Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2015 | Thematic Issue | Ausgabe 11/2015

Environmental Earth Sciences 11/2015

Aqueous carbonation of the potassium-depleted residue from potassium feldspar–CaCl2 calcination for CO2 fixation

Zeitschrift:
Environmental Earth Sciences > Ausgabe 11/2015
Autoren:
Haoyi Sheng, Li Lv, Bin Liang, Chun Li, Bo Yuan, Longpo Ye, Hairong Yue, Changjun Liu, Yufei Wang, Jiahua Zhu, Heping Xie

Abstract

Based on the academic thought of carbon capture and utilization, a novel process to integrate the potassium extraction from the insoluble potassium feldspar, industrial waste utilization, and the subsequent CO2 fixation using the resultant potassium-depleted residue was proposed in our previous studies. The potassium-depleted residue comprises several Ca-bearing phases, namely wollastonite (CaSiO3), pseudowollastonite (Ca3Si3O9), Cl-mayenite (Ca12Al14O32Cl2), and anorthite (CaAl2Si2O8), which are potential materials for fixation of CO2 via carbonation. In this study, carbonation of the residue was examined with focuses on the effects of reaction temperature, initial CO2 pressure, particle size of the residue, and reaction duration on the carbonation of these Ca-bearing phases. The results demonstrated that both the temperature and CO2 pressure significantly affect the carbonation, while the residue particle size has only minor influence. At 1 MPa CO2 pressure, the carbonation of these components was dominant at different reaction temperatures. Almost complete carbonation of the pseudowollastonite could be achieved at 75 °C, while significant carbonation of the wollastonite takes place above 100 °C. However, the Cl-mayenite and anorthite are incapable of carbonation even at 200 °C. Increasing the CO2 pressure to 4 MPa can lead to a distinct carbonation of the Cl-mayenite at 150 °C but the anorthite remains untouched. At 1.5 MPa CO2 pressure and 150 °C, with the increasing reaction time, the following Ca-bearing species were successively carbonated: first the pseudowollastonite in 5 min after the reaction started, the wollastonite in 5–15 min, and then simultaneously the wollastonite and the pseudowollastonite in 15–45 min, while the carbonation of Cl-mayenite do not begin even after 120 min. A priority sequence of carbonation of these Ca-bearing minerals was determined as follows: pseudowollastonite > wollastonite > Cl-mayenite > anorthite. The trend is in agreement with the results of thermodynamic calculation. Compared to the carbonation of natural wollastonite, the synthesized wollastonite contained in the potassium-depleted residue seems to be more active in carbonation.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2015

Environmental Earth Sciences 11/2015 Zur Ausgabe