Skip to main content
Log in

Endophyte consortia for xenobiotic phytoremediation: the root to success?

  • Commentary
  • Published:
Plant and Soil Aims and scope Submit manuscript

The Original Article was published on 07 October 2014

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242. doi:10.1016/j.chemosphere.2014.06.078

    Article  CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588. doi:10.1038/nbt960

    Article  CAS  PubMed  Google Scholar 

  • Brentner L, Mukherji S, Walsh S, Schnoor J (2010) Localization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in poplar and switchgrass plants using phosphor imager autoradiography. Environ Pollut 158:470–475. doi:10.1016/j.envpol.2009.08.022

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488: 91–95. doi.org/10.1038/nature11336

  • Chang YY, Kwon YS, Kim SY, Lee IS, Bae B (2004) Enhanced degradation of 2,4,6-trinitrotoluene (TNT) in a soil column planted with Indian mallow (Abutilon avicennae). J Biosci Bioeng 97:99–103. doi:10.1016/s1389-1723(04)70175-9

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. doi:10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  • Croes S, Weyens N, Janssen J, Vercampt H, Colpaert JV, Carleer R, Vangronsveld J (2013) Bacterial communities associated with Brassica napus L. grown on trace element-contaminated and non-contaminated fields: a genotypic and phenotypic comparison. Microb Biotechnol 6:371–384. doi:10.1111/1751-7915.12057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duringer JM, Morrie Craig A, Smith DJ, Chaney RL (2010) Uptake and transformation of soil [14C]-trinitrotoluene by cool-season grasses. Environ Sci Technol 44:6325–6330. doi:10.1021/es903671n

    Article  CAS  PubMed  Google Scholar 

  • Esteve-Nunez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352. doi:10.1128/MMBR.65.3.335-352.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17:491–494. doi:10.1038/8673

    Article  CAS  PubMed  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750. doi:10.3732/ajb.1200572

    Article  PubMed  Google Scholar 

  • GM crops: A story in numbers (2013) Nature 497: 22–23. doi: 10.1038/497022a.

  • Hannink NK, Rosser SJ, French CE, Basran A, Murray JA, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172. doi:10.1038/nbt1201-1168

    Article  CAS  PubMed  Google Scholar 

  • Herrmann SP, Milan K (2007) Mineralization and uptake of TNT by microorganisms: effect of pretreatment with alkali. Cent Eur J Energy Mater 4:45–58

    CAS  Google Scholar 

  • Ho YN, Hsieh JL, Huang CC (2013) Construction of a plant-microbe phytoremediation system: combination of vetiver grass with a functional endophytic bacterium, Achromobacter xylosoxidans F3B, for aromatic pollutants removal. Bioresour Technol 145:43–47. doi:10.1016/j.biortech.2013.02.051

    Article  CAS  PubMed  Google Scholar 

  • Jiamjitrpanich W, Parkpian P, Polprasert C, Laurent F, Kosanlavit R (2012) The tolerance efficiency of Panicum maximum and Helianthus annuus in TNT-contaminated soil and nZVI-contaminated soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:1506–1513. doi:10.1080/10934529.2012.680320

    Article  CAS  PubMed  Google Scholar 

  • Khan Z, Guelich G, Phan H, Redman R, Doty S. (2012) Bacterial and yeast endophytes from poplar and willow promote growth in crop plants and grasses. ISRN Agronomy 2012: 1–11. doi.org/10.5402/2012/

  • Knoth J, Kim S-H, Ettl G, Doty S (2012) Effects of cross host species inoculation of nitrogen-fixing endophytes on growth and leaf physiology of maize. GCB Bioenergy: n/a-n/a. doi: citeulike-article-id:12729787

  • Knoth JL, Kim SH, Ettl GJ, Doty SL (2013) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol. doi:10.1111/nph.12536

    PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15. doi:10.1094/MPMI.2004.17.1.6

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Baek K, Kim H, Kim S, Kim J, Kwon Y, Chang Y, Bae B (2007) Phytoremediation of soil co-contaminated with heavy metals and TNT using four plant species. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:2039–2045. doi:10.1080/10934520701629781

    Article  CAS  PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606. doi:10.1080/0735-260291044377

    Article  Google Scholar 

  • Lorenz A, Rylott EL, Strand SE, Bruce NC (2013) Towards engineering degradation of the explosive pollutant hexahydro-1,3,5-trinitro-1,3,5-triazine in the rhizosphere. FEMS Microbiol Lett 340:49–54. doi:10.1111/1574-6968.12072

    Article  CAS  PubMed  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90. doi:10.1038/nature11237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda T, Kiwao K, Ogawa HI (2006) Characterization of 2,4,6-trinitrotoluene (TNT)-metabolizing bacteria isolated from TNT-polluted soils in the Yamada green zone, Kitakyushu, Japan. J Environ Biotech 6:33–39

    Google Scholar 

  • Makris K, Shakya K, Datta R, Sarkar D, Pachanoor D (2007) High uptake of 2,4,6-trinitrotoluene by vetiver grass - potential for phytoremediation? Environ Pollut: 1–4. doi: DOI 10.1016/j.envpol.2006.06.020

  • Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, van der Lelie D (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23:175–207. doi:10.1080/02648725.2006.10648084

    Article  CAS  PubMed  Google Scholar 

  • Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 2014:250693. doi:10.1155/2014/250693

    Article  Google Scholar 

  • Nepovim A, Hebner A, Soudek P, Gerth A, Thomas H, Smrcek S, Vanek T (2005) Degradation of 2,4,6-trinitrotoluene by selected helophytes. Chemosphere 60:1454–1461. doi:10.1016/j.chemosphere.2005.01.073

    Article  CAS  PubMed  Google Scholar 

  • Ouyang Y, Huang CH, Huang DY, Lin D, Cui L (2007) Simulating uptake and transport of TNT by plants using STELLA. Chemosphere 69:1245–1252. doi:10.1016/j.chemosphere.2007.05.081

    Article  CAS  PubMed  Google Scholar 

  • Qasim M, Gorb L, Magers D, Honea P, Leszczynski J, Moore B, Taylor L, Middleton M (2009) Structure and reactivity of TNT and related species: application of spectroscopic approaches and quantum-chemical approximations toward understanding transformation mechanisms. J Hazard Mater 167:154–163. doi:10.1016/j.jhazmat.2008.12.105

    Article  CAS  PubMed  Google Scholar 

  • Robertson BK, Jjemba PK (2005) Enhanced bioavailability of sorbed 2,4,6-trinitrotoluene (TNT) by a bacterial consortium. Chemosphere 58:263–270. doi:10.1016/j.chemosphere.2004.08.080

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416. doi:10.1038/ismej.2007.106

    Article  PubMed  Google Scholar 

  • Rylott E, Bruce N (2009) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27:73–81. doi:10.1016/j.tibtech.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  • Rylott EL, Budarina MV, Barker A, Lorenz A, Strand SE, Bruce NC (2011a) Engineering plants for the phytoremediation of RDX in the presence of the co-contaminating explosive TNT. New Phytol 192:405–413. doi:10.1111/j.1469-8137.2011.03807.x

    Article  CAS  PubMed  Google Scholar 

  • Rylott EL, Lorenz A, Bruce NC (2011b) Biodegradation and biotransformation of explosives. Curr Opin Biotechnol 22: 434–440. doi: S0958-1669(10)00202-8 [pii] 10.1016/j.copbio.2010.10.014

  • Schoenmuth BW, Pestemer W (2004) Dendroremediation of trinitrotoluene (TNT). Part 2: fate of radio-labelled TNT in trees. Environ Sci Pollut Res Int 11:331–339. doi:10.1007/BF02979648

    Article  CAS  PubMed  Google Scholar 

  • Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475. doi:10.1128/aem.67.6.2469-2475.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stenuit BA, Agathos SN (2010) Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa? Appl Microbiol Biotechnol 88:1043–1064. doi:10.1007/s00253-010-2830-x

    Article  CAS  PubMed  Google Scholar 

  • Symons ZC, Bruce NC (2006) Bacterial pathways for degradation of nitroaromatics. Nat Prod Rep 23:845–850. doi:10.1039/b502796a

    Article  CAS  PubMed  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505. doi:10.1128/AEM.71.12.8500-8505.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thijs S, van Dillewijn P, Sillen W, Truyens S, Holtappels M, d’Haen J, Carleer R, Weyens N, Ameloot M, Ramos, JL, Vangronsveld J (2014a) Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant and Soil this issue

  • Thijs S, Weyens N, Sillen W, Gkorezis P, Carleer R, Vangronsveld J (2014b) Potential for plant growth promotion by a consortium of stress-tolerant 2,4-dinitrotoluene-degrading bacteria: isolation and characterization of a military soil. Microb Biotechnol 7:294–306. doi:10.1111/1751-7915.12111

    Article  CAS  PubMed  Google Scholar 

  • Travis ER, Hannink NK, van der Gast CJ, Thompson IP, Rosser SJ, Bruce NC (2007) Impact of transgenic tobacco on trinitrotoluene (TNT) contaminated soil community. Environ Sci Technol 41:5854–5861. doi:10.1021/es070507a

    Article  CAS  PubMed  Google Scholar 

  • Travis ER, Bruce NC, Rosser SJ (2008) Microbial and plant ecology of a long-term TNT-contaminated site. Environ Pollut 153:119–126. doi:10.1016/j.envpol.2007.07.015

    Article  CAS  PubMed  Google Scholar 

  • US Defense Science Board Task Force (1998) Unexploded Ordnance (UXO) Clearance, Active Range UXO Clearance, and Explosive Ordnance Disposal (EOD) Programs. Office of the Undersecretary of Defense for Acquisition and Technology, Washington, D. C

    Google Scholar 

  • van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34). Appl Environ Microbiol 70:508–517. doi:10.1128/AEM.70.1.508-517.2004

    Article  PubMed Central  PubMed  Google Scholar 

  • van Dillewijn P, Caballero A, Paz J, Gonzalez-Perez M, Oliva J, Ramos JL (2007) Bioremediation of 2,4,6-trinitrotoluene under field conditions. Environ Sci Technol 41:1378–1383. doi:10.1021/es062165z

    Article  PubMed  Google Scholar 

  • van Dillewijn P, Couselo J, Corredoira E, Delgado A, Wittich R, Ballester A, Ramos JL (2008) Bioremediation of 2,4,6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 42(19):7405–7410. doi:10.1021/es801231w

    Article  PubMed  Google Scholar 

  • Weyens N, Taghavi S, Barac T, van der Lelie D, Boulet J, Artois T, Carleer R, Vangronsveld J (2009a) Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration of TCE. Environ Sci Pollut Res Int 16:830–843. doi:10.1007/s11356-009-0154-0

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Artois T, Smeets K, Taghavi S, Newman L, Carleer R, Vangronsveld J (2009b) Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43:9413–9418. doi:10.1021/es901997z

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009c) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254. doi:10.1016/j.copbio.2009.02.012

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Truyens S, Dupae J, Newman L, Taghavi S, van der Lelie D, Carleer R, Vangronsveld J (2010) Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ Pollut 158:2915–2919. doi:10.1016/j.envpol.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  • Williams RE, Rathbone DA, Scrutton NS, Bruce NC (2004) Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol 70:3566–3574. doi:10.1128/AEM.70.6.3566-3574.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wittich RM, Haidour A, van Dillewijn P, Ramos JL (2008) OYE flavoprotein reductases initiate the condensation of TNT-derived intermediates to secondary diarylamines and nitrite. Environ Sci Technol 42:734–739. doi:10.1021/es071449w

    Article  CAS  PubMed  Google Scholar 

  • Wittich R, Ramos JL, van Dillewijn P (2009) Microorganisms and explosives: mechanisms of nitrogen release from TNT for use as an N-source for growth. Environ Sci Technol 43:2773–2776. doi:10.1021/es803372n

    Article  CAS  PubMed  Google Scholar 

  • Yoon JM, van Aken B, Schnoor JL (2006) Leaching of contaminated leaves following uptake and phytoremediation of RDX, HMX, and TNT by poplar. Int J Phytoremediation 8:81–94. doi:10.1080/15226510500507128

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth L. Rylott.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rylott, E.L. Endophyte consortia for xenobiotic phytoremediation: the root to success?. Plant Soil 385, 389–394 (2014). https://doi.org/10.1007/s11104-014-2296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2296-1

Keywords

Navigation