Film Thickness Dependence of Crystal Structure in 100-Oriented Epitaxial Pb(Zr0.65Ti0.35)O3 Films Grown on Single-Crystal Substrates with Different Thermal Expansion Coefficients

, , and

Published 20 September 2012 Copyright (c) 2012 The Japan Society of Applied Physics
, , Citation Yoshitaka Ehara et al 2012 Jpn. J. Appl. Phys. 51 09LA14 DOI 10.1143/JJAP.51.09LA14

1347-4065/51/9S1/09LA14

Abstract

100-oriented epitaxial Pb(Zr0.65Ti0.35)O3 films with various film thicknesses from 0.1 to 3 µm were grown on (100)cSrRuO3 ∥ (100)SrTiO3 and (100)cSrRuO3 ∥ (100)LaNiO3 ∥ (001)CaF2 substrates. The out-of-plane/in-plane lattice parameter ratio of the films on the CaF2 substrates was larger than that on the SrTiO3 substrates up to 1.1 µm film thickness, while (90°-α) (α was defined as the internal tilt angle) was almost 0°. Results of analysis of Raman spectra and piezoresponse images suggest that the 1.1-µm-thick film grown on the (100)cSrRuO3 ∥ (100)LaNiO3 ∥ (001)CaF2 substrate had tetragonal symmetry with a polar-axis orientation. Moreover, the saturation polarization values of the films measured from PE hysteresis loops correspond to the two Ps values estimated from the thermodynamic theory, assuming the change in the polar direction due to the symmetry change to tetragonal, and from the crystal distortion in tetragonal symmetry. This can be explained by the large compressive stress from the CaF2 substrate having a large thermal expansion coefficient.

Export citation and abstract BibTeX RIS