Skip to main content

2019 | OriginalPaper | Buchkapitel

4. Approximate Arithmetic Circuits: Design and Evaluation

verfasst von : Honglan Jiang, Leibo Liu, Fabrizio Lombardi, Jie Han

Erschienen in: Approximate Circuits

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Arithmetic circuits are important computing modules in a processor. They play a key role in the performance and the energy consumption of many image processing applications. In this chapter, a classification is presented for the current designs of approximate arithmetic circuits including adders, multipliers, and dividers. To understand the features of various designs, a comparative evaluation of their error and circuit characteristics is performed. The accuracy of approximate arithmetic circuits is evaluated by carrying out Monte Carlo simulations. The circuit measurements are assessed by synthesizing approximate designs in an STM CMOS 28 nm process. The simulation and synthesis results show the trade-offs of approximate arithmetic circuits between accuracy and hardware efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Angizi S, Jiang H, DeMara RF, Han J, Fan D (2018) Majority-based spin-CMOS primitives for approximate computing. IEEE Trans Nanotechnol 17(4):795–806 Angizi S, Jiang H, DeMara RF, Han J, Fan D (2018) Majority-based spin-CMOS primitives for approximate computing. IEEE Trans Nanotechnol 17(4):795–806
2.
Zurück zum Zitat Baran D, Aktan M, Oklobdzija VG (2010) Energy efficient implementation of parallel CMOS multipliers with improved compressors. In: Proceedings of the 16th ACM/IEEE international symposium on Low power electronics and design. ACM, New York, pp 147–152 Baran D, Aktan M, Oklobdzija VG (2010) Energy efficient implementation of parallel CMOS multipliers with improved compressors. In: Proceedings of the 16th ACM/IEEE international symposium on Low power electronics and design. ACM, New York, pp 147–152
3.
Zurück zum Zitat Bhardwaj K, Mane PS, Henkel J (2014) Power- and area-efficient approximate Wallace tree multiplier for error-resilient systems. In: International symposium on quality electronic design. IEEE, Piscataway, pp 263–269CrossRef Bhardwaj K, Mane PS, Henkel J (2014) Power- and area-efficient approximate Wallace tree multiplier for error-resilient systems. In: International symposium on quality electronic design. IEEE, Piscataway, pp 263–269CrossRef
4.
Zurück zum Zitat Cai H, Wang Y, Naviner LA, Wang Z, Zhao W (2016) Approximate computing in MOS/spintronic non-volatile full-adder. In: International symposium on nanoscale architectures. IEEE, Piscataway, pp 203–208 Cai H, Wang Y, Naviner LA, Wang Z, Zhao W (2016) Approximate computing in MOS/spintronic non-volatile full-adder. In: International symposium on nanoscale architectures. IEEE, Piscataway, pp 203–208
5.
Zurück zum Zitat Camus V, Schlachter J, Enz C (2015) Energy-efficient inexact speculative adder with high performance and accuracy control. In: International symposium on circuits and systems. IEEE, Piscataway, pp 45–48 Camus V, Schlachter J, Enz C (2015) Energy-efficient inexact speculative adder with high performance and accuracy control. In: International symposium on circuits and systems. IEEE, Piscataway, pp 45–48
6.
Zurück zum Zitat Camus V, Schlachter J, Enz C (2016) A low-power carry cut-back approximate adder with fixed-point implementation and floating-point precision. In: Design automation conference. IEEE, Piscataway, pp 1–6 Camus V, Schlachter J, Enz C (2016) A low-power carry cut-back approximate adder with fixed-point implementation and floating-point precision. In: Design automation conference. IEEE, Piscataway, pp 1–6
7.
Zurück zum Zitat Chen YH, Chang TY (2012) A high-accuracy adaptive conditional-probability estimator for fixed-width Booth multipliers. IEEE Trans Circuits Syst Regul Pap 59(3):594–603MathSciNetCrossRef Chen YH, Chang TY (2012) A high-accuracy adaptive conditional-probability estimator for fixed-width Booth multipliers. IEEE Trans Circuits Syst Regul Pap 59(3):594–603MathSciNetCrossRef
8.
Zurück zum Zitat Chen L, Han J, Liu W, Lombardi F (2015) Design of approximate unsigned integer non-restoring divider for inexact computing. In: Proceedings of the on great lakes symposium on VLSI. ACM, New York, pp 51–56 Chen L, Han J, Liu W, Lombardi F (2015) Design of approximate unsigned integer non-restoring divider for inexact computing. In: Proceedings of the on great lakes symposium on VLSI. ACM, New York, pp 51–56
9.
Zurück zum Zitat Chen L, Han J, Liu W, Lombardi F (2016) On the design of approximate restoring dividers for error-tolerant applications. IEEE Trans Comput 65(8):2522–2533MathSciNetCrossRef Chen L, Han J, Liu W, Lombardi F (2016) On the design of approximate restoring dividers for error-tolerant applications. IEEE Trans Comput 65(8):2522–2533MathSciNetCrossRef
10.
Zurück zum Zitat Chen L, Montuschi P, Han J, Liu W, Lombardi F (2017) Design of approximate high-radix dividers by inexact binary signed-digit addition. In: Proceedings of the on great lakes symposium on VLSI. ACM, New York, pp 293–298 Chen L, Montuschi P, Han J, Liu W, Lombardi F (2017) Design of approximate high-radix dividers by inexact binary signed-digit addition. In: Proceedings of the on great lakes symposium on VLSI. ACM, New York, pp 293–298
11.
Zurück zum Zitat Cho KJ, Lee KC, Chung JG, Parhi, KK (2004) Design of low-error fixed-width modified booth multiplier. IEEE Trans VLSI Syst 12(5):522–531CrossRef Cho KJ, Lee KC, Chung JG, Parhi, KK (2004) Design of low-error fixed-width modified booth multiplier. IEEE Trans VLSI Syst 12(5):522–531CrossRef
12.
Zurück zum Zitat Du K, Varman P, Mohanram K (2012) High performance reliable variable latency carry select addition. In: Proceedings of the conference on design, automation and test in Europe. EDA Consortium, San Jose, pp 1257–1262 Du K, Varman P, Mohanram K (2012) High performance reliable variable latency carry select addition. In: Proceedings of the conference on design, automation and test in Europe. EDA Consortium, San Jose, pp 1257–1262
13.
Zurück zum Zitat Farshchi F, Abrishami MS, Fakhraie SM (2013) New approximate multiplier for low power digital signal processing. In: International symposium on computer architecture and digital systems. IEEE, Piscataway, pp 25–30 Farshchi F, Abrishami MS, Fakhraie SM (2013) New approximate multiplier for low power digital signal processing. In: International symposium on computer architecture and digital systems. IEEE, Piscataway, pp 25–30
14.
Zurück zum Zitat Flynn MJ (1970) On division by functional iteration. IEEE Trans Comput 100(8):702–706CrossRef Flynn MJ (1970) On division by functional iteration. IEEE Trans Comput 100(8):702–706CrossRef
15.
Zurück zum Zitat Gupta V, Mohapatra D, Raghunathan A, Roy K (2013) Low-power digital signal processing using approximate adders. IEEE Trans Comput-Aided Des Integr Circuits Syst 32(1):124–137CrossRef Gupta V, Mohapatra D, Raghunathan A, Roy K (2013) Low-power digital signal processing using approximate adders. IEEE Trans Comput-Aided Des Integr Circuits Syst 32(1):124–137CrossRef
16.
Zurück zum Zitat Han J (2016) Introduction to approximate computing. In: VLSI Test symposium. IEEE, Piscataway, pp 1–1 Han J (2016) Introduction to approximate computing. In: VLSI Test symposium. IEEE, Piscataway, pp 1–1
17.
Zurück zum Zitat Han J, Orshansky M (2013) Approximate computing: an emerging paradigm for energy-efficient design. In: European test symposium. IEEE, Piscataway, pp 1–6 Han J, Orshansky M (2013) Approximate computing: an emerging paradigm for energy-efficient design. In: European test symposium. IEEE, Piscataway, pp 1–6
18.
Zurück zum Zitat Hashemi S, Bahar R, Reda S (2015) Drum: a dynamic range unbiased multiplier for approximate applications. In: Proceedings of the IEEE/ACM international conference on computer-aided design. IEEE, Piscataway, pp 418–425 Hashemi S, Bahar R, Reda S (2015) Drum: a dynamic range unbiased multiplier for approximate applications. In: Proceedings of the IEEE/ACM international conference on computer-aided design. IEEE, Piscataway, pp 418–425
19.
Zurück zum Zitat Hashemi S, Bahar R, Reda S (2016) A low-power dynamic divider for approximate applications. In: Proceedings of the 53rd annual design automation conference. ACM, New York, pp 105 Hashemi S, Bahar R, Reda S (2016) A low-power dynamic divider for approximate applications. In: Proceedings of the 53rd annual design automation conference. ACM, New York, pp 105
20.
Zurück zum Zitat Hu J, Qian W (2015) A new approximate adder with low relative error and correct sign calculation. In: Proceedings of the design, automation and test in Europe conference and exhibition. EDA Consortium, San Jose, pp 1449–1454 Hu J, Qian W (2015) A new approximate adder with low relative error and correct sign calculation. In: Proceedings of the design, automation and test in Europe conference and exhibition. EDA Consortium, San Jose, pp 1449–1454
21.
Zurück zum Zitat Jiang H, Han J, Lombardi F (2016) Approximate radix-8 booth multiplier for low-power and high-performance operation. IEEE Trans Comput 65(8):2638–2644MathSciNetCrossRef Jiang H, Han J, Lombardi F (2016) Approximate radix-8 booth multiplier for low-power and high-performance operation. IEEE Trans Comput 65(8):2638–2644MathSciNetCrossRef
22.
Zurück zum Zitat Jiang H, Liu C, Lombardi F, Han J (2018) Low-power approximate unsigned multipliers with configurable error recovery. IEEE Trans Circuits Sys I 99:1–14 Jiang H, Liu C, Lombardi F, Han J (2018) Low-power approximate unsigned multipliers with configurable error recovery. IEEE Trans Circuits Sys I 99:1–14
23.
Zurück zum Zitat Kahng AB, Kang S (2012) Accuracy-configurable adder for approximate arithmetic designs. In: Design automation conference. IEEE, Piscataway, pp 820–825 Kahng AB, Kang S (2012) Accuracy-configurable adder for approximate arithmetic designs. In: Design automation conference. IEEE, Piscataway, pp 820–825
24.
Zurück zum Zitat Kim Y, Zhang Y, Li P (2013) An energy efficient approximate adder with carry skip for error resilient neuromorphic VLSI systems. In: Proceedings of the international conference on computer-aided design. IEEE, Piscataway, pp 130–137 Kim Y, Zhang Y, Li P (2013) An energy efficient approximate adder with carry skip for error resilient neuromorphic VLSI systems. In: Proceedings of the international conference on computer-aided design. IEEE, Piscataway, pp 130–137
25.
Zurück zum Zitat Kulkarni P, Gupta P, Ercegovac M (2011) Trading accuracy for power with an underdesigned multiplier architecture. In: International conference on VLSI design. IEEE, Piscataway, pp 346–351 Kulkarni P, Gupta P, Ercegovac M (2011) Trading accuracy for power with an underdesigned multiplier architecture. In: International conference on VLSI design. IEEE, Piscataway, pp 346–351
26.
Zurück zum Zitat Kyaw KY, Goh WL, Yeo KS (2010) Low-power high-speed multiplier for error-tolerant application. In: International conference on electron devices and solid-state circuits. IEEE, Piscataway, pp 1–4 Kyaw KY, Goh WL, Yeo KS (2010) Low-power high-speed multiplier for error-tolerant application. In: International conference on electron devices and solid-state circuits. IEEE, Piscataway, pp 1–4
27.
Zurück zum Zitat Li L, Zhou H (2014) On error modeling and analysis of approximate adders. In: Proceedings of the international conference on computer-aided design. IEEE, Piscataway, pp 511–518 Li L, Zhou H (2014) On error modeling and analysis of approximate adders. In: Proceedings of the international conference on computer-aided design. IEEE, Piscataway, pp 511–518
28.
Zurück zum Zitat Liang J, Han J, Lombardi F (2013) New metrics for the reliability of approximate and probabilistic adders. IEEE Trans Comput 62(9):1760–1771MathSciNetCrossRef Liang J, Han J, Lombardi F (2013) New metrics for the reliability of approximate and probabilistic adders. IEEE Trans Comput 62(9):1760–1771MathSciNetCrossRef
29.
Zurück zum Zitat Lin CH, Lin C (2013) High accuracy approximate multiplier with error correction. In: International conference on computer design. IEEE, Piscataway, pp 33–38 Lin CH, Lin C (2013) High accuracy approximate multiplier with error correction. In: International conference on computer design. IEEE, Piscataway, pp 33–38
30.
Zurück zum Zitat Lin IC, Yang YM, Lin CC (2015) High-performance low-power carry speculative addition with variable latency. IEEE Trans VLSI Syst 23(9):1591–1603CrossRef Lin IC, Yang YM, Lin CC (2015) High-performance low-power carry speculative addition with variable latency. IEEE Trans VLSI Syst 23(9):1591–1603CrossRef
31.
Zurück zum Zitat Liu C (2014) Design and analysis of approximate adders and multipliers. University of Alberta, Edmonton Liu C (2014) Design and analysis of approximate adders and multipliers. University of Alberta, Edmonton
32.
Zurück zum Zitat Liu W, Nannarelli A (2012) Power efficient division and square root unit. IEEE Trans Comput 61(8):1059–1070MathSciNetCrossRef Liu W, Nannarelli A (2012) Power efficient division and square root unit. IEEE Trans Comput 61(8):1059–1070MathSciNetCrossRef
33.
Zurück zum Zitat Liu C, Han J, Lombardi F (2014) A low-power, high-performance approximate multiplier with configurable partial error recovery. In: Design, automation and test in Europe conference and exhibition. IEEE, Piscataway, pp 1–4 Liu C, Han J, Lombardi F (2014) A low-power, high-performance approximate multiplier with configurable partial error recovery. In: Design, automation and test in Europe conference and exhibition. IEEE, Piscataway, pp 1–4
34.
Zurück zum Zitat Liu W, Qian L, Wang C et al (2017) Design of approximate radix-4 booth multipliers for error-tolerant computing. IEEE Trans Comput 66(8):1435–1441MathSciNetCrossRef Liu W, Qian L, Wang C et al (2017) Design of approximate radix-4 booth multipliers for error-tolerant computing. IEEE Trans Comput 66(8):1435–1441MathSciNetCrossRef
35.
Zurück zum Zitat Low JYL, Jong CC (2013) Non-iterative high speed division computation based on Mitchell logarithmic method. In: International symposium on circuits and systems. IEEE, Piscataway, p 2219–2222 Low JYL, Jong CC (2013) Non-iterative high speed division computation based on Mitchell logarithmic method. In: International symposium on circuits and systems. IEEE, Piscataway, p 2219–2222
36.
Zurück zum Zitat Lu SL (2003) Speeding up processing with approximation circuits. Computer 37(3):67–73 Lu SL (2003) Speeding up processing with approximation circuits. Computer 37(3):67–73
37.
Zurück zum Zitat Ma J, Man KL, Zhang N, Guan SU, Jeong TT (2013) High-speed area-efficient and power-aware multiplier design using approximate compressors along with bottom-up tree topology. In: International conference on machine vision: algorithms, pattern recognition, and basic technologies, vol 8784. International Society for Optics and Photonics, Bellingham, p 87841Z Ma J, Man KL, Zhang N, Guan SU, Jeong TT (2013) High-speed area-efficient and power-aware multiplier design using approximate compressors along with bottom-up tree topology. In: International conference on machine vision: algorithms, pattern recognition, and basic technologies, vol 8784. International Society for Optics and Photonics, Bellingham, p 87841Z
38.
Zurück zum Zitat Mahdiani HR, Ahmadi A, Fakhraie SM, Lucas C (2010) Bio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applications. IEEE Trans Circuits Syst 57(4):850–862MathSciNetCrossRef Mahdiani HR, Ahmadi A, Fakhraie SM, Lucas C (2010) Bio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applications. IEEE Trans Circuits Syst 57(4):850–862MathSciNetCrossRef
39.
Zurück zum Zitat Miao J, He K, Gerstlauer A, Orshansky M (2012) Modeling and synthesis of quality-energy optimal approximate adders. In: International conference on computer-aided design. IEEE, Piscataway, p 728–735 Miao J, He K, Gerstlauer A, Orshansky M (2012) Modeling and synthesis of quality-energy optimal approximate adders. In: International conference on computer-aided design. IEEE, Piscataway, p 728–735
40.
Zurück zum Zitat Min-An S, Lan-Da V, Sy-Yen K (2007) Adaptive low-error fixed-width Booth multipliers. IEICE Trans Fundam Electron Commun Comput Sci 90(6):1180–1187 Min-An S, Lan-Da V, Sy-Yen K (2007) Adaptive low-error fixed-width Booth multipliers. IEICE Trans Fundam Electron Commun Comput Sci 90(6):1180–1187
41.
Zurück zum Zitat Mitchell JN (1962) Computer multiplication and division using binary logarithms. IRE Trans Electron Comput 4:512–517MathSciNetCrossRef Mitchell JN (1962) Computer multiplication and division using binary logarithms. IRE Trans Electron Comput 4:512–517MathSciNetCrossRef
42.
Zurück zum Zitat Mohapatra D, Chippa VK, Raghunathan A, Roy K (2011) Design of voltage-scalable meta-functions for approximate computing. In: Design, automation and test in Europe conference and exhibition. IEEE, Piscataway, pp 1–6 Mohapatra D, Chippa VK, Raghunathan A, Roy K (2011) Design of voltage-scalable meta-functions for approximate computing. In: Design, automation and test in Europe conference and exhibition. IEEE, Piscataway, pp 1–6
43.
Zurück zum Zitat Momeni A, Han J, Montuschi P, Lombardi F (2014) Design and analysis of approximate compressors for multiplication. IEEE Trans Comput 64(4):984–994MathSciNetCrossRef Momeni A, Han J, Montuschi P, Lombardi F (2014) Design and analysis of approximate compressors for multiplication. IEEE Trans Comput 64(4):984–994MathSciNetCrossRef
44.
Zurück zum Zitat Narayanamoorthy S, Moghaddam HA, Liu Z, Park T, Kim NS (2015) Energy-efficient approximate multiplication for digital signal processing and classification applications. IEEE Trans VLSI Syst 23(6):1180–1184CrossRef Narayanamoorthy S, Moghaddam HA, Liu Z, Park T, Kim NS (2015) Energy-efficient approximate multiplication for digital signal processing and classification applications. IEEE Trans VLSI Syst 23(6):1180–1184CrossRef
45.
Zurück zum Zitat Oklobdzija VG, Villeger D, Liu SS (1996) A method for speed optimized partial product reduction and generation of fast parallel multipliers using an algorithmic approach. IEEE Trans Comput 45(3):294–306CrossRef Oklobdzija VG, Villeger D, Liu SS (1996) A method for speed optimized partial product reduction and generation of fast parallel multipliers using an algorithmic approach. IEEE Trans Comput 45(3):294–306CrossRef
46.
Zurück zum Zitat Parhami B (2000) Computer arithmetic. Oxford University Press, Oxford Parhami B (2000) Computer arithmetic. Oxford University Press, Oxford
47.
Zurück zum Zitat Venkatesan R, Agarwal A, Roy K, Raghunathan A (2011) MACACO: modeling and analysis of circuits for approximate computing. In: International conference on computer-aided design. IEEE, Piscataway, p 667–673 Venkatesan R, Agarwal A, Roy K, Raghunathan A (2011) MACACO: modeling and analysis of circuits for approximate computing. In: International conference on computer-aided design. IEEE, Piscataway, p 667–673
48.
Zurück zum Zitat Verma AK, Brisk, P, Ienne, P (2008) Variable latency speculative addition: a new paradigm for arithmetic circuit design. In: Proceedings of the conference on design, automation and test in Europe. ACM, New York, pp 1250–1255CrossRef Verma AK, Brisk, P, Ienne, P (2008) Variable latency speculative addition: a new paradigm for arithmetic circuit design. In: Proceedings of the conference on design, automation and test in Europe. ACM, New York, pp 1250–1255CrossRef
49.
Zurück zum Zitat Wang JP, Kuang SR, Liang SC (2011) High-accuracy fixed-width modified Booth multipliers for lossy applications. IEEE Trans VLSI Syst 19(1):52–60CrossRef Wang JP, Kuang SR, Liang SC (2011) High-accuracy fixed-width modified Booth multipliers for lossy applications. IEEE Trans VLSI Syst 19(1):52–60CrossRef
50.
Zurück zum Zitat Wu L, Jong CC (2015) A curve fitting approach for non-iterative divider design with accuracy and performance trade-off. In: New circuits and systems conference. IEEE, Piscataway, pp 1–4 Wu L, Jong CC (2015) A curve fitting approach for non-iterative divider design with accuracy and performance trade-off. In: New circuits and systems conference. IEEE, Piscataway, pp 1–4
51.
Zurück zum Zitat Yang Z, Jain A, Liang J, Han J, Lombardi F (2013) Approximate XOR/XNOR-based adders for inexact computing. In: IEEE conference on nanotechnology. IEEE, Piscataway, pp 690–693 Yang Z, Jain A, Liang J, Han J, Lombardi F (2013) Approximate XOR/XNOR-based adders for inexact computing. In: IEEE conference on nanotechnology. IEEE, Piscataway, pp 690–693
52.
Zurück zum Zitat Yang X, Xing Y, Qiao F, Wei Q, Yang H (2016) Approximate adder with hybrid prediction and error compensation technique. In: IEEE computer society annual symposium on VLSI. IEEE, Piscataway, pp 373–378 Yang X, Xing Y, Qiao F, Wei Q, Yang H (2016) Approximate adder with hybrid prediction and error compensation technique. In: IEEE computer society annual symposium on VLSI. IEEE, Piscataway, pp 373–378
53.
Zurück zum Zitat Ye R, Wang T, Yuan F, Kumar R, Xu Q (2013) On reconfiguration-oriented approximate adder design and its application. In: Proceedings of the international conference on computer-aided design. IEEE, Piscataway, pp 48–54 Ye R, Wang T, Yuan F, Kumar R, Xu Q (2013) On reconfiguration-oriented approximate adder design and its application. In: Proceedings of the international conference on computer-aided design. IEEE, Piscataway, pp 48–54
54.
Zurück zum Zitat Zendegani R, Kamal M, Fayyazi A et al (2016) SEERAD: a high speed yet energy-efficient rounding-based approximate divider. In: Design, automation and test in Europe conference and exhibition. IEEE, Piscataway, pp 1481–1484 Zendegani R, Kamal M, Fayyazi A et al (2016) SEERAD: a high speed yet energy-efficient rounding-based approximate divider. In: Design, automation and test in Europe conference and exhibition. IEEE, Piscataway, pp 1481–1484
55.
Zurück zum Zitat Zendegani R, Kamal M, Bahadori M, Afzali-Kusha A, Pedram M (2017) RoBA multiplier: a rounding-based approximate multiplier for high-speed yet energy-efficient digital signal processing. IEEE Trans VLSI Syst 25(2):393–401CrossRef Zendegani R, Kamal M, Bahadori M, Afzali-Kusha A, Pedram M (2017) RoBA multiplier: a rounding-based approximate multiplier for high-speed yet energy-efficient digital signal processing. IEEE Trans VLSI Syst 25(2):393–401CrossRef
56.
Zurück zum Zitat Zhu N, Goh WL, Yeo, KS (2009) An enhanced low-power high-speed adder for error-tolerant application. In: Proceedings of the international symposium on integrated circuits. IEEE, Piscataway, pp 69–72 Zhu N, Goh WL, Yeo, KS (2009) An enhanced low-power high-speed adder for error-tolerant application. In: Proceedings of the international symposium on integrated circuits. IEEE, Piscataway, pp 69–72
Metadaten
Titel
Approximate Arithmetic Circuits: Design and Evaluation
verfasst von
Honglan Jiang
Leibo Liu
Fabrizio Lombardi
Jie Han
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-99322-5_4

Neuer Inhalt