Skip to main content

2017 | OriginalPaper | Buchkapitel

Approximate Proof-Labeling Schemes

verfasst von : Keren Censor-Hillel, Ami Paz, Mor Perry

Erschienen in: Structural Information and Communication Complexity

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study a new model of verification of boolean predicates over distributed networks. Given a network configuration, the proof-labeling scheme (PLS) model defines a distributed proof in the form of a label that is given to each node, and all nodes locally verify that the network configuration satisfies the desired boolean predicate by exchanging labels with their neighbors. The proof size of the scheme is defined to be the maximum size of a label.
In this work, we extend this model by defining the approximate proof-labeling scheme (APLS) model. In this new model, the predicates for verification are of the form \(\psi \le \varphi \), where \(\psi , \varphi : \mathcal{F}\rightarrow \mathbb {N}\) for a family of configurations \(\mathcal{F}\). Informally, the predicates considered in this model are a comparison between two values of the configuration. As in the PLS model, nodes exchange labels in order to locally verify the predicate, and all must accept if the network satisfies the predicate. The soundness condition is relaxed with an approximation ration \(\alpha \), so that only if \(\psi > \alpha \varphi \) some node must reject.
We show that in the APLS model, the proof size can be much smaller than the proof size of the same predicate in the PLS model. Moreover, we prove that there is a tradeoff between the approximation ratio and the proof size.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Recall that W is the maximum weight of an edge in the graph. If \(W=1\), we interpret \(O(\log W)\) as O(1).
 
2
This lower bound holds also for randomized protocols, which we do not discuss in this work.
 
3
See Chap. 2.2 of [1]. We use \(P=\lfloor (k-2)/4 \rfloor \).
 
Literatur
2.
Zurück zum Zitat Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999)MathSciNetCrossRefMATH Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking and correction. In: FOCS, pp. 268–277. IEEE (1991) Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking and correction. In: FOCS, pp. 268–277. IEEE (1991)
6.
Zurück zum Zitat Baruch, M., Fraigniaud, P., Patt-Shamir, B.: Randomized proof-labeling schemes. In: PODC, pp. 315–324 (2015) Baruch, M., Fraigniaud, P., Patt-Shamir, B.: Randomized proof-labeling schemes. In: PODC, pp. 315–324 (2015)
7.
9.
Zurück zum Zitat Chechik, S., Larkin, D.H., Roditty, L., Schoenebeck, G., Tarjan, R.E., Williams, V.V.: Better approximation algorithms for the graph diameter. In SODA, pp. 1041–1052 (2014) Chechik, S., Larkin, D.H., Roditty, L., Schoenebeck, G., Tarjan, R.E., Williams, V.V.: Better approximation algorithms for the graph diameter. In SODA, pp. 1041–1052 (2014)
10.
Zurück zum Zitat Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization. Wiley, New York (1998)MATH Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization. Wiley, New York (1998)MATH
11.
Zurück zum Zitat Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)MathSciNetCrossRefMATH Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Feuilloley, L., Fraigniaud, P.: Survey of distributed decision. Bull. EATCS 119 (2016) Feuilloley, L., Fraigniaud, P.: Survey of distributed decision. Bull. EATCS 119 (2016)
13.
Zurück zum Zitat Feuilloley, L., Fraigniaud, P., Hirvonen, J.: A hierarchy of local decision. In: ICALP, pp. 118:1–118:15 (2016) Feuilloley, L., Fraigniaud, P., Hirvonen, J.: A hierarchy of local decision. In: ICALP, pp. 118:1–118:15 (2016)
14.
Zurück zum Zitat Foerster, K.-T., Luedi, T., Seidel, J., Wattenhofer, R.: Local checkability, no strings attached. In: ICDCN, pp. 21:1–21:10. ACM (2016) Foerster, K.-T., Luedi, T., Seidel, J., Wattenhofer, R.: Local checkability, no strings attached. In: ICDCN, pp. 21:1–21:10. ACM (2016)
15.
Zurück zum Zitat Foerster, K.-T., Richter, O., Seidel, J., Wattenhofer, R.: Local checkability in dynamic networks. In: ICDCN, pp. 4:1–4:10. ACM (2017) Foerster, K.-T., Richter, O., Seidel, J., Wattenhofer, R.: Local checkability in dynamic networks. In: ICDCN, pp. 4:1–4:10. ACM (2017)
16.
Zurück zum Zitat Fraigniaud, P.: Göös, M., Korman, A., Suomela, J.: What can be decided locally without identifiers? In: PODC, pp. 157–165. ACM (2013) Fraigniaud, P.: Göös, M., Korman, A., Suomela, J.: What can be decided locally without identifiers? In: PODC, pp. 157–165. ACM (2013)
19.
20.
Zurück zum Zitat Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and checkability in wait-free computing. Distrib. Comput. 26(4), 223–242 (2013)CrossRefMATH Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and checkability in wait-free computing. Distrib. Comput. 26(4), 223–242 (2013)CrossRefMATH
21.
22.
Zurück zum Zitat Göös, M., Suomela, J.: Locally checkable proofs in distributed computing. Theory Comput. 12(1), 1–33 (2016)MathSciNetMATH Göös, M., Suomela, J.: Locally checkable proofs in distributed computing. Theory Comput. 12(1), 1–33 (2016)MathSciNetMATH
23.
Zurück zum Zitat Holzer, S., Peleg, D., Roditty, L., Wattenhofer, R.: Distributed 3/2-approximation of the diameter. In: DISC, pp. 562–564 (2014) Holzer, S., Peleg, D., Roditty, L., Wattenhofer, R.: Distributed 3/2-approximation of the diameter. In: DISC, pp. 562–564 (2014)
24.
Zurück zum Zitat Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and applications. In: PODC, pp. 355–364 (2012) Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and applications. In: PODC, pp. 355–364 (2012)
25.
Zurück zum Zitat Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Distrib. Comput. 20, 253–266 (2007)CrossRefMATH Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Distrib. Comput. 20, 253–266 (2007)CrossRefMATH
26.
Zurück zum Zitat Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verification, computation, and fault detection of an MST. In: PODC, pp. 311–320 (2011) Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verification, computation, and fault detection of an MST. In: PODC, pp. 311–320 (2011)
27.
Zurück zum Zitat Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4), 215–233 (2010)CrossRefMATH Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4), 215–233 (2010)CrossRefMATH
28.
Zurück zum Zitat Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, New York (1997)CrossRefMATH Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, New York (1997)CrossRefMATH
30.
Zurück zum Zitat Roditty, L., Williams, V.V.: Fast approximation algorithms for the diameter and radius of sparse graphs. In: STOC, pp. 515–524 (2013) Roditty, L., Williams, V.V.: Fast approximation algorithms for the diameter and radius of sparse graphs. In: STOC, pp. 515–524 (2013)
Metadaten
Titel
Approximate Proof-Labeling Schemes
verfasst von
Keren Censor-Hillel
Ami Paz
Mor Perry
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-72050-0_5