Skip to main content
Erschienen in: Acta Mechanica Sinica 2/2018

29.05.2017 | Research Paper

Approximate solutions of the Alekseevskii–Tate model of long-rod penetration

verfasst von: W. J. Jiao, X. W. Chen

Erschienen in: Acta Mechanica Sinica | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Alekseevskii–Tate model is the most successful semi-hydrodynamic model applied to long-rod penetration into semi-infinite targets. However, due to the nonlinear nature of the equations, the rod (tail) velocity, penetration velocity, rod length, and penetration depth were obtained implicitly as a function of time and solved numerically. By employing a linear approximation to the logarithmic relative rod length, we obtain two sets of explicit approximate algebraic solutions based on the implicit theoretical solution deduced from primitive equations. It is very convenient in the theoretical prediction of the Alekseevskii–Tate model to apply these simple algebraic solutions. In particular, approximate solution 1 shows good agreement with the theoretical (exact) solution, and the first-order perturbation solution obtained by Walters et al. (Int. J. Impact Eng. 33:837–846, 2006) can be deemed as a special form of approximate solution 1 in high-speed penetration. Meanwhile, with constant tail velocity and penetration velocity, approximate solution 2 has very simple expressions, which is applicable for the qualitative analysis of long-rod penetration. Differences among these two approximate solutions and the theoretical (exact) solution and their respective scopes of application have been discussed, and the inferences with clear physical basis have been drawn. In addition, these two solutions and the first-order perturbation solution are applied to two cases with different initial impact velocity and different penetrator/target combinations to compare with the theoretical (exact) solution. Approximate solution 1 is much closer to the theoretical solution of the Alekseevskii–Tate model than the first-order perturbation solution in both cases, whilst approximate solution 2 brings us a more intuitive understanding of quasi-steady-state penetration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
CTH: a software system under development at Sandia National Laboratories Albuquerque to model multidimensional, multi-material, large deformation, strong shock wave physics.
 
Literatur
1.
Zurück zum Zitat Allen, W.A., Rogers, J.W.: Penetration of a rod into a semi-infinite target. J. Franklin Inst. 272, 275–284 (1961)CrossRef Allen, W.A., Rogers, J.W.: Penetration of a rod into a semi-infinite target. J. Franklin Inst. 272, 275–284 (1961)CrossRef
2.
Zurück zum Zitat Alekseevskii, V.P.: Penetration of a rod into a target at high velocity. Combust. Explos. Shock Waves 2, 63–66 (1966)CrossRef Alekseevskii, V.P.: Penetration of a rod into a target at high velocity. Combust. Explos. Shock Waves 2, 63–66 (1966)CrossRef
3.
Zurück zum Zitat Tate, A.: A theory for the deceleration of long rods after impact. J. Mech. Phys. Solids 15, 387–399 (1967)CrossRef Tate, A.: A theory for the deceleration of long rods after impact. J. Mech. Phys. Solids 15, 387–399 (1967)CrossRef
4.
5.
Zurück zum Zitat Christman, D.R., Gehring, J.W.: Analysis of high-velocity projectile penetration mechanics. J. Appl. Phys. 37, 1579–1587 (1966)CrossRef Christman, D.R., Gehring, J.W.: Analysis of high-velocity projectile penetration mechanics. J. Appl. Phys. 37, 1579–1587 (1966)CrossRef
6.
Zurück zum Zitat Hohler, V., Stilp, A.J.: Hypervelocity impact of rod projectiles with L/D from 1 to 32. Int. J. Impact Eng. 5, 323–331 (1987)CrossRef Hohler, V., Stilp, A.J.: Hypervelocity impact of rod projectiles with L/D from 1 to 32. Int. J. Impact Eng. 5, 323–331 (1987)CrossRef
7.
Zurück zum Zitat Rosenberg, Z., Dezel, E.: The relation between the penetration capability of long rods and their length to diameter ratio. Int. J. Impact Eng. 15, 125–129 (1994)CrossRef Rosenberg, Z., Dezel, E.: The relation between the penetration capability of long rods and their length to diameter ratio. Int. J. Impact Eng. 15, 125–129 (1994)CrossRef
8.
Zurück zum Zitat Anderson, C.E., Walker, J.D., Bless, S.P., et al.: On the L/D effect for long-rod penetrators. Int. J. Impact Eng. 18, 247–264 (1996)CrossRef Anderson, C.E., Walker, J.D., Bless, S.P., et al.: On the L/D effect for long-rod penetrators. Int. J. Impact Eng. 18, 247–264 (1996)CrossRef
9.
Zurück zum Zitat Anderson, C.E., Walker, J.D.: An examination of long-rod penetration. Int. J. Impact Eng. 11, 481–501 (1991)CrossRef Anderson, C.E., Walker, J.D.: An examination of long-rod penetration. Int. J. Impact Eng. 11, 481–501 (1991)CrossRef
10.
Zurück zum Zitat Walker, J.D., Anderson, C.E.: A time-dependent model for long-rod penetration. Int. J. Impact Eng. 16, 19–48 (1995)CrossRef Walker, J.D., Anderson, C.E.: A time-dependent model for long-rod penetration. Int. J. Impact Eng. 16, 19–48 (1995)CrossRef
11.
Zurück zum Zitat Rosenberg, Z., Marmor, E., Mayseless, M.: On the hydrodynamic theory of long-rod penetration. Int. J. Impact Eng. 10, 483–486 (1990)CrossRef Rosenberg, Z., Marmor, E., Mayseless, M.: On the hydrodynamic theory of long-rod penetration. Int. J. Impact Eng. 10, 483–486 (1990)CrossRef
12.
Zurück zum Zitat Zhang, L.S., Huang, F.L.: Model for long-rod penetration into semi-infinite targets. J. Beijing Inst. Technol. 13, 285–289 (2004) Zhang, L.S., Huang, F.L.: Model for long-rod penetration into semi-infinite targets. J. Beijing Inst. Technol. 13, 285–289 (2004)
13.
Zurück zum Zitat Rosenberg, Z., Dezel, E.: Further examination of long-rod penetration: the role of penetrator strength at hypervelocity impacts. Int. J. Impact Eng. 24, 85–102 (2000)CrossRef Rosenberg, Z., Dezel, E.: Further examination of long-rod penetration: the role of penetrator strength at hypervelocity impacts. Int. J. Impact Eng. 24, 85–102 (2000)CrossRef
14.
Zurück zum Zitat Walters, W.P., Segletes, S.B.: An exact solution of the long-rod penetration equations. Int. J. Impact Eng. 11, 225–231 (1991)CrossRef Walters, W.P., Segletes, S.B.: An exact solution of the long-rod penetration equations. Int. J. Impact Eng. 11, 225–231 (1991)CrossRef
15.
Zurück zum Zitat Segletes, S.B., Walters, W.P.: Extensions to the exact solution of the long-rod penetration/erosion equations. Int. J. Impact Eng. 28, 363–376 (2003)CrossRef Segletes, S.B., Walters, W.P.: Extensions to the exact solution of the long-rod penetration/erosion equations. Int. J. Impact Eng. 28, 363–376 (2003)CrossRef
16.
Zurück zum Zitat Forrestal, M.J., Piekutowski, A.J., Luk, V.K.: Long-rod penetration into simulated geological targets at an impact velocity of 3.0 km/s. In: 11th International symposium on ballistics, vol. 2. Brussels, Belgium (1989) Forrestal, M.J., Piekutowski, A.J., Luk, V.K.: Long-rod penetration into simulated geological targets at an impact velocity of 3.0 km/s. In: 11th International symposium on ballistics, vol. 2. Brussels, Belgium (1989)
17.
Zurück zum Zitat Walters, W., Williams, C., Normandia, M.: An explicit solution of the Alekseevskii–Tate penetration equations. Int. J. Impact Eng. 33, 837–846 (2006)CrossRef Walters, W., Williams, C., Normandia, M.: An explicit solution of the Alekseevskii–Tate penetration equations. Int. J. Impact Eng. 33, 837–846 (2006)CrossRef
18.
Zurück zum Zitat Orphal, D.L., Anderson, C.E.: The dependence of penetration velocity on impact velocity. Int. J. Impact Eng. 33, 546–554 (2006)CrossRef Orphal, D.L., Anderson, C.E.: The dependence of penetration velocity on impact velocity. Int. J. Impact Eng. 33, 546–554 (2006)CrossRef
19.
Zurück zum Zitat Orphal, D.L., Franzen, R.R.: Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s. Int. J. Impact Eng. 19, 1–13 (1997)CrossRef Orphal, D.L., Franzen, R.R.: Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s. Int. J. Impact Eng. 19, 1–13 (1997)CrossRef
20.
Zurück zum Zitat Orphal, D.L., Franzen, R.R., Charters, A.C., et al.: Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s. Int. J. Impact Eng. 19, 15–29 (1997)CrossRef Orphal, D.L., Franzen, R.R., Charters, A.C., et al.: Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s. Int. J. Impact Eng. 19, 15–29 (1997)CrossRef
21.
Zurück zum Zitat Sternberg, J., Orphal, D.L.: A note on the high velocity penetration of aluminum nitride. Int. J. Impact Eng. 19, 647–651 (1997)CrossRef Sternberg, J., Orphal, D.L.: A note on the high velocity penetration of aluminum nitride. Int. J. Impact Eng. 19, 647–651 (1997)CrossRef
22.
Zurück zum Zitat Anderson, C.E., Riegel, J.P.: A penetration model for metallic targets based on experimental data. Int. J. Impact Eng. 80, 24–35 (2015)CrossRef Anderson, C.E., Riegel, J.P.: A penetration model for metallic targets based on experimental data. Int. J. Impact Eng. 80, 24–35 (2015)CrossRef
23.
Zurück zum Zitat Rosenberg, Z., Dezel, E.: Terminal Ballistics. Springer, Berlin (2012)CrossRef Rosenberg, Z., Dezel, E.: Terminal Ballistics. Springer, Berlin (2012)CrossRef
24.
Zurück zum Zitat Anderson, C.E., Littlefield, D.L., Walker, J.D.: Long-rod penetration, target resistance, and hypervelocity impact. Int. J. Impact Eng. 14, 1–12 (1993)CrossRef Anderson, C.E., Littlefield, D.L., Walker, J.D.: Long-rod penetration, target resistance, and hypervelocity impact. Int. J. Impact Eng. 14, 1–12 (1993)CrossRef
25.
Zurück zum Zitat Anderson, C.E., Orphal, D.L.: Analysis of the terminal phase of penetration. Int. J. Impact Eng. 29, 69–80 (2003)CrossRef Anderson, C.E., Orphal, D.L.: Analysis of the terminal phase of penetration. Int. J. Impact Eng. 29, 69–80 (2003)CrossRef
Metadaten
Titel
Approximate solutions of the Alekseevskii–Tate model of long-rod penetration
verfasst von
W. J. Jiao
X. W. Chen
Publikationsdatum
29.05.2017
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 2/2018
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0672-9

Weitere Artikel der Ausgabe 2/2018

Acta Mechanica Sinica 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.