Skip to main content
Log in

Unassigned Codons, Nonsense Suppression, and Anticodon Modifications in the Evolution of the Genetic Code

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The origin of the genetic code is a central open problem regarding the early evolution of life. Here, we consider two undeveloped but important aspects of possible scenarios for the evolutionary pathway of the translation machinery: the role of unassigned codons in early stages of the code and the incorporation of tRNA anticodon modifications. As the first codons started to encode amino acids, the translation machinery likely was faced with a large number of unassigned codons. Current molecular scenarios for the evolution of the code usually assume the very rapid assignment of all codons before all 20 amino acids became encoded. We show that the phenomenon of nonsense suppression as observed in current organisms allows for a scenario in which many unassigned codons persisted throughout most of the evolutionary development of the code. In addition, we demonstrate that incorporation of anticodon modifications at a late stage is feasible. The wobble rules allow a set of 20 tRNAs fully lacking anticodon modifications to encode all 20 canonical amino acids. These observations have implications for the biochemical plausibility of early stages in the evolution of the genetic code predating tRNA anticodon modifications and allow for effective translation by a relatively small and simple early tRNA set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agris PF, Vendeix FAP, Graham WD (2007) tRNA’s wobble decoding of the genome: 40 years of modification. J Mol Biol 366:1–13

    Article  PubMed  CAS  Google Scholar 

  • Akashi H (2001) Gene expression and molecular evolution. Curr Opin Gen Dev 11:660–666

    Article  CAS  Google Scholar 

  • Beier H, Grimm M (2001) Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 29:4767–4782

    Article  PubMed  CAS  Google Scholar 

  • Brochier C, Forterre P, Gribaldo S (2004) Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol 5:R17

    Article  PubMed  Google Scholar 

  • Brooks DJ, Fresco JR, Singh M (2004) A novel method for estimating ancestral amino acid composition and its application to proteins of the Last Universal Ancestor. Bioinformatics 20:2251–2257

    Article  PubMed  CAS  Google Scholar 

  • Chabelskaya S, Kiktev D, Philippe M, Inge-Vechtomov, Zhouravleva G (2004) Nonsense mutations in the essential gene SUP35 of Saccharomyces cerevisiae are non-lethal. Mol Genet Genomics 272:297–307

    Article  PubMed  CAS  Google Scholar 

  • Crick FHC (1966) Codon-anticodon pairing: the wobble hypothesis. J Mol Biol 19:548–555

    Article  PubMed  CAS  Google Scholar 

  • Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  PubMed  CAS  Google Scholar 

  • Di Giulio M (2006) The non-monophyletic origin of the tRNA molecule and the origin of genes only after the evolutionary stage of the Last Universal Common Ancestor (LUCA). J Theor Biol 240:343–352

    Article  PubMed  CAS  Google Scholar 

  • Di Giulio M (2008) An extension of the coevolution theory of the origin of the genetic code. Biol Direct 3:37

    Article  PubMed  Google Scholar 

  • Doronina VA, Brown JD (2006) When nonsense makes sense and vice versa: noncanonical decoding events at stop codons in eukaryotes. Mol Biol 40:654–663

    Article  CAS  Google Scholar 

  • Eigen M, Schuster P (1977) The hypercycle, a principle of natural self-organization Part A: emergence of the hypercycle. Naturwissenschaften 64:541–565

    Article  PubMed  CAS  Google Scholar 

  • Fitch WM, Upper K (1987) The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harb Symp Quant Biol 52:759–767

    PubMed  CAS  Google Scholar 

  • Fournier GP, Gogarten JP (2010) Rooting the ribosomal tree of life. Mol Biol Evol 27:1792–1801

    Article  PubMed  CAS  Google Scholar 

  • Francis BR (2011) An alternative to the RNA world hypothesis. Trends Evol Biol 3:e2

    Article  Google Scholar 

  • Fujishima K, Sugahara J, Kikuta K, Hirano R, Sato A, Tomita M, Kanai A (2009) Tri-split tRNA is a transfer RNA made from 3 transcripts that provides insight into the evolution of fragmented tRNAs in archaea. Proc Natl Acad Sci USA 106:2683–2687

    Article  PubMed  CAS  Google Scholar 

  • Grosjean H, de Crécy-Lagard V, Marck C (2010) Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. FEBS Lett 584:252–264

    Article  PubMed  CAS  Google Scholar 

  • Hanyu N, Kuchino Y, Susumu N, Beier H (1986) Dramatic events in ciliate evolution: alteration of UAA and UAG termination codons to glutamine codons due to anticodon mutations in two Tetrahymena tRNAsGln. EMBO J 5:1307–1311

    PubMed  CAS  Google Scholar 

  • Higgs PG (2009) A four-column theory for the origin of the genetic code: tracing the evolutionary pathways that gave rise to an optimized code. Biol Direct 4:16

    Article  PubMed  Google Scholar 

  • Ikehara K (2002) Origins of gene, genetic code, protein and life: comprehensive view of life systems from a GNC-SNS primitive genetic code hypothesis. J Biosci 27:165–186

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi Y, Kimura S, Numata T, Nakamura D, Yokogawa T, Ogata T, Wada T, Suzuki T, Suzuki T (2010) Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea. Nat Chem Biol 6:277–282

    Article  PubMed  CAS  Google Scholar 

  • Johansson MJ, Esberg A, Huang B, Bjork GR, Bystrom AS (2008) Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol Cell Biol 28:3301–3312

    Article  PubMed  CAS  Google Scholar 

  • Jordan IK, Kondrashov FA, Adzhubei IA, Wolf YI, Koonin EV, Kondrashov AS, Sunyaev S (2005) A universal trend of amino acid gain and loss in protein evolution. Nature 433:633–638

    Article  PubMed  CAS  Google Scholar 

  • Kano A, Andachi Y, Ohama T, Osawa S (1993) Unassigned or nonsense codons in Micrococcus luteus. J Mol Biol 230:51–56

    Article  PubMed  CAS  Google Scholar 

  • Kavran JM, Gundllapalli S, O’Donoghue P, Englert M, Söll D, Steitz TA (2007) Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation. Proc Natl Acad Sci USA 104:11268–11273

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Doolittle WF (1996) A non-canonical genetic code in an early diverging eukaryotic lineage. EMBO J 15:2285–2290

    PubMed  CAS  Google Scholar 

  • Kramer EB, Farabaugh PJ (2007) The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13:87–96

    Article  PubMed  CAS  Google Scholar 

  • Lagerkvist U (1978) “Two out of three”: an alternative method for codon reading. Proc Natl Acad Sci USA 75:1759–1762

    Article  PubMed  CAS  Google Scholar 

  • Lao NT, Maloney AP, Atkins JF, Kavanagh TA (2009) Versatile dual reporter gene systems for investigating stop codon readthrough in plants. PLoS ONE 4:e7354

    Article  PubMed  Google Scholar 

  • Lehman N, Jukes TH (1988) Genetic code development by stop codon takeover. J Theoret Biol 135:203–214

    Article  CAS  Google Scholar 

  • Lehmann J, Libchaber A (2008) Degeneracy of the genetic code and stability of the base pair at the second position of the anticodon. RNA 14:1264–1269

    Article  PubMed  CAS  Google Scholar 

  • Longstaff DG, Blight SK, Zhang L, Green-Church KB, Krzycki JA (2007) In vivo contextual requirements for UAG translation as pyrrolysine. Mol Microbiol 63:229–241

    Article  PubMed  CAS  Google Scholar 

  • Lozupone CA, Knight RD, Landweber LF (2001) The molecular basis of nuclear genetic code change in ciliates. Curr Biol 11:65–74

    Article  PubMed  CAS  Google Scholar 

  • Mandal D, Kohrer C, Su D, Russell SP, Krivos K, Castleberry CM, Blum P, Limbach PA, Söll D, RajBhandary UL (2010) Agmatidine, a modified cytidine in the anticodon of archaeal tRNA(Ile), base pairs with adenosine but not with guanosine. Proc Natl Acad Sci USA 107:2872–2877

    Article  PubMed  CAS  Google Scholar 

  • Meyer F, Schmidt HJ, Plumper E, Hasilik A, Mersmann G, Meyer HE, Engström A, Heckmann K (1991) UGA is translated as cysteine in pheromone 3 of Euplotes octocarinatus. Proc Natl Acad Sci USA 88:3758–3761

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu T, Nishikawa K, Nemoto F, Kuchino Y, Nishimura S, Miyazawa T, Yokoyama S (1988) Codon and amino acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature 336:179–181

    Article  PubMed  CAS  Google Scholar 

  • Murina OA, Moskalenko SE, Zhouravleva GA (2010) Overexpression of genes encoding tRNATyr and tRNAGln increases the viability of Saccharomyces cerevisiae strains with nonsense mutations in the SUP45 gene. Mol Biol 44:268–276

    Article  CAS  Google Scholar 

  • Numata T, Ikeuchi Y, Fukai S, Suzuki T, Nureki O (2006) Snapshots of tRNA sulphuration via an adenylated intermediate. Nature 442:419–424

    Article  PubMed  CAS  Google Scholar 

  • Oba T, Andachi Y, Muto A, Osawa S (1991) CGG: An unassigned or nonsense codon in Mycoplasma capricolum. Proc Natl Acad Sci USA 88:921–925

    Article  PubMed  CAS  Google Scholar 

  • Osawa S, Jukes TH, Watanabe K, Muto A (1992) Recent evidence for evolution of the genetic code. Microbiol Rev 56:229–264

    PubMed  CAS  Google Scholar 

  • Pezo V, Metzgar D, Hendrickson TL, Waas WF, Hazebroucl S, Döring V, Marlière P, Schimmel P, de Crécy-Lagard V (2004) Artificially ambiguous genetic code confers growth yield advantage. Proc Natl Acad Sci USA 101:8593–8597

    Article  PubMed  CAS  Google Scholar 

  • Phizicky EM, Hopper AK (2010) tRNA biology charges to the front. Genes Dev 24:1832–1860

    Article  PubMed  Google Scholar 

  • Ran W, Higgs PG (2010) The influence of anticodon-codon interactions and modified bases on codon usage bias in bacteria. Mol Biol Evol 27:2129–2140

    Article  PubMed  CAS  Google Scholar 

  • Randau L, Söll D (2008) Transfer RNA genes in pieces. EMBO Rep 9:623–628

    Article  PubMed  CAS  Google Scholar 

  • Rodin AS, Szatmáry E, Rodin SN (2011) On origin of genetic code and tRNA before translation. Biol Direct 6:14

    Article  PubMed  CAS  Google Scholar 

  • Rogalski M, Karcher D, Bock R (2008) Superwobbling facilitates translation with reduced tRNA sets. Nat Struct Biol 15:192–198

    Article  CAS  Google Scholar 

  • Santos MAS, Gomes AC, Santos MC, Carreto LC, Moura GR (2011) The genetic code of the fungal CTG clade. C R Biol 334:607–611

    Article  PubMed  CAS  Google Scholar 

  • Schneider SU, Leible MB, Yang XP (1989) Strong homology between the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase of two species of Acetabularia and the occurrence of unusual codon usage. Mol Gen Genet 218:445–452

    Article  PubMed  CAS  Google Scholar 

  • Sella G, Ardell DH (2006) The coevolution of genes and genetic codes: Crick’s Frozen Accident revisited. J Mol Evol 63:297–313

    Article  PubMed  CAS  Google Scholar 

  • Sengupta S, Yang X, Higgs PG (2007) The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol 64:662–688

    Article  PubMed  CAS  Google Scholar 

  • Shaul S, Berel D, Benjamini Y, Graur D (2010) Revisiting the operational code for amino acids: ensemble attributes and their implications. RNA 16:141–153

    Article  PubMed  CAS  Google Scholar 

  • Sonneborn TM (1965) Degeneracy of the genetic code: extent, nature, and genetic implications. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 377–397

    Google Scholar 

  • Speyer JF, Lengyel P, Basilio C, Wahba AJ, Gardner RS, Ochoa S (1963) Synthetic polynucleotides and the amino acid code. Cold Spring Harb Symp Quant Biol 28:559–567

    CAS  Google Scholar 

  • Takai K, Yokoyama S (2003) Roles of 5-substituents of tRNA wobble uridines in the recognition of purine-ending codons. Nucleic Acids Res 31:6383–6391

    Article  PubMed  CAS  Google Scholar 

  • Tong KL, Wong JT (2004) Anticodon and wobble evolution. Gene 333:169–177

    Article  PubMed  CAS  Google Scholar 

  • Ussery DW, Hallin PF, Lagesen K, Wassenaar TM (2004) Genome Update: tRNAs in sequenced microbial genomes. Microbiology 150:1603–1606

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1965) On the evolution of the genetic code. Proc Natl Acad Sci USA 54:1546–1552

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Dugre DH, Saxinger WC, Dugre SA (1966) The molecular basis for the genetic code. Proc Natl Acad Sci USA 55:966–974

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Olsen GJ, Ibba M, Söll D (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microb Mol Biol Rev 64:202–236

    Article  CAS  Google Scholar 

  • Wong JT (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 72:1909–1912

    Article  PubMed  CAS  Google Scholar 

  • Wong JT (2005) Coevolution theory of the genetic code at age thirty. BioEssays 27:416–425

    Article  PubMed  CAS  Google Scholar 

  • Wong JT, Chen J, Mat WK, Ng SK, Xue H (2007) Polyphasic evidence delineating the root of life and roots of biological domains. Gene 403:39–52

    Article  PubMed  CAS  Google Scholar 

  • Yamao F, Muto A, Kawauchi Y, Iwami M, Iwagami S, Azumi Y, Osawa S (1985) UGA is read as tryptophan in Mycoplasma capricolum. Proc Natl Acad Sci USA 82:2306–2309

    Article  PubMed  CAS  Google Scholar 

  • Yarus M, Caporaso JG, Knight R (2005) Origins of the genetic code: the escaped triplet theory. Ann Rev Biochem 74:179–198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the large improvements of the manuscript based on comments of several anonymous referees. PvdG also gratefully acknowledges stimulating discussions with Dave Speijer (University of Amsterdam and Academic Medical Center) and Harry Buhrman (University of Amsterdam and Centrum Wiskunde & Informatica). This study was partly supported by Vici grant 639-023-302 from the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter T. S. van der Gulik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Gulik, P.T.S., Hoff, W.D. Unassigned Codons, Nonsense Suppression, and Anticodon Modifications in the Evolution of the Genetic Code. J Mol Evol 73, 59–69 (2011). https://doi.org/10.1007/s00239-011-9470-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-011-9470-3

Keywords

Navigation