Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

Arc Welding Processes for Additive Manufacturing: A Review

verfasst von : Zengxi Pan, Donghong Ding, Bintao Wu, Dominic Cuiuri, Huijun Li, John Norrish

Erschienen in: Transactions on Intelligent Welding Manufacturing

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Arc-welding based additive manufacturing techniques are attracting interest from the manufacturing industry because of their potential to fabricate large metal components with low cost and short production lead time. This paper introduces wire arc additive manufacturing (WAAM) techniques, reviews mechanical properties of additively manufactured metallic components, summarises the development in process planning, sensing and control of WAAM, and finally provides recommendations for future work. Research indicates that the mechanical properties of additively manufactured materials, such as titanium alloy, are comparable to cast or wrought material. It has also been found that twin-wire WAAM has the capability to fabricate intermetallic alloys and functional graded materials. The paper concludes that WAAM is a promising alternative to traditional subtractive manufacturing for fabricating large expensive metal components. On the basis of current trends, the future outlook will include automated process planning, monitoring, and control for WAAM process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ding D, Pan Z, Cuiuri D et al (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol 81:465–481CrossRef Ding D, Pan Z, Cuiuri D et al (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol 81:465–481CrossRef
2.
Zurück zum Zitat Ribeiro AF, Norrish J (1996) Rapid prototyping process using metal directly. In: Proceedings of the 7th Annual Solid Freeform Fabrication Symposium, vol 1996. University of Texas at Austin, Austin, pp 249–256 Ribeiro AF, Norrish J (1996) Rapid prototyping process using metal directly. In: Proceedings of the 7th Annual Solid Freeform Fabrication Symposium, vol 1996. University of Texas at Austin, Austin, pp 249–256
3.
Zurück zum Zitat Spencer J, Dickens P, Wykes C (1998) Rapid prototyping of metal parts by three-dimensional welding. Proc Inst Mech Eng Part B J Eng Manuf 212:175–182CrossRef Spencer J, Dickens P, Wykes C (1998) Rapid prototyping of metal parts by three-dimensional welding. Proc Inst Mech Eng Part B J Eng Manuf 212:175–182CrossRef
4.
Zurück zum Zitat Dickens P, Pridham M, Cobb R et al (1992) Rapid prototyping using 3-D welding. In: Proceedings of solid freeform fabrication symposium, vol 1992. University of Texas at Austin, Austin, pp 280–290 Dickens P, Pridham M, Cobb R et al (1992) Rapid prototyping using 3-D welding. In: Proceedings of solid freeform fabrication symposium, vol 1992. University of Texas at Austin, Austin, pp 280–290
5.
Zurück zum Zitat Feng Z (2005) Processes and Mechanisms of Welding Residual Stress and Distortion. Woodhead Publishing Limited, AingtonCrossRef Feng Z (2005) Processes and Mechanisms of Welding Residual Stress and Distortion. Woodhead Publishing Limited, AingtonCrossRef
6.
Zurück zum Zitat Ding D, Pan Z, Cuiuri D et al (2015) A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures. Robot Comput Integr Manuf 34:8–19CrossRef Ding D, Pan Z, Cuiuri D et al (2015) A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures. Robot Comput Integr Manuf 34:8–19CrossRef
7.
Zurück zum Zitat Kapustka N, Harris ID (2014) Exploring Arc welding for additive manufacturing of titanium parts. Weld J 93:32–35 Kapustka N, Harris ID (2014) Exploring Arc welding for additive manufacturing of titanium parts. Weld J 93:32–35
8.
Zurück zum Zitat Brandl E, Michailov V, Viehweger B et al (2011) Deposition of Ti–6Al–4V using laser and wire, part I: microstructural properties of single beads. Surf Coat Technol 206:1120–1129CrossRef Brandl E, Michailov V, Viehweger B et al (2011) Deposition of Ti–6Al–4V using laser and wire, part I: microstructural properties of single beads. Surf Coat Technol 206:1120–1129CrossRef
9.
Zurück zum Zitat Murr LE, Gaytan SM, Ramirez DA et al (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28:1–14CrossRef Murr LE, Gaytan SM, Ramirez DA et al (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28:1–14CrossRef
10.
Zurück zum Zitat Ding J, Colegrove P, Mehnen J et al (2011) Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts. Comput Mater Sci 50:3315–3322CrossRef Ding J, Colegrove P, Mehnen J et al (2011) Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts. Comput Mater Sci 50:3315–3322CrossRef
11.
Zurück zum Zitat Hoye N (2015) Characterisation of Ti-6Al-4V deposits produced by arc-wire based additive manufacture. Dissertation, University of Wollongong Hoye N (2015) Characterisation of Ti-6Al-4V deposits produced by arc-wire based additive manufacture. Dissertation, University of Wollongong
12.
Zurück zum Zitat Zhang Y, Chen Y, Li P et al (2003) Weld deposition-based rapid prototyping: a preliminary study. J Mater Process Technol 135:347–357CrossRef Zhang Y, Chen Y, Li P et al (2003) Weld deposition-based rapid prototyping: a preliminary study. J Mater Process Technol 135:347–357CrossRef
13.
Zurück zum Zitat Levy GN, Schindel R, Kruth JP (2003) Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann Manuf Technol 52:589–609CrossRef Levy GN, Schindel R, Kruth JP (2003) Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann Manuf Technol 52:589–609CrossRef
14.
Zurück zum Zitat Gu D, Meiners W, Wissenbach K et al (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57:133–164CrossRef Gu D, Meiners W, Wissenbach K et al (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57:133–164CrossRef
15.
Zurück zum Zitat Melchels FP, Domingos MA, Klein TJ et al (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37:1079–1104CrossRef Melchels FP, Domingos MA, Klein TJ et al (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37:1079–1104CrossRef
16.
Zurück zum Zitat Karunakaran K, Bernard A, Suryakumar S et al (2012) Rapid manufacturing of metallic objects. Rapid Prototyping J 18:264–280CrossRef Karunakaran K, Bernard A, Suryakumar S et al (2012) Rapid manufacturing of metallic objects. Rapid Prototyping J 18:264–280CrossRef
17.
Zurück zum Zitat Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8:215–243CrossRef Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8:215–243CrossRef
18.
Zurück zum Zitat Kruth JP, Leu MC, Nakagawa T (1998) Progress in additive manufacturing and rapid prototyping. CIRP Ann Manuf Technol 47:525–540CrossRef Kruth JP, Leu MC, Nakagawa T (1998) Progress in additive manufacturing and rapid prototyping. CIRP Ann Manuf Technol 47:525–540CrossRef
19.
Zurück zum Zitat Lewandowski JJ, Seifi M (2016) Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res 46:151–186CrossRef Lewandowski JJ, Seifi M (2016) Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res 46:151–186CrossRef
20.
Zurück zum Zitat Bourell DL (2016) Perspectives on additive manufacturing. Annu Rev Mater Res 46:1–18CrossRef Bourell DL (2016) Perspectives on additive manufacturing. Annu Rev Mater Res 46:1–18CrossRef
21.
Zurück zum Zitat Ding D, Pan Z, van Duin S et al (2016) Fabricating superior niAl bronze components through wire ac additive manufacturing. Materials 9:652CrossRef Ding D, Pan Z, van Duin S et al (2016) Fabricating superior niAl bronze components through wire ac additive manufacturing. Materials 9:652CrossRef
22.
Zurück zum Zitat Wang F, Williams S, Rush M (2011) Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy. Int J Adv Manuf Technol 57:597–603CrossRef Wang F, Williams S, Rush M (2011) Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy. Int J Adv Manuf Technol 57:597–603CrossRef
23.
Zurück zum Zitat Aiyiti W, Zhao W, Lu B et al (2006) Investigation of the overlapping parameters of MPAW-based rapid prototyping. Rapid Prototyping J 12:165–172CrossRef Aiyiti W, Zhao W, Lu B et al (2006) Investigation of the overlapping parameters of MPAW-based rapid prototyping. Rapid Prototyping J 12:165–172CrossRef
24.
Zurück zum Zitat Almeida PS et al (2010) Innovative process model of Ti–6Al–4V additive layer manufacturing using cold metal transfer (CMT). In: Proccedings of the 21st annual international solid freeform fabrication symposium, vol 2010. University of Texas at Austin, Austin, pp 25–36 Almeida PS et al (2010) Innovative process model of Ti–6Al–4V additive layer manufacturing using cold metal transfer (CMT). In: Proccedings of the 21st annual international solid freeform fabrication symposium, vol 2010. University of Texas at Austin, Austin, pp 25–36
25.
Zurück zum Zitat Somashekara MA, Naveenkumar M, Kumar A et al (2017) Investigations into effect of weld-deposition pattern on residual stress evolution for metallic additive manufacturing. Int J Adv Manuf Technol 90:2009–2025CrossRef Somashekara MA, Naveenkumar M, Kumar A et al (2017) Investigations into effect of weld-deposition pattern on residual stress evolution for metallic additive manufacturing. Int J Adv Manuf Technol 90:2009–2025CrossRef
26.
Zurück zum Zitat Yang D, He C, Zhang G (2016) Forming characteristics of thin-wall steel parts by double electrode GMAW based additive manufacturing. J Mater Process Technol 227:153–160CrossRef Yang D, He C, Zhang G (2016) Forming characteristics of thin-wall steel parts by double electrode GMAW based additive manufacturing. J Mater Process Technol 227:153–160CrossRef
27.
Zurück zum Zitat Geng H, Li J, Xiong J et al (2017) Optimization of wire feed for GTAW based additive manufacturing. J Mater Process Technol 243:40–47CrossRef Geng H, Li J, Xiong J et al (2017) Optimization of wire feed for GTAW based additive manufacturing. J Mater Process Technol 243:40–47CrossRef
28.
Zurück zum Zitat Ma Y, Cuiuri D, Hoye N et al (2015) The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding. Mater Sci Eng A 631:230–240CrossRef Ma Y, Cuiuri D, Hoye N et al (2015) The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding. Mater Sci Eng A 631:230–240CrossRef
29.
Zurück zum Zitat Shen C, Pan Z, Cuiuri D et al (2016) Fabrication of Fe-FeAl functionally graded material using the wire-arc additive manufacturing process. Metall Mater Trans B 47:763–772CrossRef Shen C, Pan Z, Cuiuri D et al (2016) Fabrication of Fe-FeAl functionally graded material using the wire-arc additive manufacturing process. Metall Mater Trans B 47:763–772CrossRef
30.
Zurück zum Zitat Shen C, Pan Z, Ma Y et al (2015) Fabrication of iron-rich Fe–Al intermetallics using the wire-arc additive manufacturing process. Addit Manuf 7:20–26CrossRef Shen C, Pan Z, Ma Y et al (2015) Fabrication of iron-rich Fe–Al intermetallics using the wire-arc additive manufacturing process. Addit Manuf 7:20–26CrossRef
31.
Zurück zum Zitat Stavinoha, J.N.: Investigation of plasma arc welding as a method for the additive manufacturing of titanium-(6) aluminum-(4) vanadium alloy components. Dissertation, Montana Tech of The University of Montana (2012) Stavinoha, J.N.: Investigation of plasma arc welding as a method for the additive manufacturing of titanium-(6) aluminum-(4) vanadium alloy components. Dissertation, Montana Tech of The University of Montana (2012)
32.
Zurück zum Zitat Zhang H, Xu J, Wang G (2003) Fundamental study on plasma deposition manufacturing. Surf Coat Technol 171:112–118CrossRef Zhang H, Xu J, Wang G (2003) Fundamental study on plasma deposition manufacturing. Surf Coat Technol 171:112–118CrossRef
33.
Zurück zum Zitat Martina F, Mehnen J, Williams SW et al (2012) Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti–6Al–4V. J Mater Process Technol 212:1377–1386CrossRef Martina F, Mehnen J, Williams SW et al (2012) Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti–6Al–4V. J Mater Process Technol 212:1377–1386CrossRef
34.
Zurück zum Zitat Mannion B, Heinzman J (1999) Plasma arc welding brings better control. Tooling Prod 5:29–30 Mannion B, Heinzman J (1999) Plasma arc welding brings better control. Tooling Prod 5:29–30
35.
Zurück zum Zitat Baufeld B, Biest OV, Gault R (2010) Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties. Mater Des 31(Suppl 1):106–111CrossRef Baufeld B, Biest OV, Gault R (2010) Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties. Mater Des 31(Suppl 1):106–111CrossRef
36.
Zurück zum Zitat Baufeld B, Brandl E, van der Biest O (2011) Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition. J Mater Process Technol 211:1146–1158CrossRef Baufeld B, Brandl E, van der Biest O (2011) Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition. J Mater Process Technol 211:1146–1158CrossRef
37.
Zurück zum Zitat Wang F, Williams S, Colegrove P et al (2013) Microstructure and mechanical properties of wire and Arc additive manufactured Ti-6Al-4V. Metall Mater Trans A 44:968–977CrossRef Wang F, Williams S, Colegrove P et al (2013) Microstructure and mechanical properties of wire and Arc additive manufactured Ti-6Al-4V. Metall Mater Trans A 44:968–977CrossRef
38.
Zurück zum Zitat Brandl E, Baufeld B, Leyens C et al (2010) Additive manufactured Ti-6Al-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications. Phys Procedia 5:595–606CrossRef Brandl E, Baufeld B, Leyens C et al (2010) Additive manufactured Ti-6Al-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications. Phys Procedia 5:595–606CrossRef
39.
Zurück zum Zitat Lin JJ, Lv YH, Liu YX et al (2016) Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing. Mater Des 102:30–40CrossRef Lin JJ, Lv YH, Liu YX et al (2016) Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing. Mater Des 102:30–40CrossRef
40.
Zurück zum Zitat Lin J, Lv Y, Liu Y et al (2017) Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment. J Mech Behav Biomed Mater 69:19–29CrossRef Lin J, Lv Y, Liu Y et al (2017) Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment. J Mech Behav Biomed Mater 69:19–29CrossRef
41.
Zurück zum Zitat Gu J, Ding J, Williams SW et al (2016) The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al–6.3Cu alloy. Mater Sci Eng A 651:18–26CrossRef Gu J, Ding J, Williams SW et al (2016) The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al–6.3Cu alloy. Mater Sci Eng A 651:18–26CrossRef
42.
Zurück zum Zitat Lakshminarayanan A, Balasubramanian V, Elangovan K (2009) Effect of welding processes on tensile properties of AA6061 aluminium alloy joints. Int J Adv Manuf Technol 40:286–296CrossRef Lakshminarayanan A, Balasubramanian V, Elangovan K (2009) Effect of welding processes on tensile properties of AA6061 aluminium alloy joints. Int J Adv Manuf Technol 40:286–296CrossRef
43.
Zurück zum Zitat Wang JF, Sun QJ, Wang H et al (2016) Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding. Mater Sci Eng A 676:395–405CrossRef Wang JF, Sun QJ, Wang H et al (2016) Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding. Mater Sci Eng A 676:395–405CrossRef
44.
Zurück zum Zitat Xu F, Lv Y, Liu Y et al (2013) Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma Arc deposition process. J Mater Sci Technol 29:480–488CrossRef Xu F, Lv Y, Liu Y et al (2013) Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma Arc deposition process. J Mater Sci Technol 29:480–488CrossRef
45.
Zurück zum Zitat Xu FJ, Lv YH, Xu BS et al (2013) Effect of deposition strategy on the microstructure and mechanical properties of Inconel 625 super alloy fabricated by pulsed plasma arc deposition. Mater Des 45:446–455CrossRef Xu FJ, Lv YH, Xu BS et al (2013) Effect of deposition strategy on the microstructure and mechanical properties of Inconel 625 super alloy fabricated by pulsed plasma arc deposition. Mater Des 45:446–455CrossRef
46.
Zurück zum Zitat Song YA, Park S, Choi D et al (2005) 3D welding and milling: part I–a direct approach for freeform fabrication of metallic prototypes. Int J Mach Tools Manuf 45:1057–1062CrossRef Song YA, Park S, Choi D et al (2005) 3D welding and milling: part I–a direct approach for freeform fabrication of metallic prototypes. Int J Mach Tools Manuf 45:1057–1062CrossRef
47.
Zurück zum Zitat Wang F, Williams SW, Rush M (2011) Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy. Int J Adv Manuf Technol 57(5):597–603CrossRef Wang F, Williams SW, Rush M (2011) Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy. Int J Adv Manuf Technol 57(5):597–603CrossRef
48.
Zurück zum Zitat Baufeld B, van der Biest O, Gault R (2009) Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition. Int J Mater Res 100:1536–1542CrossRef Baufeld B, van der Biest O, Gault R (2009) Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition. Int J Mater Res 100:1536–1542CrossRef
49.
Zurück zum Zitat Brandl E, Greitemeier D (2012) Microstructure of additive layer manufactured Ti–6Al–4V after exceptional post heat treatments. Mater Lett 81:84–87CrossRef Brandl E, Greitemeier D (2012) Microstructure of additive layer manufactured Ti–6Al–4V after exceptional post heat treatments. Mater Lett 81:84–87CrossRef
50.
Zurück zum Zitat Szost BA, Terzi S, Martina F et al (2016) A comparative study of additive manufacturing techniques: residual stress and microstructural analysis of CLAD and WAAM printed Ti–6Al–4V components. Mater Des 89:559–567CrossRef Szost BA, Terzi S, Martina F et al (2016) A comparative study of additive manufacturing techniques: residual stress and microstructural analysis of CLAD and WAAM printed Ti–6Al–4V components. Mater Des 89:559–567CrossRef
51.
Zurück zum Zitat Zhang J, Zhang X, Wang X et al (2016) Crack path selection at the interface of wrought and wire+arc additive manufactured Ti–6Al–4V. Mater Des 104:365–375CrossRef Zhang J, Zhang X, Wang X et al (2016) Crack path selection at the interface of wrought and wire+arc additive manufactured Ti–6Al–4V. Mater Des 104:365–375CrossRef
52.
Zurück zum Zitat Brandl E, Schoberth A, Leyens C (2012) Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM). Mater Sci Eng, A 532:295–307CrossRef Brandl E, Schoberth A, Leyens C (2012) Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM). Mater Sci Eng, A 532:295–307CrossRef
53.
Zurück zum Zitat ASTM B221-standard specification for aluminum and aluminum-alloy extruded bars. Rods, Wire, Profiles, and Tubes. ASTM International, West Conshohocken (2005) ASTM B221-standard specification for aluminum and aluminum-alloy extruded bars. Rods, Wire, Profiles, and Tubes. ASTM International, West Conshohocken (2005)
54.
Zurück zum Zitat Baufeld B (2012) Mechanical properties of inconel 718 parts manufactured by shaped metal deposition (SMD). J Mater Eng Perform 21:1416–1421CrossRef Baufeld B (2012) Mechanical properties of inconel 718 parts manufactured by shaped metal deposition (SMD). J Mater Eng Perform 21:1416–1421CrossRef
55.
Zurück zum Zitat Bauccio M (1993) ASM metals reference book. ASM International, Materials Park, pp 519–540 Bauccio M (1993) ASM metals reference book. ASM International, Materials Park, pp 519–540
56.
Zurück zum Zitat Ding D, Pan Z, Cuiuri D et al (2016) Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing. Robot Comput Integr Manuf 39:32–42CrossRef Ding D, Pan Z, Cuiuri D et al (2016) Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing. Robot Comput Integr Manuf 39:32–42CrossRef
57.
Zurück zum Zitat Singh P, Dutta D (2001) Multi-direction slicing for layered manufacturing. J Comput Inf Sci Eng 1:129CrossRef Singh P, Dutta D (2001) Multi-direction slicing for layered manufacturing. J Comput Inf Sci Eng 1:129CrossRef
58.
Zurück zum Zitat Yang Y, Fuh J, Loh H et al (2003) Multi-orientational deposition to minimize support in the layered manufacturing process. J Manuf Syst 22:116–129CrossRef Yang Y, Fuh J, Loh H et al (2003) Multi-orientational deposition to minimize support in the layered manufacturing process. J Manuf Syst 22:116–129CrossRef
59.
Zurück zum Zitat Zhang J, Liou F (2004) Adaptive slicing for a multi-axis laser aided manufacturing process. J Mech Des 126:254CrossRef Zhang J, Liou F (2004) Adaptive slicing for a multi-axis laser aided manufacturing process. J Mech Des 126:254CrossRef
60.
Zurück zum Zitat Ruan J, Sparks TE, Panackal A et al (2007) Automated slicing for a multiaxis metal deposition system. J Manuf Sci Eng 129(2):303–310CrossRef Ruan J, Sparks TE, Panackal A et al (2007) Automated slicing for a multiaxis metal deposition system. J Manuf Sci Eng 129(2):303–310CrossRef
61.
Zurück zum Zitat Singh P, Dutta D (2008) Offset slices for multidirection layered deposition. J Manuf Sci Eng 130:284CrossRef Singh P, Dutta D (2008) Offset slices for multidirection layered deposition. J Manuf Sci Eng 130:284CrossRef
62.
Zurück zum Zitat Ren L, Sparks T, Ruan J et al (2008) Process planning strategies for solid freeform fabrication of metal parts. J Manuf Syst 27:158–165CrossRef Ren L, Sparks T, Ruan J et al (2008) Process planning strategies for solid freeform fabrication of metal parts. J Manuf Syst 27:158–165CrossRef
63.
Zurück zum Zitat Ding D, Pan Z, Cuiuri D et al (2016) Automatic multi-direction slicing algorithms for wire based additive manufacturing. Robot Comput Integr Manuf 37:139–150CrossRef Ding D, Pan Z, Cuiuri D et al (2016) Automatic multi-direction slicing algorithms for wire based additive manufacturing. Robot Comput Integr Manuf 37:139–150CrossRef
64.
Zurück zum Zitat Ding D, Pan ZS, Cuiuri D et al (2014) A tool-path generation strategy for wire and arc additive manufacturing. Int J Adv Manuf Technol 73(1):173–183CrossRef Ding D, Pan ZS, Cuiuri D et al (2014) A tool-path generation strategy for wire and arc additive manufacturing. Int J Adv Manuf Technol 73(1):173–183CrossRef
65.
Zurück zum Zitat Dunlavey MR (1983) Efficient polygon-filling algorithms for raster displays. ACM Trans Graph 2:264–273CrossRef Dunlavey MR (1983) Efficient polygon-filling algorithms for raster displays. ACM Trans Graph 2:264–273CrossRef
66.
Zurück zum Zitat Park SC, Choi BK (2000) Tool-path planning for direction-parallel area milling. Comput Aided Des 32:17–25CrossRef Park SC, Choi BK (2000) Tool-path planning for direction-parallel area milling. Comput Aided Des 32:17–25CrossRef
67.
Zurück zum Zitat Rajan V, Srinivasan V, Tarabanis KA (2001) The optimal zigzag direction for filling a two-dimensional region. Rapid Prototyping J 7:231–241CrossRef Rajan V, Srinivasan V, Tarabanis KA (2001) The optimal zigzag direction for filling a two-dimensional region. Rapid Prototyping J 7:231–241CrossRef
68.
Zurück zum Zitat Farouki R, Koenig T, Tarabanis K et al (1995) Path planning with offset curves for layered fabrication processes. J Manuf Syst 14:355–368CrossRef Farouki R, Koenig T, Tarabanis K et al (1995) Path planning with offset curves for layered fabrication processes. J Manuf Syst 14:355–368CrossRef
69.
Zurück zum Zitat Yang Y, Loh H, Fuh J et al (2002) Equidistant path generation for improving scanning efficiency in layered manufacturing. Rapid Prototyping J 8:30–37CrossRef Yang Y, Loh H, Fuh J et al (2002) Equidistant path generation for improving scanning efficiency in layered manufacturing. Rapid Prototyping J 8:30–37CrossRef
70.
Zurück zum Zitat Li H, Dong Z, Vickers GW (1994) Optimal toolpath pattern identification for single island, sculptured part rough machining using fuzzy pattern analysis. Comput Aided Des 26:787–795CrossRef Li H, Dong Z, Vickers GW (1994) Optimal toolpath pattern identification for single island, sculptured part rough machining using fuzzy pattern analysis. Comput Aided Des 26:787–795CrossRef
71.
Zurück zum Zitat Wang H, Jang P, Stori JA (2005) A metric-based approach to two-dimensional (2D) tool-path optimization for high-speed machining. J Manuf Sci Eng 127(1):139–148CrossRef Wang H, Jang P, Stori JA (2005) A metric-based approach to two-dimensional (2D) tool-path optimization for high-speed machining. J Manuf Sci Eng 127(1):139–148CrossRef
72.
Zurück zum Zitat Ren F, Sun Y, Guo D (2009) Combined reparameterization-based spiral toolpath generation for five-axis sculptured surface machining. Int J Adv Manuf Technol 40:760–768CrossRef Ren F, Sun Y, Guo D (2009) Combined reparameterization-based spiral toolpath generation for five-axis sculptured surface machining. Int J Adv Manuf Technol 40:760–768CrossRef
73.
Zurück zum Zitat Bertoldi M, Yardimci M, Pistor C et al (1998) Domain decomposition and space filling curves in toolpath planning and generation. In: Proceedings of the 1998 solid freeform fabrication symposium. The University of Texas at Austin, Austin, pp 267–274 Bertoldi M, Yardimci M, Pistor C et al (1998) Domain decomposition and space filling curves in toolpath planning and generation. In: Proceedings of the 1998 solid freeform fabrication symposium. The University of Texas at Austin, Austin, pp 267–274
74.
Zurück zum Zitat Chiu W, Yeung Y, Yu K (2006) Toolpath generation for layer manufacturing of fractal objects. Rapid Prototyping J 12:214–221CrossRef Chiu W, Yeung Y, Yu K (2006) Toolpath generation for layer manufacturing of fractal objects. Rapid Prototyping J 12:214–221CrossRef
75.
Zurück zum Zitat Wasser T et al (1999) Implementation and evaluation of novel build styles in fused deposition modeling (FDM). In: Proceedings of the 10th solid freeform fabrication symposium, 1999. University of Texas at Austin, Austin, pp 267–274 Wasser T et al (1999) Implementation and evaluation of novel build styles in fused deposition modeling (FDM). In: Proceedings of the 10th solid freeform fabrication symposium, 1999. University of Texas at Austin, Austin, pp 267–274
76.
Zurück zum Zitat Dwivedi R, Kovacevic R (2004) Automated torch path planning using polygon subdivision for solid freeform fabrication based on welding. J Manuf Syst 23:278–291CrossRef Dwivedi R, Kovacevic R (2004) Automated torch path planning using polygon subdivision for solid freeform fabrication based on welding. J Manuf Syst 23:278–291CrossRef
77.
Zurück zum Zitat Jin G, Li W, Gao L (2013) An adaptive process planning approach of rapid prototyping and manufacturing. Robot Comput Integr Manuf 29:23–38CrossRef Jin G, Li W, Gao L (2013) An adaptive process planning approach of rapid prototyping and manufacturing. Robot Comput Integr Manuf 29:23–38CrossRef
78.
Zurück zum Zitat Ding D, Pan Z, Cuiuri D et al (2016) Adaptive path planning for wire-feed additive manufacturing using medial axis transformation. J Clean Prod 133:942–952CrossRef Ding D, Pan Z, Cuiuri D et al (2016) Adaptive path planning for wire-feed additive manufacturing using medial axis transformation. J Clean Prod 133:942–952CrossRef
79.
Zurück zum Zitat Kulkarni P, Marsan A, Dutta D (2000) A review of process planning techniques in layered manufacturing. Rapid Prototyping J 6:18–35CrossRef Kulkarni P, Marsan A, Dutta D (2000) A review of process planning techniques in layered manufacturing. Rapid Prototyping J 6:18–35CrossRef
80.
Zurück zum Zitat Xiong J, Zhang G, Qiu Z et al (2013) Vision-sensing and bead width control of a single-bead multi-layer part: material and energy savings in GMAW-based rapid manufacturing. J Clean Prod 41:82–88CrossRef Xiong J, Zhang G, Qiu Z et al (2013) Vision-sensing and bead width control of a single-bead multi-layer part: material and energy savings in GMAW-based rapid manufacturing. J Clean Prod 41:82–88CrossRef
81.
Zurück zum Zitat Heralic A (2012) Monitoring and control of robotized laser metal-wire deposition. Dissertation, Chalmers University of Technology Heralic A (2012) Monitoring and control of robotized laser metal-wire deposition. Dissertation, Chalmers University of Technology
82.
Zurück zum Zitat Kwak YM, Doumanidis CC (2002) Geometry regulation of material deposition in near-net shape manufacturing by thermally scanned welding. J Manuf Process 4:28–41CrossRef Kwak YM, Doumanidis CC (2002) Geometry regulation of material deposition in near-net shape manufacturing by thermally scanned welding. J Manuf Process 4:28–41CrossRef
83.
Zurück zum Zitat Chen SB, Wu J (2009) Intelligentized methodology for arc welding dynamical processes. Springer, Heidelberg, pp 35–55CrossRef Chen SB, Wu J (2009) Intelligentized methodology for arc welding dynamical processes. Springer, Heidelberg, pp 35–55CrossRef
84.
Zurück zum Zitat Agapakis JE, Bolstad JO (1991) Vision sensing and processing system for monitoring and control of welding and other high-luminosity processes. In: Proceedings of international robotics and vision automation conference, vol 1385. SPIE, Boston, pp 23–28 Agapakis JE, Bolstad JO (1991) Vision sensing and processing system for monitoring and control of welding and other high-luminosity processes. In: Proceedings of international robotics and vision automation conference, vol 1385. SPIE, Boston, pp 23–28
85.
Zurück zum Zitat Zhang Y, Song H, Saeed G (2006) Observation of a dynamic specular weld pool surface. Meas Sci Technol 17(6):9–12CrossRef Zhang Y, Song H, Saeed G (2006) Observation of a dynamic specular weld pool surface. Meas Sci Technol 17(6):9–12CrossRef
86.
Zurück zum Zitat Xu Y, Fang G, Lv N et al (2015) Computer vision technology for seam tracking in robotic GTAW and GMAW. Robot Comput Integr Manuf 32:25–36CrossRef Xu Y, Fang G, Lv N et al (2015) Computer vision technology for seam tracking in robotic GTAW and GMAW. Robot Comput Integr Manuf 32:25–36CrossRef
87.
Zurück zum Zitat Xu Y, Yu H, Zhong J et al (2012) Real-time image capturing and processing of seam and pool during robotic welding process. Ind Robot 39(5):513–523CrossRef Xu Y, Yu H, Zhong J et al (2012) Real-time image capturing and processing of seam and pool during robotic welding process. Ind Robot 39(5):513–523CrossRef
88.
Zurück zum Zitat Heralić A, Christiansson AK, Lennartson B (2012) Height control of laser metal-wire deposition based on iterative learning control and 3D scanning. Opt Lasers Eng 50:1230–1241CrossRef Heralić A, Christiansson AK, Lennartson B (2012) Height control of laser metal-wire deposition based on iterative learning control and 3D scanning. Opt Lasers Eng 50:1230–1241CrossRef
Metadaten
Titel
Arc Welding Processes for Additive Manufacturing: A Review
verfasst von
Zengxi Pan
Donghong Ding
Bintao Wu
Dominic Cuiuri
Huijun Li
John Norrish
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5355-9_1