M, Banerjee D et al (2014) Analysis of drying and dilution in phosphoric acid fuel cell (PAFC) using galvanometric study and electrochemical impedance spectroscopy. J Fuel Cell Sci Technol 11:041001-1–041001-7 Paul T, Seal M, Banerjee D et al (2014) Analysis of drying and dilution in phosphoric acid fuel cell (PAFC) using galvanometric study and electrochemical impedance spectroscopy. J Fuel Cell Sci Technol 11:041001-1–041001-7
68.
Zurück zum Zitat Korsgaard AR, Refshauge R, Nielsen MP et al (2006) Experimental characterization and modeling of commercial polybenzimidazole-based MEA performance. J Power Sources 162:239–245CrossRef Korsgaard AR, Refshauge R, Nielsen MP et al (2006) Experimental characterization and modeling of commercial polybenzimidazole-based MEA performance. J Power Sources 162:239–245CrossRef
69.
Zurück zum Zitat Zenith F, Seland F, Kongstein OE et al (2006) Control-oriented modelling and experimental study of the transient response of a high-temperature polymer fuel cell. J Power Sources 162:215–227CrossRef Zenith F, Seland F, Kongstein OE et al (2006) Control-oriented modelling and experimental study of the transient response of a high-temperature polymer fuel cell. J Power Sources 162:215–227CrossRef
70.
Zurück zum Zitat Andreasen SJ, Kær SK (2008) Modelling and evaluation of heating strategies for high temperature polymer electrolyte membrane fuel cell stacks. Int J Hydrogen Energy 33:4655–4664CrossRef Andreasen SJ, Kær SK (2008) Modelling and evaluation of heating strategies for high temperature polymer electrolyte membrane fuel cell stacks. Int J Hydrogen Energy 33:4655–4664CrossRef
71.
Zurück zum Zitat Korsgaard AR, Nielsen MP, Kær SK (2008) Part one: a novel model of HT-based micro-combined heat and power fuel cell system. Int J Hydrogen Energy 33:1909–1920CrossRef Korsgaard AR, Nielsen MP, Kær SK (2008) Part one: a novel model of HT-based micro-combined heat and power fuel cell system. Int J Hydrogen Energy 33:1909–1920CrossRef
72.
Zurück zum Zitat Korsgaard AR, Nielsen MP, Kær SK (2008) Part two: control of a novel HT-based micro combined heat and power fuel cell system. Int J Hydrogen Energy 33:1921–1931CrossRef Korsgaard AR, Nielsen MP, Kær SK (2008) Part two: control of a novel HT-based micro combined heat and power fuel cell system. Int J Hydrogen Energy 33:1921–1931CrossRef
73.
Zurück zum Zitat Arsalis A, Nielsen MP, Kær SK (2011) Modeling and parametric study of a 1 kWe HT-PEMFC-based residential micro-CHP system. Int J Hydrogen Energy 36:5010–5020CrossRef Arsalis A, Nielsen MP, Kær SK (2011) Modeling and parametric study of a 1 kWe HT-PEMFC-based residential micro-CHP system. Int J Hydrogen Energy 36:5010–5020CrossRef
74.
Zurück zum Zitat Zuliani N, Taccani R (2012) Microcogeneration system based on HTPEM fuel cell fueled with natural gas: performance analysis. Appl Energy 97:802–808CrossRef Zuliani N, Taccani R (2012) Microcogeneration system based on HTPEM fuel cell fueled with natural gas: performance analysis. Appl Energy 97:802–808CrossRef
75.
Zurück zum Zitat Romero-Pascual E, Soler J (2013) Modelling of an HT-based micro-combined heat and power fuel cell system with methanol. Int J Hydrogen Energy 39:4053–4059CrossRef Romero-Pascual E, Soler J (2013) Modelling of an HT-based micro-combined heat and power fuel cell system with methanol. Int J Hydrogen Energy 39:4053–4059CrossRef
76.
Zurück zum Zitat Arsalis A, Nielsen MP, Kær SK (2013) Application of an improved operational strategy on a PBI fuel cell-based residential system for Danish single-family households. Appl Therm Eng 50:704–713CrossRef Arsalis A, Nielsen MP, Kær SK (2013) Application of an improved operational strategy on a PBI fuel cell-based residential system for Danish single-family households. Appl Therm Eng 50:704–713CrossRef
77.
Zurück zum Zitat Authayanun S, Mamlouk M, Scott K et al (2013) Comparison of high-temperature and low-temperature polymer electrolyte membrane fuel cell systems with glycerol reforming process for stationary applications. Appl Energy 109:192–201CrossRef Authayanun S, Mamlouk M, Scott K et al (2013) Comparison of high-temperature and low-temperature polymer electrolyte membrane fuel cell systems with glycerol reforming process for stationary applications. Appl Energy 109:192–201CrossRef
78.
Zurück zum Zitat Jannelli E, Minutillo M, Perna A (2013) Analyzing microcogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances. Appl Energy 108:82–91CrossRef Jannelli E, Minutillo M, Perna A (2013) Analyzing microcogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances. Appl Energy 108:82–91CrossRef
79.
Zurück zum Zitat Authayanun S, Saebea D, Patcharavorachot Y, Arpornwichanop A (2014) Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems. Energy 68:989–997CrossRef Authayanun S, Saebea D, Patcharavorachot Y, Arpornwichanop A (2014) Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems. Energy 68:989–997CrossRef
80.
Zurück zum Zitat Park J, Min K (2014) Dynamic modeling of a high-temperature proton exchange membrane fuel cell with a fuel processor. Int J Hydrogen Energy 39:10683–10696CrossRef Park J, Min K (2014) Dynamic modeling of a high-temperature proton exchange membrane fuel cell with a fuel processor. Int J Hydrogen Energy 39:10683–10696CrossRef
81.
Zurück zum Zitat Cheddie D, Munroe N (2006) Parametric model of an intermediate temperature PEMFC. J Power Sources 156:414–423CrossRef Cheddie D, Munroe N (2006) Parametric model of an intermediate temperature PEMFC. J Power Sources 156:414–423CrossRef
82.
Zurück zum Zitat Cheddie D, Munroe N (2006) Three dimensional modeling of high temperature PEM fuel cells. J Power Sources 160:215–223CrossRef Cheddie D, Munroe N (2006) Three dimensional modeling of high temperature PEM fuel cells. J Power Sources 160:215–223CrossRef
83.
Zurück zum Zitat Cheddie D, Munroe N (2006) Mathematical model of a PEMFC using a PBI membrane. Energy Convers Manag 47:1490–1504CrossRef Cheddie D, Munroe N (2006) Mathematical model of a PEMFC using a PBI membrane. Energy Convers Manag 47:1490–1504CrossRef
84.
Zurück zum Zitat Cheddie D, Munroe N (2007) A two-phase model of an intermediate temperature PEMFC. Int J Hydrogen Energy 32:832–841CrossRef Cheddie D, Munroe N (2007) A two-phase model of an intermediate temperature PEMFC. Int J Hydrogen Energy 32:832–841CrossRef
85.
Zurück zum Zitat Cheddie DF, Munroe NDH (2008) Semi-analytical proton exchange membrane fuel cell modeling. J Power Sources 183:164–173CrossRef Cheddie DF, Munroe NDH (2008) Semi-analytical proton exchange membrane fuel cell modeling. J Power Sources 183:164–173CrossRef
86.
Zurück zum Zitat Peng J, Lee SJ (2006) Numerical simulation of proton exchange membrane fuel cells at high operating temperature. J Power Sources 162:1182–1191CrossRef Peng J, Lee SJ (2006) Numerical simulation of proton exchange membrane fuel cells at high operating temperature. J Power Sources 162:1182–1191CrossRef
87.
Zurück zum Zitat Peng J, Lee SJ (2008) Transient response of high temperature PEM fuel cell. J Power Sources 179:220–231CrossRef Peng J, Lee SJ (2008) Transient response of high temperature PEM fuel cell. J Power Sources 179:220–231CrossRef
88.
Zurück zum Zitat Wang CP, Chu HS, Yan YY et al (2007) Transient evolution of carbon monoxide poisoning effect of PBI membrane fuel cells. J Power Sources 170:235–241CrossRef Wang CP, Chu HS, Yan YY et al (2007) Transient evolution of carbon monoxide poisoning effect of PBI membrane fuel cells. J Power Sources 170:235–241CrossRef
89.
Zurück zum Zitat Scott K, Pilditch S, Mamlouk M (2007) Modelling and experimental validation of a high temperature polymer electrolyte fuel cell. J Appl Electrochem 37:1245–1259CrossRef Scott K, Pilditch S, Mamlouk M (2007) Modelling and experimental validation of a high temperature polymer electrolyte fuel cell. J Appl Electrochem 37:1245–1259CrossRef
90.
Zurück zum Zitat Siegel C, Bandlamudi G, Heinzel A (2007) Numerical simulation of a high-temperature PEM (HT) fuel cell. In: Proceedings of the European COMSOL conference, Grenoble Siegel C, Bandlamudi G, Heinzel A (2007) Numerical simulation of a high-temperature PEM (HT) fuel cell. In: Proceedings of the European COMSOL conference, Grenoble
91.
Zurück zum Zitat Siegel C, Bandlamudi G, Heinzel A (2008) Modeling polybenzimidazole/phosphoric acid membrane behaviour in a HTPEM fuel cell. In: Proceedings of the European COMSOL conference, Hannover Siegel C, Bandlamudi G, Heinzel A (2008) Modeling polybenzimidazole/phosphoric acid membrane behaviour in a HTPEM fuel cell. In: Proceedings of the European COMSOL conference, Hannover
92.
Zurück zum Zitat Siegel C, Bandlamudi G, van der Schoot N et al (2009) Large scale 3D flow distribution analysis in HTPEM fuel cells. In: Proceedings of the European COMSOL conference, Milan Siegel C, Bandlamudi G, van der Schoot N et al (2009) Large scale 3D flow distribution analysis in HTPEM fuel cells. In: Proceedings of the European COMSOL conference, Milan
93.
Zurück zum Zitat Siegel C, Bandlamudi G, Heinzel A (2008) Evaluating the effects of stack compression on the physical characteristics of HT PEMFCs with CFD modelling software. In: Proceedings of the fuel cell science and technology conference, Copenhagen Siegel C, Bandlamudi G, Heinzel A (2008) Evaluating the effects of stack compression on the physical characteristics of HT PEMFCs with CFD modelling software. In: Proceedings of the fuel cell science and technology conference, Copenhagen
94.
Zurück zum Zitat Ubong EU, Shi Z, Wang X (2008) A-3D-modeling and experimental validation of a high temperature PBI based PEMFC. ECS Trans 16:79–90CrossRef Ubong EU, Shi Z, Wang X (2008) A-3D-modeling and experimental validation of a high temperature PBI based PEMFC. ECS Trans 16:79–90CrossRef
95.
Zurück zum Zitat Schaar B (2008) Simulation einer Hochtemperatur-PEM-Brennstoffzelle. Dissertation, AutoUni - Schriftreihe, Logos Verlag, Berlin Schaar B (2008) Simulation einer Hochtemperatur-PEM-Brennstoffzelle. Dissertation, AutoUni - Schriftreihe, Logos Verlag, Berlin
96.
Zurück zum Zitat Siegel C, Bandlamudi G, Beckhaus P et al (2009) Segmented current and temperature measurement in a HTPEM fuel cell. In: Proceedings of the 6th symposium on fuel cell modelling and experimental validation, Bad Herrenalb/Karlsruhe Siegel C, Bandlamudi G, Beckhaus P et al (2009) Segmented current and temperature measurement in a HTPEM fuel cell. In: Proceedings of the 6th symposium on fuel cell modelling and experimental validation, Bad Herrenalb/Karlsruhe
97.
Zurück zum Zitat Siegel C, Bandlamudi G, Heinzel A (2011) Locally resolved measurements in a segmented HTPEM fuel cell with straight flow-fields. Fuel Cells 11:489–500CrossRef Siegel C, Bandlamudi G, Heinzel A (2011) Locally resolved measurements in a segmented HTPEM fuel cell with straight flow-fields. Fuel Cells 11:489–500CrossRef
98.
Zurück zum Zitat Andreasen SJ, Kær SK (2009) Dynamic model of the high temperature proton exchange membrane fuel cell stack temperature. J Fuel Cell Sci Technol 6:041006-1–041006-8 Andreasen SJ, Kær SK (2009) Dynamic model of the high temperature proton exchange membrane fuel cell stack temperature. J Fuel Cell Sci Technol 6:041006-1–041006-8
99.
Zurück zum Zitat Scholta J, Messerschmidt M, Jörissen L et al (2009) Externally cooled high temperature polymer electrolyte membrane fuel cell stack. J Power Sources 190:83–85CrossRef Scholta J, Messerschmidt M, Jörissen L et al (2009) Externally cooled high temperature polymer electrolyte membrane fuel cell stack. J Power Sources 190:83–85CrossRef
100.
Zurück zum Zitat Scott K, Mamlouk M (2009) A cell voltage equation for an intermediate temperature proton exchange membrane fuel cell. Int J Hydrogen Energy 34:9195–9202CrossRef Scott K, Mamlouk M (2009) A cell voltage equation for an intermediate temperature proton exchange membrane fuel cell. Int J Hydrogen Energy 34:9195–9202CrossRef
101.
Zurück zum Zitat Shamardina O, Chertovich A, Kulikovsky AA et al (2010) A simple model of a high temperature PEM fuel cell. Int J Hydrogen Energy 35:9954–9962CrossRef Shamardina O, Chertovich A, Kulikovsky AA et al (2010) A simple model of a high temperature PEM fuel cell. Int J Hydrogen Energy 35:9954–9962CrossRef
102.
Zurück zum Zitat Kulikovsky AA, Oetjen HF, Wannek C (2010) A simple and accurate method for high-temperature PEM fuel cell characterisation. Fuel Cells 10:363–368CrossRef Kulikovsky AA, Oetjen HF, Wannek C (2010) A simple and accurate method for high-temperature PEM fuel cell characterisation. Fuel Cells 10:363–368CrossRef
103.
Zurück zum Zitat Sousa T, Mamlouk M, Scott K (2010) An isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes. Chem Eng Sci 65:2513–2530CrossRef Sousa T, Mamlouk M, Scott K (2010) An isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes. Chem Eng Sci 65:2513–2530CrossRef
104.
Zurück zum Zitat Bergmann A, Gerteisen D, Kurz T (2010) Modelling of CO poisoning and its dynamics in HTPEM fuel cells. Fuel Cells 10:278–287CrossRef Bergmann A, Gerteisen D, Kurz T (2010) Modelling of CO poisoning and its dynamics in HTPEM fuel cells. Fuel Cells 10:278–287CrossRef
105.
Zurück zum Zitat Sousa T, Mamlouk M, Scott K (2010) A non-isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes. Fuel Cells 10:993–1012CrossRef Sousa T, Mamlouk M, Scott K (2010) A non-isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes. Fuel Cells 10:993–1012CrossRef
106.
Zurück zum Zitat Lobato J, Cãnizares P, Rodrigo MA et al (2010) Three-dimensional model of a 50 cm2 high temperature PEM fuel cell. Study of the flow channel geometry influence. Int J Hydrogen Energy 35:5510–5520CrossRef Lobato J, Cãnizares P, Rodrigo MA et al (2010) Three-dimensional model of a 50 cm2 high temperature PEM fuel cell. Study of the flow channel geometry influence. Int J Hydrogen Energy 35:5510–5520CrossRef
107.
Zurück zum Zitat Sousa T, Mamlouk M, Scott K (2010) A dynamic non-isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes. Int J Hydrogen Energy 35:12065–12080CrossRef Sousa T, Mamlouk M, Scott K (2010) A dynamic non-isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes. Int J Hydrogen Energy 35:12065–12080CrossRef
108.
Zurück zum Zitat Lobato J, Cãnizares P, Rodrigo MA et al (2010) Direct and inverse neural networks modelling applied to study the influence of the gas diffusion layer properties on PBI-based PEM fuel cells. Int J Hydrogen Energy 35:7889–7897CrossRef Lobato J, Cãnizares P, Rodrigo MA et al (2010) Direct and inverse neural networks modelling applied to study the influence of the gas diffusion layer properties on PBI-based PEM fuel cells. Int J Hydrogen Energy 35:7889–7897CrossRef
109.
Zurück zum Zitat Jiao K, Li X (2010) A three-dimensional non-isothermal model of high temperature proton exchange membrane fuel cells with phosphoric acid doped polybenzimidazole membranes. Fuel Cells 10:351–362CrossRef Jiao K, Li X (2010) A three-dimensional non-isothermal model of high temperature proton exchange membrane fuel cells with phosphoric acid doped polybenzimidazole membranes. Fuel Cells 10:351–362CrossRef
110.
Zurück zum Zitat Jiao K, Alaefour IE, Li X (2011) Three-dimensional non-isothermal modeling of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with phosphoric acid doped polybenzimidazole membranes. Fuel 90:568–582CrossRef Jiao K, Alaefour IE, Li X (2011) Three-dimensional non-isothermal modeling of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with phosphoric acid doped polybenzimidazole membranes. Fuel 90:568–582CrossRef
111.
Zurück zum Zitat Siegel C, Bandlamudi G, Heinzel A (2011) Systematic characterization of a PBI/H3PO4 sol-gel membrane—modeling and simulation. J Power Sources 196:2735–2749CrossRef Siegel C, Bandlamudi G, Heinzel A (2011) Systematic characterization of a PBI/H3PO4 sol-gel membrane—modeling and simulation. J Power Sources 196:2735–2749CrossRef
112.
Zurück zum Zitat Doubek G, Robalinho E, Cunha EF et al (2011) Application of CFD techniques in the modelling and simulation of PBI PEMFC. Fuel Cells 11:764–774CrossRef Doubek G, Robalinho E, Cunha EF et al (2011) Application of CFD techniques in the modelling and simulation of PBI PEMFC. Fuel Cells 11:764–774CrossRef
113.
Zurück zum Zitat Mamlouk M, Sousa T, Scott K (2011) A high temperature polymer electrolyte membrane fuel cell model for reformate gas. Int J Electrochem, Article ID 520473:1–18 Mamlouk M, Sousa T, Scott K (2011) A high temperature polymer electrolyte membrane fuel cell model for reformate gas. Int J Electrochem, Article ID 520473:1–18
114.
Zurück zum Zitat Kurz T (2011) Entwicklung und Charakterisierung eines portable Hochtemperatur-PEM-Brennstoffzellensystems. Dissertation, Fraunhofer Verlag, Stuttgart Kurz T (2011) Entwicklung und Charakterisierung eines portable Hochtemperatur-PEM-Brennstoffzellensystems. Dissertation, Fraunhofer Verlag, Stuttgart
115.
Zurück zum Zitat Siegel C, Bandlamudi G, Heinzel A (2011) Solid-phase temperature measurements in a HTPEM fuel cell. Int J Hydrogen Energy 36:12977–12990CrossRef Siegel C, Bandlamudi G, Heinzel A (2011) Solid-phase temperature measurements in a HTPEM fuel cell. Int J Hydrogen Energy 36:12977–12990CrossRef
116.
Zurück zum Zitat Olapade PO, Meyers JP, Borup RL et al (2011) Parametric study of the morphological proprieties of HT-PEMFC components for effective membrane hydration. J Electrochem Soc 158:B639–B649CrossRef Olapade PO, Meyers JP, Borup RL et al (2011) Parametric study of the morphological proprieties of HT-PEMFC components for effective membrane hydration. J Electrochem Soc 158:B639–B649CrossRef
117.
Zurück zum Zitat Falcucci G, Jannelli E, Minutillo M et al (2012) Fluid dynamic investigation of channel design in high temperature PEM fuel cells. J Fuel Cell Sci Technol 9:021014-1–021014-10 Falcucci G, Jannelli E, Minutillo M et al (2012) Fluid dynamic investigation of channel design in high temperature PEM fuel cells. J Fuel Cell Sci Technol 9:021014-1–021014-10
118.
Zurück zum Zitat Kvesić M, Reimer U, Froning D et al (2012) 3D modeling of a 200 cm2 HT-PEFC short stack. Int J Hydrogen Energy 37:2430–2450CrossRef Kvesić M, Reimer U, Froning D et al (2012) 3D modeling of a 200 cm2 HT-PEFC short stack. Int J Hydrogen Energy 37:2430–2450CrossRef
119.
Zurück zum Zitat Kvesić M (2012) Modellierung und Simulation von Hochtemperatur-Polymerelektrolyt-Brennstoffzellen. Dissertation, Forschungszentrum Jülich GmbH, Zentralbibliothek Verlag, Jülich Kvesić M (2012) Modellierung und Simulation von Hochtemperatur-Polymerelektrolyt-Brennstoffzellen. Dissertation, Forschungszentrum Jülich GmbH, Zentralbibliothek Verlag, Jülich
120.
Zurück zum Zitat Lüke L, Janßen H, Kvesić M et al (2012) Performance analysis of HT-PEFC stacks. Int J Hydrogen Energy 37:9171–9181CrossRef Lüke L, Janßen H, Kvesić M et al (2012) Performance analysis of HT-PEFC stacks. Int J Hydrogen Energy 37:9171–9181CrossRef
121.
Zurück zum Zitat Chippar P, Ju H (2012) Three-dimensional non-isothermal modeling of a phosphoric acid-doped polybenzimidazole (PBI) membrane fuel cell. Solid State Ion 225:30–39CrossRef Chippar P, Ju H (2012) Three-dimensional non-isothermal modeling of a phosphoric acid-doped polybenzimidazole (PBI) membrane fuel cell. Solid State Ion 225:30–39CrossRef
122.
Zurück zum Zitat Park J, Min K (2012) A quasi-three-dimensional non-isothermal dynamic model of a high-temperature proton exchange membrane fuel cell. J Power Sources 216:152–161CrossRef Park J, Min K (2012) A quasi-three-dimensional non-isothermal dynamic model of a high-temperature proton exchange membrane fuel cell. J Power Sources 216:152–161CrossRef
123.
Zurück zum Zitat Reddy EH, Jayanti S (2012) Thermal management strategies for a 1 kWe stack of a high temperature proton exchange membrane fuel cell. Appl Therm Eng 48:465–475CrossRef Reddy EH, Jayanti S (2012) Thermal management strategies for a 1 kWe stack of a high temperature proton exchange membrane fuel cell. Appl Therm Eng 48:465–475CrossRef
124.
Zurück zum Zitat Sousa T, Mamlouk M, Scott K et al (2012) Three dimensional model of a high temperature PEMFC. Study of the flow field effect on performance. Fuel Cells 12:566–576CrossRef Sousa T, Mamlouk M, Scott K et al (2012) Three dimensional model of a high temperature PEMFC. Study of the flow field effect on performance. Fuel Cells 12:566–576CrossRef
125.
Zurück zum Zitat Reddy EH, Monder DS, Jayanti S (2013) Parametric study of an external coolant system for a high temperature polymer electrolyte membrane fuel cell. Appl Therm Eng 58:155–164CrossRef Reddy EH, Monder DS, Jayanti S (2013) Parametric study of an external coolant system for a high temperature polymer electrolyte membrane fuel cell. Appl Therm Eng 58:155–164CrossRef
126.
Zurück zum Zitat Jiao K, Zhou Y, Du Q et al (2013) Numerical simulations of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with various flow channel designs. Appl Energy 104:21–41CrossRef Jiao K, Zhou Y, Du Q et al (2013) Numerical simulations of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with various flow channel designs. Appl Energy 104:21–41CrossRef
127.
Zurück zum Zitat Chippar P, Ju H (2013) Numerical modeling and investigation of gas crossover effects in high temperature proton exchange membrane (PEM) fuel cells. Int J Hydrogen Energy 38:7704–7714CrossRef Chippar P, Ju H (2013) Numerical modeling and investigation of gas crossover effects in high temperature proton exchange membrane (PEM) fuel cells. Int J Hydrogen Energy 38:7704–7714CrossRef
128.
Zurück zum Zitat Chippar P, Oh K, Kim D et al (2013) Coupled mechanical stress and multi-dimensional CFD analysis for high temperature proton exchange membrane fuel cells (HT-PEMFCs). Int J Hydrogen Energy 38:7715–7724CrossRef Chippar P, Oh K, Kim D et al (2013) Coupled mechanical stress and multi-dimensional CFD analysis for high temperature proton exchange membrane fuel cells (HT-PEMFCs). Int J Hydrogen Energy 38:7715–7724CrossRef
129.
Zurück zum Zitat Supra J, Janßen H, Lehnert W et al (2013) Temperature distribution in a liquid cooled HT-PEFC stack. Int J Hydrogen Energy 38:1943–1951CrossRef Supra J, Janßen H, Lehnert W et al (2013) Temperature distribution in a liquid cooled HT-PEFC stack. Int J Hydrogen Energy 38:1943–1951CrossRef
130.
Zurück zum Zitat Grigoriev SA, Kalinnikov AA, Kuleshov NV et al (2013) Numerical optimization of bipolar plates and gas diffusion electrodes for PBI-based PEM fuel cells. Int J Hydrogen Energy 38:8557–8567CrossRef Grigoriev SA, Kalinnikov AA, Kuleshov NV et al (2013) Numerical optimization of bipolar plates and gas diffusion electrodes for PBI-based PEM fuel cells. Int J Hydrogen Energy 38:8557–8567CrossRef
131.
Zurück zum Zitat Salomov RU, Chiavazzo E, Asinari P (2014) Pore-scale modeling of fluid flow through gas diffusion and catalyst layers for high temperature proton exchange membrane (HT-PEM) fuel cells. Comput Math Appl 67:393–411CrossRef Salomov RU, Chiavazzo E, Asinari P (2014) Pore-scale modeling of fluid flow through gas diffusion and catalyst layers for high temperature proton exchange membrane (HT-PEM) fuel cells. Comput Math Appl 67:393–411CrossRef
132.
Zurück zum Zitat Bezmalinović D, Strahl S, Roda V et al (2014) Water transport study in a high temperature proton exchange membrane fuel cell stack. Water transport study in a high temperature proton exchange membrane fuel cell stack. Int J Hydrogen Energy 39:10627–10640CrossRef Bezmalinović D, Strahl S, Roda V et al (2014) Water transport study in a high temperature proton exchange membrane fuel cell stack. Water transport study in a high temperature proton exchange membrane fuel cell stack. Int J Hydrogen Energy 39:10627–10640CrossRef
133.
Zurück zum Zitat Chippar P, Oh K, Kim WG et al (2014) Numerical analysis of effects of gas crossover through membrane pinholes in high-temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 39:2863–2871CrossRef Chippar P, Oh K, Kim WG et al (2014) Numerical analysis of effects of gas crossover through membrane pinholes in high-temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 39:2863–2871CrossRef
134.
Zurück zum Zitat Chippar P, Kang K, Lim YD et al (2014) Effects of inlet relative humidity (RH) on the performance of a high temperature-proton exchange membrane fuel cell (HT-PEMFC). Int J Hydrogen Energy 39:2767–2775CrossRef Chippar P, Kang K, Lim YD et al (2014) Effects of inlet relative humidity (RH) on the performance of a high temperature-proton exchange membrane fuel cell (HT-PEMFC). Int J Hydrogen Energy 39:2767–2775CrossRef
135.
Zurück zum Zitat Oh K, Chippar P, Ju H (2014) Numerical study of thermal stresses in high temperature proton exchange membrane fuel cell (HT-PEMFC). Int J Hydrogen Energy 39:2785–2794CrossRef Oh K, Chippar P, Ju H (2014) Numerical study of thermal stresses in high temperature proton exchange membrane fuel cell (HT-PEMFC). Int J Hydrogen Energy 39:2785–2794CrossRef
136.
Zurück zum Zitat Abdul Rasheed RK, Ehteshami SMM, Chan SH (2014) Analytical modelling of boiling phase change phenomenon in high-temperature proton exchange membrane fuel cells during warm-up process. Int J Hydrogen Energy 39:2246–2260CrossRef Abdul Rasheed RK, Ehteshami SMM, Chan SH (2014) Analytical modelling of boiling phase change phenomenon in high-temperature proton exchange membrane fuel cells during warm-up process. Int J Hydrogen Energy 39:2246–2260CrossRef
137.
Zurück zum Zitat Singdeo D, Dey T, Ghosh PC (2014) Contact resistance between bipolar plate and gas diffusion layer in high temperature polymer electrolyte fuel cells. Int J Hydrogen Energy 39:987–995CrossRef Singdeo D, Dey T, Ghosh PC (2014) Contact resistance between bipolar plate and gas diffusion layer in high temperature polymer electrolyte fuel cells. Int J Hydrogen Energy 39:987–995CrossRef
138.
Zurück zum Zitat Kazdal TJ, Lang S, Kühl F et al (2014) Modelling of the vapour-liquid equilibrium of water and the in situ concentration of H3PO4 in a high temperature proton exchange membrane fuel cell. J Power Sources 249:446–456CrossRef Kazdal TJ, Lang S, Kühl F et al (2014) Modelling of the vapour-liquid equilibrium of water and the in situ concentration of H3PO4 in a high temperature proton exchange membrane fuel cell. J Power Sources 249:446–456CrossRef
139.
Zurück zum Zitat Yin Y, Wang J, Yang X et al (2014) Modeling of high temperature proton exchange membrane fuel cells with novel sulfonated polybenzimidazole membranes. Int J Hydrogen Energy 39:13671–13680CrossRef Yin Y, Wang J, Yang X et al (2014) Modeling of high temperature proton exchange membrane fuel cells with novel sulfonated polybenzimidazole membranes. Int J Hydrogen Energy 39:13671–13680CrossRef
140.
Zurück zum Zitat Kim M, Kang T, Kim J et al (2014) One-dimensional modeling and analysis for performance degradation of high temperature proton exchange membrane fuel cell using PA doped PBI membrane. Solid State Ion 262:319–323CrossRef Kim M, Kang T, Kim J et al (2014) One-dimensional modeling and analysis for performance degradation of high temperature proton exchange membrane fuel cell using PA doped PBI membrane. Solid State Ion 262:319–323CrossRef
142.
Zurück zum Zitat Bockris O’MJ, Reddy AKN (1970) Modern electrochemistry. Plenum, New YorkCrossRef Bockris O’MJ, Reddy AKN (1970) Modern electrochemistry. Plenum, New YorkCrossRef
143.
Zurück zum Zitat Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena, revised 2nd edn. Wiley, New York Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena, revised 2nd edn. Wiley, New York
144.
Zurück zum Zitat Newman JS (1990) Electrochemical systems, 2nd edn. Prentice Hall, Englewood Cliffs Newman JS (1990) Electrochemical systems, 2nd edn. Prentice Hall, Englewood Cliffs
145.
Zurück zum Zitat COMSOL Multiphysics 5.0 (2014) Batteries & fuel cells module—user manual COMSOL Multiphysics 5.0 (2014) Batteries & fuel cells module—user manual
146.
Zurück zum Zitat Björnbom P (1987) Modelling of a double-layered PTFE-bonded oxygen electrode. Electrochim Acta 32:115–119CrossRef Björnbom P (1987) Modelling of a double-layered PTFE-bonded oxygen electrode. Electrochim Acta 32:115–119CrossRef
147.
Zurück zum Zitat COMSOL Multiphysics 5.0 (2014) CFD module manual—user manual COMSOL Multiphysics 5.0 (2014) CFD module manual—user manual
148.
Zurück zum Zitat Korte C (2012) Phosphoric acid, an electrolyte for fuel cells—temperature and composition dependence of vapour pressure and proton conductivity. In: Stolten D, Emonts B (eds) Fuel cell science and engineering—materials, processes, systems and technology. Wiley-VCH, Weinheim, pp 335–359CrossRef Korte C (2012) Phosphoric acid, an electrolyte for fuel cells—temperature and composition dependence of vapour pressure and proton conductivity. In: Stolten D, Emonts B (eds) Fuel cell science and engineering—materials, processes, systems and technology. Wiley-VCH, Weinheim, pp 335–359CrossRef
149.
Zurück zum Zitat Schrödter K, Bettermann G, Staffel T, Wahl F, Klein T, Hofmann T (2008) Phosphoric acid and phosphates. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, pp 1–48 Schrödter K, Bettermann G, Staffel T, Wahl F, Klein T, Hofmann T (2008) Phosphoric acid and phosphates. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, pp 1–48
150.
Zurück zum Zitat Zemaitis JF Jr, Clark DM, Rafal M et al (1986) Handbook of aqueous electrolyte thermodynamics: theory & application. Wiley, New YorkCrossRef Zemaitis JF Jr, Clark DM, Rafal M et al (1986) Handbook of aqueous electrolyte thermodynamics: theory & application. Wiley, New YorkCrossRef
151.
Zurück zum Zitat Platonov VA (2000) Properties of polyphosphoric acid. Fibre Chem 32:325–329 Platonov VA (2000) Properties of polyphosphoric acid. Fibre Chem 32:325–329
152.
Zurück zum Zitat Othmer K (2007) Kirk-Othmer encyclopedia of chemical technology, 5th edn. Wiley, Hoboken Othmer K (2007) Kirk-Othmer encyclopedia of chemical technology, 5th edn. Wiley, Hoboken
153.
Zurück zum Zitat Archie GE (1941) Electrical resistivity log as an aid in determining some reservoir characteristics. Soc Petrol Eng J 146:54–62 Archie GE (1941) Electrical resistivity log as an aid in determining some reservoir characteristics. Soc Petrol Eng J 146:54–62
154.
Zurück zum Zitat Bouchet R, Siebert E (1999) Proton conduction in acid doped polybenzimidazole. Solid State Ion 118:287–299CrossRef Bouchet R, Siebert E (1999) Proton conduction in acid doped polybenzimidazole. Solid State Ion 118:287–299CrossRef
155.
Zurück zum Zitat Ma YL, Wainright JS, Litt MH et al (2004) Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. J Electrochem Soc 151:A8–A16CrossRef Ma YL, Wainright JS, Litt MH et al (2004) Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. J Electrochem Soc 151:A8–A16CrossRef
156.
Zurück zum Zitat Daletou MK, Kallitsis JK, Voyiatzis G et al (2009) The interaction of water vapors with H3PO4 imbibed electrolyte based on PBI/polysulfone copolymer blends. J Membr Sci 326:76–83CrossRef Daletou MK, Kallitsis JK, Voyiatzis G et al (2009) The interaction of water vapors with H3PO4 imbibed electrolyte based on PBI/polysulfone copolymer blends. J Membr Sci 326:76–83CrossRef
157.
Zurück zum Zitat Bandlamudi G (2011) Systematic characterization of HT PEMFCs containing PBI/H3PO4 systems. Dissertation, Logos Verlag, Berlin Bandlamudi G (2011) Systematic characterization of HT PEMFCs containing PBI/H3PO4 systems. Dissertation, Logos Verlag, Berlin
158.
Zurück zum Zitat Pitzer KS (ed) (1991) Activity coefficients in electrolyte solutions, 2nd edn. CRC, Boca Raton Pitzer KS (ed) (1991) Activity coefficients in electrolyte solutions, 2nd edn. CRC, Boca Raton
159.
Zurück zum Zitat Rafal M, Berthold JW, Scrivner NC et al (1994) Models for electrolyte solutions. In: Sandler SI (ed) Models for thermodynamic and phase equilibria calculations. Marcel Dekker, New York, pp 601–669 Rafal M, Berthold JW, Scrivner NC et al (1994) Models for electrolyte solutions. In: Sandler SI (ed) Models for thermodynamic and phase equilibria calculations. Marcel Dekker, New York, pp 601–669
160.
Zurück zum Zitat Loehe JR, Donohue MD (1997) Recent advances in modeling thermodynamic properties of aqueous strong electrolyte systems. AIChE J 43:180–195CrossRef Loehe JR, Donohue MD (1997) Recent advances in modeling thermodynamic properties of aqueous strong electrolyte systems. AIChE J 43:180–195CrossRef
161.
Zurück zum Zitat Anderko A, Wang P, Rafal M (2002) Electrolyte solutions: from thermodynamic and transport property models to the simulation of industrial processes. Fluid Phase Equilib 194–197:123–142CrossRef Anderko A, Wang P, Rafal M (2002) Electrolyte solutions: from thermodynamic and transport property models to the simulation of industrial processes. Fluid Phase Equilib 194–197:123–142CrossRef
162.
Zurück zum Zitat Pohl HA, Chartoff RP (1964) Carriers and unpaired spins in some organic semiconductors. J Polym Sci Part A 2:2787–2806 Pohl HA, Chartoff RP (1964) Carriers and unpaired spins in some organic semiconductors. J Polym Sci Part A 2:2787–2806
163.
Zurück zum Zitat Chin D, Chang H (1989) On the conductivity of phosphoric acid electrolyte. J Appl Electrochem 19:95–99CrossRef Chin D, Chang H (1989) On the conductivity of phosphoric acid electrolyte. J Appl Electrochem 19:95–99CrossRef
164.
Zurück zum Zitat Mason CM, Culvern JB (1949) Electrical conductivity of orthophosphoric acid and of sodium and potassium dihydrogen phosphates at 25°C. J Am Chem Soc 71:2387–2393CrossRef Mason CM, Culvern JB (1949) Electrical conductivity of orthophosphoric acid and of sodium and potassium dihydrogen phosphates at 25°C. J Am Chem Soc 71:2387–2393CrossRef
165.
Zurück zum Zitat Greenwood NN, Thompson A (1959) The mechanism of electrical conduction in fused phosphoric and trideuterophosphoric acids. J Chem Soc 3485–3492 Greenwood NN, Thompson A (1959) The mechanism of electrical conduction in fused phosphoric and trideuterophosphoric acids. J Chem Soc 3485–3492
166.
Zurück zum Zitat MacDonald DI, Boyack JR (1969) Density, electrical conductivity, and vapor pressure of concentrated phosphoric acid. J Chem Eng Data 14:380–384CrossRef MacDonald DI, Boyack JR (1969) Density, electrical conductivity, and vapor pressure of concentrated phosphoric acid. J Chem Eng Data 14:380–384CrossRef
167.
Zurück zum Zitat Xiao L, Zhang H, Scanlon E et al (2005) High-temperature polybenzimidazole fuel cell membranes via a sol–gel process. Chem Mater 17:5328–5333CrossRef Xiao L, Zhang H, Scanlon E et al (2005) High-temperature polybenzimidazole fuel cell membranes via a sol–gel process. Chem Mater 17:5328–5333CrossRef
168.
Zurück zum Zitat Lang S, Kazdal TJ, Kühl F et al (2014) Diffusion coefficients and VLE data of aqueous phosphoric acid. J Chem Thermodyn 68:75–81CrossRef Lang S, Kazdal TJ, Kühl F et al (2014) Diffusion coefficients and VLE data of aqueous phosphoric acid. J Chem Thermodyn 68:75–81CrossRef
169.
Zurück zum Zitat Christensen JH, Reed RB (1955) Design and analysis data—density of aqueous solutions of phosphoric acid measurements at 25°C. Ind Eng Chem 47:1277–1280CrossRef Christensen JH, Reed RB (1955) Design and analysis data—density of aqueous solutions of phosphoric acid measurements at 25°C. Ind Eng Chem 47:1277–1280CrossRef
170.
Zurück zum Zitat Kunz H, Gruver G (1978) The effect of electrolyte concentration on the catalytic activity of platinum for electrochemical oxygen reduction in phosphoric acid. Electrochim Acta 23:219–222CrossRef Kunz H, Gruver G (1978) The effect of electrolyte concentration on the catalytic activity of platinum for electrochemical oxygen reduction in phosphoric acid. Electrochim Acta 23:219–222CrossRef
171.
Zurück zum Zitat Klinedinst K, Bett J, Macdonald J, Stonehart P (1974) Oxygen solubility and diffusivity in hot concentrated H3PO4. J Electroanal Chem Interfacial Electrochem 57:281–289CrossRef Klinedinst K, Bett J, Macdonald J, Stonehart P (1974) Oxygen solubility and diffusivity in hot concentrated H3PO4. J Electroanal Chem Interfacial Electrochem 57:281–289CrossRef
172.
Zurück zum Zitat Scharifker BR, Zelenay P, Bockris O (1987) The kinetics of oxygen reduction in molten phosphoric acid at high temperatures. J Electrochem Soc 134:2714–2725CrossRef Scharifker BR, Zelenay P, Bockris O (1987) The kinetics of oxygen reduction in molten phosphoric acid at high temperatures. J Electrochem Soc 134:2714–2725CrossRef
173.
Zurück zum Zitat Brown EH, Whitt CD (1952) Vapor pressure of phosphoric acids. Ind Eng Chem 44:615–618CrossRef Brown EH, Whitt CD (1952) Vapor pressure of phosphoric acids. Ind Eng Chem 44:615–618CrossRef
174.
Zurück zum Zitat Wartenberg V (1937) The thermochemistry of the chemical substances. Russel Bichowsky RR, Rossini DF. Book Department Reinhold Publishing Corporation, New York. Z Elektrochem Angew Phys Chem 43:72 Wartenberg V (1937) The thermochemistry of the chemical substances. Russel Bichowsky RR, Rossini DF. Book Department Reinhold Publishing Corporation, New York. Z Elektrochem Angew Phys Chem 43:72
175.
Zurück zum Zitat Gubbins KE, Walker RD (1965) The solubility and diffusivity of oxygen in electrolytic solutions. J Electrochem Soc 112:469–471CrossRef Gubbins KE, Walker RD (1965) The solubility and diffusivity of oxygen in electrolytic solutions. J Electrochem Soc 112:469–471CrossRef
176.
Zurück zum Zitat Yatskovskii F (1969) Solubility and diffusion of hydrogen in solution of potassium hydroxide and phosphoric acid. Russ J Phys Chem 43:575–776 Yatskovskii F (1969) Solubility and diffusion of hydrogen in solution of potassium hydroxide and phosphoric acid. Russ J Phys Chem 43:575–776
177.
Zurück zum Zitat Wakefield ZT, Luff BB, Reed RB (1972) Heat capacity and enthalpy of phosphoric acid. J Chem Eng Data 17:420–423CrossRef Wakefield ZT, Luff BB, Reed RB (1972) Heat capacity and enthalpy of phosphoric acid. J Chem Eng Data 17:420–423CrossRef
178.
Zurück zum Zitat Turnbull AG (1965) Thermal conductivity of phosphoric acid. J Chem Eng Data 10:118–119CrossRef Turnbull AG (1965) Thermal conductivity of phosphoric acid. J Chem Eng Data 10:118–119CrossRef
179.
Zurück zum Zitat Walters HV (1983) Corrosion of a borosilicate glass by orthophosphoric acid. J Am Ceram Soc 66:572–574CrossRef Walters HV (1983) Corrosion of a borosilicate glass by orthophosphoric acid. J Am Ceram Soc 66:572–574CrossRef
180.
Zurück zum Zitat Kreysa G, Schütze M (eds) (2008) Corrosion handbook—corrosive agents and their interaction with materials. Wiley-VCH, Weinheim Kreysa G, Schütze M (eds) (2008) Corrosion handbook—corrosive agents and their interaction with materials. Wiley-VCH, Weinheim
181.
Zurück zum Zitat Li Q, Gang X, Hjuler HA et al (1994) Limiting current of oxygen reduction on gas-diffusion electrodes for phosphoric acid fuel cells. J Electrochem Soc 141:3114–3119CrossRef Li Q, Gang X, Hjuler HA et al (1994) Limiting current of oxygen reduction on gas-diffusion electrodes for phosphoric acid fuel cells. J Electrochem Soc 141:3114–3119CrossRef
182.
Zurück zum Zitat Galbiati S, Baricci A, Casalegno A et al (2012) Experimental study of water transport in a polybenzimidazole-based high temperature PEMFC. Int J Hydrogen Energy 37:2462–2469CrossRef Galbiati S, Baricci A, Casalegno A et al (2012) Experimental study of water transport in a polybenzimidazole-based high temperature PEMFC. Int J Hydrogen Energy 37:2462–2469CrossRef
183.
Zurück zum Zitat Hirschberg HG (1999) Handbuch Verfahrenstechnik und Anlagenbau. Chemie, Technik und Wirtschaftlichkeit. Springer, Berlin Hirschberg HG (1999) Handbuch Verfahrenstechnik und Anlagenbau. Chemie, Technik und Wirtschaftlichkeit. Springer, Berlin
184.
Zurück zum Zitat Schmalz EO (1969) Bestimmung der Dampfdruckkurven von Wasser über Phosphorsäuren. Z Phys Chem Leipzig 245:344–350 Schmalz EO (1969) Bestimmung der Dampfdruckkurven von Wasser über Phosphorsäuren. Z Phys Chem Leipzig 245:344–350
185.
Zurück zum Zitat Kablukov IA, Zagwosdkin KI (1935) Die Dampfspannungen der Phosphorsäurelösungen. Z Anorg Allg Chem 224:315–321CrossRef Kablukov IA, Zagwosdkin KI (1935) Die Dampfspannungen der Phosphorsäurelösungen. Z Anorg Allg Chem 224:315–321CrossRef
186.
Zurück zum Zitat Fontana BJ (1951) The vapor pressure of water over phosphoric acids. J Am Chem Soc 73:3348–3350CrossRef Fontana BJ (1951) The vapor pressure of water over phosphoric acids. J Am Chem Soc 73:3348–3350CrossRef
187.
Zurück zum Zitat Elmore KL, Mason CM, Christensen JH (1946) Activity of orthophosphoric acid in aqueous solution at 25°C from vapor pressure measurements. J Am Chem Soc 68:2528–2532CrossRef Elmore KL, Mason CM, Christensen JH (1946) Activity of orthophosphoric acid in aqueous solution at 25°C from vapor pressure measurements. J Am Chem Soc 68:2528–2532CrossRef
188.
Zurück zum Zitat Jiang C (1996) Thermodynamics of aqueous phosphoric acid solution at 25°C. Chem Eng Sci 51:689–693CrossRef Jiang C (1996) Thermodynamics of aqueous phosphoric acid solution at 25°C. Chem Eng Sci 51:689–693CrossRef
189.
Zurück zum Zitat Elmore KL, Hatfield JD, Dunn RL et al (1965) Dissociation of phosphoric acid solutions at 25°C. J Phys Chem 69:3520–3525CrossRef Elmore KL, Hatfield JD, Dunn RL et al (1965) Dissociation of phosphoric acid solutions at 25°C. J Phys Chem 69:3520–3525CrossRef
190.
Zurück zum Zitat Mesmer RE, Baes CF (1974) Phosphoric acid dissociation equilibria in aqueous solutions to 300°C. J Solution Chem 3:307–322CrossRef Mesmer RE, Baes CF (1974) Phosphoric acid dissociation equilibria in aqueous solutions to 300°C. J Solution Chem 3:307–322CrossRef
191.
Zurück zum Zitat Preston CM, Adams WA (1979) A laser Raman spectroscopic study of aqueous orthophosphate salts. J Phys Chem 83:814–821CrossRef Preston CM, Adams WA (1979) A laser Raman spectroscopic study of aqueous orthophosphate salts. J Phys Chem 83:814–821CrossRef
192.
Zurück zum Zitat Cherif M, Mgaidi A, Ammar N et al (2000) A new investigation of aqueous orthophosphoric acid speciation using raman spectroscopy. J Solution Chem 29:255–269CrossRef Cherif M, Mgaidi A, Ammar N et al (2000) A new investigation of aqueous orthophosphoric acid speciation using raman spectroscopy. J Solution Chem 29:255–269CrossRef
193.
Zurück zum Zitat Marshall WL, Begun GM (1989) Raman spectroscopy of aqueous phosphate solutions at temperatures up to 450°C. Two liquid phases, supercritical fluids, and pyro- to ortho-phosphate conversions. J Chem Soc, Faraday Trans 2(85):1963–1978CrossRef Marshall WL, Begun GM (1989) Raman spectroscopy of aqueous phosphate solutions at temperatures up to 450°C. Two liquid phases, supercritical fluids, and pyro- to ortho-phosphate conversions. J Chem Soc, Faraday Trans 2(85):1963–1978CrossRef
194.
Zurück zum Zitat Higgins CE, Baldwin WH (1955) Dehydration of orthophosphoric acid. Anal Chem 27:1780–1783CrossRef Higgins CE, Baldwin WH (1955) Dehydration of orthophosphoric acid. Anal Chem 27:1780–1783CrossRef
195.
Zurück zum Zitat Jameson RF (1959) The composition of the strong phosphoric acids. J Chem Soc: 752–759 Jameson RF (1959) The composition of the strong phosphoric acids. J Chem Soc: 752–759
196.
Zurück zum Zitat Huhti AL, Gartaganis PA (1956) The composition of the strong phosphoric acids. Can J Chem 34:785–797CrossRef Huhti AL, Gartaganis PA (1956) The composition of the strong phosphoric acids. Can J Chem 34:785–797CrossRef
197.
Zurück zum Zitat Nelson AK (1964) Hydrolysis rates of solutions of pyrophosphoric acid. J Chem Eng Data 9:357CrossRef Nelson AK (1964) Hydrolysis rates of solutions of pyrophosphoric acid. J Chem Eng Data 9:357CrossRef
198.
Zurück zum Zitat Bunton CA, Chaimovich H (1965) The acid-catalyzed hydrolysis of pyrophosphoric acid. Inorg Chem 4:1763–1766CrossRef Bunton CA, Chaimovich H (1965) The acid-catalyzed hydrolysis of pyrophosphoric acid. Inorg Chem 4:1763–1766CrossRef
199.
Zurück zum Zitat Nuri B (2011) Das Dampf-flüssig-Gleichgewicht Phosphorsäure-Wasser bei Anwesenheit von Polybenzimidazol. Diplomarbeit, Technische Universität Darmstadt Nuri B (2011) Das Dampf-flüssig-Gleichgewicht Phosphorsäure-Wasser bei Anwesenheit von Polybenzimidazol. Diplomarbeit, Technische Universität Darmstadt
200.
Zurück zum Zitat Squires RG, Reklaitis GV (eds) (1980) Computer applications to chemical engineering. Computation of phase and chemical equilibrium: a review. ACS symposium series. American Chemical Society, Washington, DC, pp 115–134 Squires RG, Reklaitis GV (eds) (1980) Computer applications to chemical engineering. Computation of phase and chemical equilibrium: a review. ACS symposium series. American Chemical Society, Washington, DC, pp 115–134
201.
Zurück zum Zitat Smith WR (1980) The computation of chemical equilibria in complex systems. Ind Eng Chem Fund 19:1–10CrossRef Smith WR (1980) The computation of chemical equilibria in complex systems. Ind Eng Chem Fund 19:1–10CrossRef
202.
203.
Zurück zum Zitat Debye P, Hückel E (1923) Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. The theory of electrolytes. I. Lowering of freezing point and related phenomena. Physik Z 24:185–206MATH Debye P, Hückel E (1923) Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. The theory of electrolytes. I. Lowering of freezing point and related phenomena. Physik Z 24:185–206MATH
204.
Zurück zum Zitat Waisman E, Lebowitz JL (1970) Exact solution of an integral equation for the structure of a primitive model of electrolytes. J Chem Phys 52:4307–4309CrossRef Waisman E, Lebowitz JL (1970) Exact solution of an integral equation for the structure of a primitive model of electrolytes. J Chem Phys 52:4307–4309CrossRef
205.
Zurück zum Zitat Poling BE, Prausnitz JM, O’Connell JP (2001) The properties of gases and liquids, 5th edn. McGraw-Hill, New York Poling BE, Prausnitz JM, O’Connell JP (2001) The properties of gases and liquids, 5th edn. McGraw-Hill, New York
206.
Zurück zum Zitat Wang P, Springer RD, Anderko A et al (2004) Modeling phase equilibria and speciation in mixed-solvent electrolyte systems. Fluid Phase Equilib 222–223:11–17CrossRef Wang P, Springer RD, Anderko A et al (2004) Modeling phase equilibria and speciation in mixed-solvent electrolyte systems. Fluid Phase Equilib 222–223:11–17CrossRef
207.
Zurück zum Zitat Messnaoui B, Bounahmidi T (2005) Modeling of excess properties and vapour-liquid equilibrium of the system H3PO4–H2O. Fluid Phase Equilib 237:77–85CrossRef Messnaoui B, Bounahmidi T (2005) Modeling of excess properties and vapour-liquid equilibrium of the system H3PO4–H2O. Fluid Phase Equilib 237:77–85CrossRef
208.
Zurück zum Zitat Pitzer K, Silvester L (1976) Thermodynamics of electrolytes. VI. Weak electrolytes including H3PO4. J Solution Chem 5:269–278CrossRef Pitzer K, Silvester L (1976) Thermodynamics of electrolytes. VI. Weak electrolytes including H3PO4. J Solution Chem 5:269–278CrossRef
209.
Zurück zum Zitat Cherif M, Mgaidi A, Ammar MN et al (2000) Modelling of the equilibrium properties of the system H3PO4-H2O: Representation of VLE and liquid phase composition. Fluid Phase Equilib 175:197–212CrossRef Cherif M, Mgaidi A, Ammar MN et al (2000) Modelling of the equilibrium properties of the system H3PO4-H2O: Representation of VLE and liquid phase composition. Fluid Phase Equilib 175:197–212CrossRef
210.
Zurück zum Zitat Cherif M, Mgaidi A, Ammar MN et al (2002) Representation of VLE and liquid phase composition with an electrolyte model: application to H3PO4-H2O and H2SO4-H2O. Fluid Phase Equilib 194–197:729–738CrossRef Cherif M, Mgaidi A, Ammar MN et al (2002) Representation of VLE and liquid phase composition with an electrolyte model: application to H3PO4-H2O and H2SO4-H2O. Fluid Phase Equilib 194–197:729–738CrossRef
211.
Zurück zum Zitat Rumpf B, Maurer G (1994) Solubility of ammonia in aqueous solutions of phosphoric acid: model development and application. J Solution Chem 23:37–51CrossRef Rumpf B, Maurer G (1994) Solubility of ammonia in aqueous solutions of phosphoric acid: model development and application. J Solution Chem 23:37–51CrossRef
212.
Zurück zum Zitat Barker JA (1967) Perturbation theory and equation of state for fluids: the square-well potential. J Chem Phys 47:2856–2861CrossRef Barker JA (1967) Perturbation theory and equation of state for fluids: the square-well potential. J Chem Phys 47:2856–2861CrossRef
213.
Zurück zum Zitat Barker JA (1967) Perturbation theory and equation of state for fluids. II. A successful theory of liquids. J Chem Phys 47:4714–4721CrossRef Barker JA (1967) Perturbation theory and equation of state for fluids. II. A successful theory of liquids. J Chem Phys 47:4714–4721CrossRef
214.
Zurück zum Zitat Gross J, Sadowski G (2001) Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res 40:1244–1260CrossRef Gross J, Sadowski G (2001) Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res 40:1244–1260CrossRef
215.
Zurück zum Zitat van Nhu N, Singh M, Leonhard K (2008) Quantum mechanically based estimation of perturbed-chain polar statistical associating fluid theory parameters for analyzing their physical significance and predicting properties. J Phys Chem B 112:5693–5701CrossRef van Nhu N, Singh M, Leonhard K (2008) Quantum mechanically based estimation of perturbed-chain polar statistical associating fluid theory parameters for analyzing their physical significance and predicting properties. J Phys Chem B 112:5693–5701CrossRef
216.
Zurück zum Zitat Cameretti LF, Sadowski G, Mollerup JM (2005) Modeling of aqueous electrolyte solutions with perturbed-chain statistical associated fluid theory. Ind Eng Chem Res 44:3355–3362CrossRef Cameretti LF, Sadowski G, Mollerup JM (2005) Modeling of aqueous electrolyte solutions with perturbed-chain statistical associated fluid theory. Ind Eng Chem Res 44:3355–3362CrossRef
218.
Zurück zum Zitat Naeem S, Sadowski G (2010) pePC-SAFT: modeling of polyelectrolyte systems. Fluid Phase Equilib 299:84–93CrossRef Naeem S, Sadowski G (2010) pePC-SAFT: modeling of polyelectrolyte systems. Fluid Phase Equilib 299:84–93CrossRef
219.
Zurück zum Zitat Lewis WK, Whitman WG (1924) Principles of gas absorption. Ind Eng Chem 16:1215–1220CrossRef Lewis WK, Whitman WG (1924) Principles of gas absorption. Ind Eng Chem 16:1215–1220CrossRef
220.
Zurück zum Zitat Toor HL, Marchello JM (1958) Film-penetration model for mass and heat transfer. AIChE J 4:97–101CrossRef Toor HL, Marchello JM (1958) Film-penetration model for mass and heat transfer. AIChE J 4:97–101CrossRef
221.
Zurück zum Zitat Higbie R (1935) The rate of absorption of a pure gas into still liquid during short periods of exposure. Trans Am Inst Chem Eng 35:36–60 Higbie R (1935) The rate of absorption of a pure gas into still liquid during short periods of exposure. Trans Am Inst Chem Eng 35:36–60
222.
Zurück zum Zitat Danckwerts PV (1951) Significance of liquid-film coefficients in gas absorption. Ind Eng Chem 43:1460–1467CrossRef Danckwerts PV (1951) Significance of liquid-film coefficients in gas absorption. Ind Eng Chem 43:1460–1467CrossRef
223.
Zurück zum Zitat Hertz H (1882) Ueber die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume. Ann Phys 253:177–193CrossRef Hertz H (1882) Ueber die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume. Ann Phys 253:177–193CrossRef
224.
Zurück zum Zitat Knudsen M (1915) Die maximale Verdampfungsgeschwindigkeit des Quecksilbers. Ann Phys 352:697–708CrossRef Knudsen M (1915) Die maximale Verdampfungsgeschwindigkeit des Quecksilbers. Ann Phys 352:697–708CrossRef
225.
Zurück zum Zitat Prüger W (1940) Die Verdampfungsgeschwindigkeit der Flüssigkeiten. Z Phys 115:202–244CrossRef Prüger W (1940) Die Verdampfungsgeschwindigkeit der Flüssigkeiten. Z Phys 115:202–244CrossRef
226.
Zurück zum Zitat Eames IW, Marr NJ, Sabir H (1997) The evaporation coefficient of water: a review. Int J Heat Mass Transfer 40:2963–2973MATHCrossRef Eames IW, Marr NJ, Sabir H (1997) The evaporation coefficient of water: a review. Int J Heat Mass Transfer 40:2963–2973MATHCrossRef
227.
Zurück zum Zitat Matsumoto M (1998) Molecular dynamics of fluid phase change. Fluid Phase Equilib 144:307–314CrossRef Matsumoto M (1998) Molecular dynamics of fluid phase change. Fluid Phase Equilib 144:307–314CrossRef
228.
Zurück zum Zitat Meland R, Frezzotti A, Ytrehus T et al (2004) Nonequilibrium molecular-dynamics simulation of net evaporation and net condensation, and evaluation of the gas-kinetic boundary condition at the interphase. Phys Fluids 16:223–243MATHCrossRef Meland R, Frezzotti A, Ytrehus T et al (2004) Nonequilibrium molecular-dynamics simulation of net evaporation and net condensation, and evaluation of the gas-kinetic boundary condition at the interphase. Phys Fluids 16:223–243MATHCrossRef
229.
Zurück zum Zitat Marek R, Straub J (2001) Analysis of the evaporation coefficient and the condensation coefficient of water. Int J Heat Mass Transfer 44:39–53MATHCrossRef Marek R, Straub J (2001) Analysis of the evaporation coefficient and the condensation coefficient of water. Int J Heat Mass Transfer 44:39–53MATHCrossRef
230.
Zurück zum Zitat Schrage RW (1953) A theoretical study of interphase mass transfer. Columbia University Press, New York Schrage RW (1953) A theoretical study of interphase mass transfer. Columbia University Press, New York
231.
Zurück zum Zitat Nabavian K, Bromley LA (1963) Condensation coefficient of water. Chem Eng Sci 18:651–660CrossRef Nabavian K, Bromley LA (1963) Condensation coefficient of water. Chem Eng Sci 18:651–660CrossRef
232.
Zurück zum Zitat Kwon K, Park JO, Yoo DY et al (2009) Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells. Electrochim Acta 54:6570–6575CrossRef Kwon K, Park JO, Yoo DY et al (2009) Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells. Electrochim Acta 54:6570–6575CrossRef
233.
Zurück zum Zitat Chen C, Lai W (2010) Effects of temperature and humidity on the cell performance and resistance of a phosphoric acid doped polybenzimidazole fuel cell. J Power Sources 195:7152–7159CrossRef Chen C, Lai W (2010) Effects of temperature and humidity on the cell performance and resistance of a phosphoric acid doped polybenzimidazole fuel cell. J Power Sources 195:7152–7159CrossRef
234.
Zurück zum Zitat Matar S, Higier A, Liu H (2010) The effects of excess phosphoric acid in a polybenzimidazole-based high temperature proton exchange membrane fuel cell. J Power Sources 195:181–184CrossRef Matar S, Higier A, Liu H (2010) The effects of excess phosphoric acid in a polybenzimidazole-based high temperature proton exchange membrane fuel cell. J Power Sources 195:181–184CrossRef
235.
Zurück zum Zitat Kaserer S, Caldwell KM, Ramaker DE, Roth C (2013) Analyzing the influence of H3PO4 as catalyst poison in high temperature PEM fuel cells using in-operando X-ray absorption spectroscopy. J Phys Chem C 117:6210–6217CrossRef Kaserer S, Caldwell KM, Ramaker DE, Roth C (2013) Analyzing the influence of H3PO4 as catalyst poison in high temperature PEM fuel cells using in-operando X-ray absorption spectroscopy. J Phys Chem C 117:6210–6217CrossRef
236.
237.
Zurück zum Zitat Lee MS, Aute V, Riaz A, Radermacher R (2012) A review on direct two-phase. Phase change flow simulation methods and their applications. In: International refrigeration and air conditioning conference, Purdue University Purdue e-Pubs, Paper 1289. http://docs.lib.purdue.edu/iracc/1289 Lee MS, Aute V, Riaz A, Radermacher R (2012) A review on direct two-phase. Phase change flow simulation methods and their applications. In: International refrigeration and air conditioning conference, Purdue University Purdue e-Pubs, Paper 1289. http://​docs.​lib.​purdue.​edu/​iracc/​1289
238.
Zurück zum Zitat Mukherjee PP, Kang Q, Wang C (2011) Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells—progress and perspective. Energy Environ Sci 4:346–369CrossRef Mukherjee PP, Kang Q, Wang C (2011) Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells—progress and perspective. Energy Environ Sci 4:346–369CrossRef
239.
Zurück zum Zitat Garnett JCM (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc A 203:385–420MATHCrossRef Garnett JCM (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc A 203:385–420MATHCrossRef
240.
Zurück zum Zitat Das PK, Li X, Liu Z (2010) Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: beyond Bruggeman approximation. Appl Energy 87:2785–2796CrossRef Das PK, Li X, Liu Z (2010) Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: beyond Bruggeman approximation. Appl Energy 87:2785–2796CrossRef
241.
Zurück zum Zitat Huang JC (1979) Oxygen reduction on platinum in 85% orthophosphoric acid. J Electrochem Soc 126:786–792CrossRef Huang JC (1979) Oxygen reduction on platinum in 85% orthophosphoric acid. J Electrochem Soc 126:786–792CrossRef
242.
Zurück zum Zitat Kunz HR, Gruver G (1975) The catalytic activity of platinum supported on carbon for electrochemical oxygen reduction in phosphoric acid. J Electrochem Soc 122:1279–1287CrossRef Kunz HR, Gruver G (1975) The catalytic activity of platinum supported on carbon for electrochemical oxygen reduction in phosphoric acid. J Electrochem Soc 122:1279–1287CrossRef
243.
Zurück zum Zitat Neyerlin K, Singh A, Chu D (2008) Kinetic characterization of a Pt-Ni/C catalyst with a phosphoric acid doped PBI membrane in a proton exchange membrane fuel cell. J Power Sources 176:112–117CrossRef Neyerlin K, Singh A, Chu D (2008) Kinetic characterization of a Pt-Ni/C catalyst with a phosphoric acid doped PBI membrane in a proton exchange membrane fuel cell. J Power Sources 176:112–117CrossRef
244.
Zurück zum Zitat Liu Z, Wainright JS, Litt MH, Savinell RF (2006) Study of the oxygen reduction reaction (ORR) at Pt interfaced with phosphoric acid doped polybenzimidazole at elevated temperature and low relative humidity. Electrochim Acta 51:3914–3923CrossRef Liu Z, Wainright JS, Litt MH, Savinell RF (2006) Study of the oxygen reduction reaction (ORR) at Pt interfaced with phosphoric acid doped polybenzimidazole at elevated temperature and low relative humidity. Electrochim Acta 51:3914–3923CrossRef
245.
Zurück zum Zitat Li Q, Gang X, Hjuler HA, Bjerrum NJ (1995) Oxygen reduction on gas-diffusion electrodes for phosphoric acid fuel cells by a potential decay method. J Electrochem Soc 142:3250–3256CrossRef Li Q, Gang X, Hjuler HA, Bjerrum NJ (1995) Oxygen reduction on gas-diffusion electrodes for phosphoric acid fuel cells by a potential decay method. J Electrochem Soc 142:3250–3256CrossRef
246.
Zurück zum Zitat Peters R, Scharf F (2012) Computational fluid dynamic simulation using supercomputer calculation capacity. In: Stolten D, Emonts B (eds) Fuel cell science and engineering—materials, processes, systems and technology. Wiley-VCH, Weinheim, pp 703–732CrossRef Peters R, Scharf F (2012) Computational fluid dynamic simulation using supercomputer calculation capacity. In: Stolten D, Emonts B (eds) Fuel cell science and engineering—materials, processes, systems and technology. Wiley-VCH, Weinheim, pp 703–732CrossRef
Metadaten
Titel
Approaches for the Modeling of PBI/H3PO4 Based HT-PEM Fuel Cells
verfasst von
Christian Siegel
Sebastian Lang
Ed Fontes
Peter Beckhaus
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-17082-4_18