Skip to main content

2025 | OriginalPaper | Buchkapitel

Art Image Generation System Based on Artificial Intelligence

verfasst von : Ganlin Cheng

Erschienen in: Advances in Communication, Devices and Networking

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to generate high-quality images for expanding data sets and image classification, this paper proposes a method of art image generation system based on artificial intelligence. Combined with the advantages of the current image generation domain model, a two-stage image generation method with intermediate inputs is introduced. The main process of this method is use a basic GAN model to fit the features of the output image through a feature capture network (classification network). The generator with generating classification feature is fused into a basic GAN model to form a new GAN model for generating pictures. The experimental results show that the FID score of the basic model is 8.14, and the FID score of the model in this paper is 5.27. According to the measurement standard of FID, the lower the FID score is, the better the picture quality is. Verified that the two-stage image generation model outperforms the basic model in generating the MNIST dataset, indicating the effectiveness of the model. Conclusion: the model using this method has stronger pattern generation ability than the basic model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Binol H, Niazi MKK, Elmaraghy C, Moberly AC, Gurcan MN (2022) Otoxnet—automated identification of eardrum diseases from otoscope videos: a deep learning study for video-representing images. Neural Comput Appl 34(14):12197–12210CrossRef Binol H, Niazi MKK, Elmaraghy C, Moberly AC, Gurcan MN (2022) Otoxnet—automated identification of eardrum diseases from otoscope videos: a deep learning study for video-representing images. Neural Comput Appl 34(14):12197–12210CrossRef
2.
Zurück zum Zitat Zhou Y, Wang Y, Wu J, Hassan M, Pang W, Lv L et al (2022) Erythroidcounter: an automatic pipeline for erythroid cell detection, identification and counting based on deep learning. Multimedia Tools Appl 81(18):25541–25556CrossRef Zhou Y, Wang Y, Wu J, Hassan M, Pang W, Lv L et al (2022) Erythroidcounter: an automatic pipeline for erythroid cell detection, identification and counting based on deep learning. Multimedia Tools Appl 81(18):25541–25556CrossRef
3.
Zurück zum Zitat Lawal OM (2021) Yolomuskmelon: quest for fruit detection speed and accuracy using deep learning. IEEE Access PP(99):1-1 Lawal OM (2021) Yolomuskmelon: quest for fruit detection speed and accuracy using deep learning. IEEE Access PP(99):1-1
4.
Zurück zum Zitat Wang J (2022) A novel metal futures forecasting system based on wavelet packet decomposition and stochastic deep learning model. Appl Intell 52(8):9334–9352CrossRef Wang J (2022) A novel metal futures forecasting system based on wavelet packet decomposition and stochastic deep learning model. Appl Intell 52(8):9334–9352CrossRef
5.
Zurück zum Zitat Arfaoui MA, Soltani MD, Tavakkolnia I, Ghrayeb A, Haas H (2021) Invoking deep learning for joint estimation of indoor lifi user position and orientation. IEEE J Sel Areas in Commun PP(99):1-1 Arfaoui MA, Soltani MD, Tavakkolnia I, Ghrayeb A, Haas H (2021) Invoking deep learning for joint estimation of indoor lifi user position and orientation. IEEE J Sel Areas in Commun PP(99):1-1
6.
Zurück zum Zitat Wang S, An Q, Li S. , Zhao, G. , & Sun, H. . (2021). Wiring effects mitigation for through-wall human motion micro-doppler signatures using a generative adversarial network. IEEE Sensors Journal, PP(99), 1–1. Wang S, An Q, Li S. , Zhao, G. , & Sun, H. . (2021). Wiring effects mitigation for through-wall human motion micro-doppler signatures using a generative adversarial network. IEEE Sensors Journal, PP(99), 1–1.
7.
Zurück zum Zitat Zhao J, Zhou X, Shi G, Xiao N, Li K (2022) Semantic consistency generative adversarial network for cross-modality domain adaptation in ultrasound thyroid nodule classification. Appl Intell 99:1–15 Zhao J, Zhou X, Shi G, Xiao N, Li K (2022) Semantic consistency generative adversarial network for cross-modality domain adaptation in ultrasound thyroid nodule classification. Appl Intell 99:1–15
8.
Zurück zum Zitat Chen M, Liu Z (2021) Edbgan: image in painting via an edge-aware dual branch generative adversarial network. IEEE Signal Process Lett PP(99):1-1 Chen M, Liu Z (2021) Edbgan: image in painting via an edge-aware dual branch generative adversarial network. IEEE Signal Process Lett PP(99):1-1
9.
Zurück zum Zitat Liu K, Ye Z, Guo H, Cao D, Wang FY (2021) Fiss GAN : a generative adversarial network for foggy image semantic segmentation. IEEE/CAA J Automatica Sinica 8(8):1428–1439CrossRef Liu K, Ye Z, Guo H, Cao D, Wang FY (2021) Fiss GAN : a generative adversarial network for foggy image semantic segmentation. IEEE/CAA J Automatica Sinica 8(8):1428–1439CrossRef
10.
Zurück zum Zitat Dai Q, Cheng X, Qiao Y, Zhang Y (2020) Crop leaf disease image super-resolution and identification with dual attention and topology fusion generative adversarial network. IEEE Access PP(99):1-1 Dai Q, Cheng X, Qiao Y, Zhang Y (2020) Crop leaf disease image super-resolution and identification with dual attention and topology fusion generative adversarial network. IEEE Access PP(99):1-1
11.
Zurück zum Zitat Wang L, Wang J (2023) Application of 3D image generation algorithm for museum space design. Comput Aided Des Appl 20(S8):24–32 Wang L, Wang J (2023) Application of 3D image generation algorithm for museum space design. Comput Aided Des Appl 20(S8):24–32
Metadaten
Titel
Art Image Generation System Based on Artificial Intelligence
verfasst von
Ganlin Cheng
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_22