Skip to main content
Log in

High Cycle Fatigue Behaviour of Friction Stir Lap Welded 6061 Aluminium Alloy to Coated Steel Sheet Joint

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Multi-material fabrication such as joining of steel and aluminium has become prominent now-a-days in automotive industries. Friction stir welding being a novel solid state welding process, has already established good joint strength between steel and aluminium; but fatigue strength of such dissimilar joint has not yet been explored. In the present study, the friction stir lap welding was performed at each rotation speed of 500, 1000, 1500 for two different travel speed i.e. 50 and 100 mm min−1 at a constant probe depth of 2.5 mm. Among the six different joints, joint strength achieved of maximum (5 kN) and minimum (2 kN) under two parameter combination i.e. 1000 rpm 50 mm min−1 and 500 rpm 100 mm min−1 respectively, have been exclusively characterized by high cycle fatigue at R ratio 0.1. Furthermore, R ratio has been varied from +0.5, +0.3 to −0.5, −0.3 at a particular load amplitude which shows the endurance limit (106 cycles) for both combination of parameters. The experimental results show that fatigue strength at 106 cycles for both the FS welded lap joint is about 20 % of their respective failure load. Thus better fatigue strength is associated with the lap joint performed with the joint of maximum load. The fatigue behaviour of two FS joints has been correlated with the thickness of intermetallic compound and accumulation of dislocations observed by TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. DebRoy T, and Bhadeshia H K D H, Sci Technol Weld Join 15 (2010) 266.

    Article  Google Scholar 

  2. Barnes T A, and Pashby I R, J Mater Process Technol 99 (2000) 62.

    Article  Google Scholar 

  3. Park S H C, Sato Y S, and Kokawa H, in Proc 7th Int Symp, Kobe, Japan, JWS (2001), p 639.

  4. Ryabov V R, Foreign Technology Division, Wright Patterson air-force base, Ohio (1973).

    Google Scholar 

  5. Elrefaey A, Gouda M, Takahashi M, and Ikeuchi K, J Mater Eng Perform 14 (2005) 10.

    Article  Google Scholar 

  6. Maruzen (ed), Welding Handbook, Japan Welding Society, Tokyo (1990), p 496.

  7. Aritoshi M, and Okita K, Q J Jpn Weld Soc 71 (2002) 432.

    Article  Google Scholar 

  8. Lee W, Schmuecker M, Mercardo U A, Biallas G, and Jung S, Scr Mater 55 (2006) 355.

    Article  Google Scholar 

  9. Tanaka K, Kumagai M, and Yoshida H J, Jpn Inst Light Met 56 (2006) 317.

    Article  Google Scholar 

  10. Kimapong K, and Watanabe T, Mater Trans JIM 46 (2005) 835.

    Article  Google Scholar 

  11. Watanabe T, Takayama H, and Yanagisawa A, J Mater Process Technol 178 (2006) 342.

    Article  Google Scholar 

  12. Chen Y C, and Nakata K, Met Mater Trans A 39A (2008) 1985.

    Article  Google Scholar 

  13. Uzun H, Donne C D, Argagnotto A, Ghidini T, and Gambaro C, Mater Design 26 (2005) 41.

    Article  Google Scholar 

  14. Bozzi S, Etter A L H, Baudin T, Criqui B, and Kerbiguet J G, Mater Sci Eng A 527 (2010) 4504.

    Article  Google Scholar 

  15. Das H, Basak S, Das G, and Pal T K, Int J Adv Manuf Technol 64 (2013) 1653.

    Article  Google Scholar 

  16. Das H, Jana S S, Pal T K and De A, Sci Technol Weld Join 19 (2014) 69.

    Article  Google Scholar 

  17. Biallas G, Dalle Donne C, and Juricic C, in Advances in Mechanical Behaviour Plasticity and Damage. Proceedings of EUROMAT 2000, vol. 1, (eds) Miannay D, Costa P, Francois D, Elsevier, Amsterdam (2000), p 115.

  18. Braun R, Biallas G, Dalle Donne C, and Staniek G, in Materials for Transportation Industry EUROMAT’99, vol. 1, (ed) Winkler P-J, Wiley, Weinheim (2000), p 150.

  19. Dalle Donne C, and Biallas G, Fatigue and Fracture Performance of Friction Stir Welded 2024-T3 Joints. European conference on spacecraft structures materials and mechanical testing, Braunschweig, Germany (1998).

  20. Dawes C, and Thomas W, Friction Stir Welding of Aluminium Alloy. TWI reprint 493/6/95, Bulletin 6 (1995).

  21. Ericsson M, Sandsttöm R, and Hagström J, Fatigue of Friction Stir Welded AlMgSi-Alloy 6082. Second international symposium on FSW, Gothenburg, Sweden (2000).

  22. Hagström J, and Sandström R, Fatigue Properties of Welded Joints in Extruded AlMgSi-Alloys. Internal report. Department of Materials Science and Engineering, Royal Institute of Technology, S-100 44 Stockholm, Sweden, KTH/AMT-168, ISSN 0282-9770 (1997).

  23. Kawasaki T, Makino T, Todori S, Takai H, Ezumi M, and Ina Y, Application of Friction Stir Welding to the Manufacturing of Next Generation ‘A-train’ Type Rolling stock, Second international symposium on FSW, Gothenburg, Sweden (2000).

  24. Magnusson L, and Kallman L, Mechanical Properties of Friction Stir Welds in Thin Sheet of Aluminium 2024, 6013 and 7475. Second international symposium on FSW, Gothenburg, Sweden (2000).

  25. Okura I, Naruo M, Vigh L G, Hagisawa N, and Toda H, Fatigue of Aluminium Deck Fabricated by Friction Stir Welding. Eighth international conference INALCO (2001).

  26. Lomolino S, Fatigue strength and mechanical properties of butt joints FS welded on 6056-T4 Al-alloy. GKSS internal report. GKSS Forschungszentrum Geesthacht, Germany (2001).

  27. Tovo R, De Sisciolo R, and Volpone M, Proprieta` Meccaniche e Microstrutturali di Giunti ‘Fiction Stir Welded’ in Lega d’Alluminio. XXIX Convegno Nazionale AIAS, Lucca, Italia (2000).

  28. Dalle Donne C, Raimbeaux G, Biallas G, Allehaux D, Palm F, and Ghidini T, Fatigue Properties of Friction Stir Welded Aluminium Butt Joints, ICAF 2003—fatigue of aeronautical structures as an engineering challenge (2003).

  29. Dickerson T L, Int J Fatigue 25 (2003) 1399.

    Article  Google Scholar 

  30. Ericsson M, and Sandström R, Int J Fatigue 25 (2003) 1379.

    Article  Google Scholar 

  31. James M N, and Bradley G R, Int J Fatigue 25 (2003) 1389.

    Article  Google Scholar 

  32. Zhou C, Yang X, and Luan G, Scr Mater 53 (2005) 1187.

    Article  Google Scholar 

  33. Lomolino S, Tovo R, and Dos Santos J, Int J Fatigue 27 (2005) 305.

    Article  Google Scholar 

  34. Cavaliere P, Campanile G, Panella F, and Squillace A, J Mat Process Technol 180 (2006) 263.

  35. Scialpi A, De Giorgi M, De Filippis L A C, Nobile R, and Panella F W, Mater Design 29 (2008) 928.

  36. Das H, Chakraborty D, and Pal T K, Trans Nonferrous Met Soc China 24 (2014) 648.

    Article  Google Scholar 

  37. Moreira P M G P, Figuiredo M A V de, and Castro P M S T de, Theor Appl Fract Mech, 48 (2007) 169.

    Article  Google Scholar 

  38. Niendorf T, Canadinc D, Maier H J, and Karaman I. Int J Fatigue 30 (2008) 426.

    Article  Google Scholar 

  39. Fredriksson K, Melander A, and Hedman M, Int J Fatigue 10 (1988) 139.

    Article  Google Scholar 

  40. Biswas K, Elsing L, Gorl E, and Schulte M, Steel Res Int 64 (1993) 407.

    Google Scholar 

  41. Biswas K, Hauman W, and Schulte M, Technische Mitteilungen Krupp (English Edition) 1 (1994) 33.

    Google Scholar 

  42. Zimmer S, Langlois L, Laye J, and Bigot R, Int J Adv Manuf Technol 47 (2010) 201.

    Article  Google Scholar 

  43. Das H, Ghosh R N, and Pal T K, Met Mater Trans A 45A (2014) 5098.

    Article  Google Scholar 

  44. Stephens R I, Chen D K, and Hom B W, ASTM STP 595, American Society for Testing and Materials, Philadelphia (1976), p 27.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, H., Pal, T.K. High Cycle Fatigue Behaviour of Friction Stir Lap Welded 6061 Aluminium Alloy to Coated Steel Sheet Joint. Trans Indian Inst Met 68, 959–968 (2015). https://doi.org/10.1007/s12666-015-0533-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0533-9

Keywords

Navigation