Skip to main content

2015 | OriginalPaper | Buchkapitel

14. Artificial Antigen-Presenting Cells: Biomimetic Strategies for Directing the Immune Response

verfasst von : Randall A. Meyer, Dr. Jordan J. Green

Erschienen in: Biomaterials in Regenerative Medicine and the Immune System

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Antigen-specific immune modulation and bioengineered immunotherapy have many applications in medicine. One promising technology to achieve the goal of immune control is the use of artificial antigen-presenting cells (aAPCs). aAPCs are synthetic constructs that mimic natural APCs in their ability to direct and maintain a T cell response. Several design criteria are important in the construction of an aAPC including its biomaterial composition, the size and shape of the aAPC for T cell interaction, the type and density of surface proteins presented, the delivery of soluble signals, and the recreation of the dynamic immunological synapse. Various aAPCs have been developed as therapeutics including those that activate the immune system against cancer or infectious disease and others that suppress the immune system in the context of autoimmunity. Additional research into the design and application of aAPCs could unlock the full potential of this technology to direct the immune response.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Delsing CE, Gresnigt MS, Leentjens J, et al. Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infect Dis. 2014;14(1):166.CrossRef Delsing CE, Gresnigt MS, Leentjens J, et al. Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infect Dis. 2014;14(1):166.CrossRef
2.
Zurück zum Zitat Lodhi S, Lamb K, Meier- Kriesche H. Solid organ allograft survival improvement in the United States: the long- term does not mirror the dramatic short- term success. Am J Transpl. 2011;11(6):1226–35.CrossRef Lodhi S, Lamb K, Meier- Kriesche H. Solid organ allograft survival improvement in the United States: the long- term does not mirror the dramatic short- term success. Am J Transpl. 2011;11(6):1226–35.CrossRef
3.
Zurück zum Zitat Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 2011;17(11):3520–6.CrossRef Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 2011;17(11):3520–6.CrossRef
4.
Zurück zum Zitat Oelke M, Krueger C, Giuntoli RL 2nd, Schneck JP. Artificial antigen-presenting cells: artificial solutions for real diseases. Trends Mol Med. 2005;11(9):412–20.CrossRef Oelke M, Krueger C, Giuntoli RL 2nd, Schneck JP. Artificial antigen-presenting cells: artificial solutions for real diseases. Trends Mol Med. 2005;11(9):412–20.CrossRef
5.
Zurück zum Zitat Knight SC, Stagg AJ. Antigen-presenting cell types. Curr Opin Immunol. 1993;5(3):374–82.CrossRef Knight SC, Stagg AJ. Antigen-presenting cell types. Curr Opin Immunol. 1993;5(3):374–82.CrossRef
6.
Zurück zum Zitat Rossi M, Young JW. Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol. 2005;175(3):1373–81.CrossRef Rossi M, Young JW. Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol. 2005;175(3):1373–81.CrossRef
7.
Zurück zum Zitat Ohteki T, Koyasu S. Role of antigen-presenting cells in innate immune system. Arch Immunol Ther Exp—Engl Ed. 2001;49:S47–52. Ohteki T, Koyasu S. Role of antigen-presenting cells in innate immune system. Arch Immunol Ther Exp—Engl Ed. 2001;49:S47–52.
8.
Zurück zum Zitat Adalid-Peralta L, Fragoso G, Fleury A, Sciutto E. Mechanisms underlying the induction of regulatory T cells and its relevance in the adaptive immune response in parasitic infections. Int J Biol Sci. 2011;7(9):1412.CrossRef Adalid-Peralta L, Fragoso G, Fleury A, Sciutto E. Mechanisms underlying the induction of regulatory T cells and its relevance in the adaptive immune response in parasitic infections. Int J Biol Sci. 2011;7(9):1412.CrossRef
9.
Zurück zum Zitat Gascoigne NRJ, Zal T. Molecular interactions at the T cell–antigen-presenting cell interface. Curr Opin Immunol. 2004;16(1):114–9.CrossRef Gascoigne NRJ, Zal T. Molecular interactions at the T cell–antigen-presenting cell interface. Curr Opin Immunol. 2004;16(1):114–9.CrossRef
10.
Zurück zum Zitat Capece D, Verzella D, Fischietti M, Zazzeroni F, Alesse E. Targeting costimulatory molecules to improve antitumor immunity. BioMed Res Int. 2012;2012:926321. Capece D, Verzella D, Fischietti M, Zazzeroni F, Alesse E. Targeting costimulatory molecules to improve antitumor immunity. BioMed Res Int. 2012;2012:926321.
11.
Zurück zum Zitat Von Bubnoff D, De La Salle H, Wessendorf J, Koch S, Hanau D, Bieber T. Antigen- presenting cells and tolerance induction. Allergy. 2002;57(1):2–8. Von Bubnoff D, De La Salle H, Wessendorf J, Koch S, Hanau D, Bieber T. Antigen- presenting cells and tolerance induction. Allergy. 2002;57(1):2–8.
12.
Zurück zum Zitat Kaliński P, Hilkens CM, Wierenga EA, Kapsenberg ML. T-cell priming by type-1and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today. 1999;20(12):561–7.CrossRef Kaliński P, Hilkens CM, Wierenga EA, Kapsenberg ML. T-cell priming by type-1and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today. 1999;20(12):561–7.CrossRef
13.
Zurück zum Zitat Kalinski P. Dendritic cells in immunotherapy of established cancer: roles of signals 1, 2, 3 and 4. Curr Opin Investig Drugs. 2009;10(6):526. Kalinski P. Dendritic cells in immunotherapy of established cancer: roles of signals 1, 2, 3 and 4. Curr Opin Investig Drugs. 2009;10(6):526.
14.
Zurück zum Zitat Alarcon B, Mestre D, Martinez-Martin N. The immunological synapse: a cause or consequence of T-cell receptor triggering? Immunology. 2011;133(4):420–5.CrossRef Alarcon B, Mestre D, Martinez-Martin N. The immunological synapse: a cause or consequence of T-cell receptor triggering? Immunology. 2011;133(4):420–5.CrossRef
15.
Zurück zum Zitat Valitutti S, Coombs D, Dupre L. The space and time frames of T cell activation at the immunological synapse. FEBS Lett. 2010;584(24):4851–7.CrossRef Valitutti S, Coombs D, Dupre L. The space and time frames of T cell activation at the immunological synapse. FEBS Lett. 2010;584(24):4851–7.CrossRef
16.
Zurück zum Zitat Mescher M. Surface contact requirements for activation of cytotoxic T lymphocytes. J Immunol. 1992;149(7):2402–5. Mescher M. Surface contact requirements for activation of cytotoxic T lymphocytes. J Immunol. 1992;149(7):2402–5.
17.
Zurück zum Zitat Steenblock ER, Fahmy TM. A comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells. Mol Ther. 2008;16(4):765–72.CrossRef Steenblock ER, Fahmy TM. A comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells. Mol Ther. 2008;16(4):765–72.CrossRef
18.
Zurück zum Zitat Fifis T, Gamvrellis A, Crimeen-Irwin B, et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol. 2004;173(5):3148–54.CrossRef Fifis T, Gamvrellis A, Crimeen-Irwin B, et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol. 2004;173(5):3148–54.CrossRef
19.
Zurück zum Zitat Sunshine JC, Perica K, Schneck JP, Green JJ. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials. 2014;35(1):269–77.CrossRef Sunshine JC, Perica K, Schneck JP, Green JJ. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials. 2014;35(1):269–77.CrossRef
20.
Zurück zum Zitat Chacon JA, Wu RC, Sukhumalchandra P, et al. Co-stimulation through 4-1BB/CD137 improves the expansion and function of CD8(+) melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy. PloS One. 2013;8(4):e60031.CrossRef Chacon JA, Wu RC, Sukhumalchandra P, et al. Co-stimulation through 4-1BB/CD137 improves the expansion and function of CD8(+) melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy. PloS One. 2013;8(4):e60031.CrossRef
21.
Zurück zum Zitat Rudolf D, Silberzahn T, Walter S, et al. Potent costimulation of human CD8 T cells by anti-4-1BB and anti-CD28 on synthetic artificial antigen presenting cells. Cancer Immunol, Immunother. 2008;57(2):175–83.CrossRef Rudolf D, Silberzahn T, Walter S, et al. Potent costimulation of human CD8 T cells by anti-4-1BB and anti-CD28 on synthetic artificial antigen presenting cells. Cancer Immunol, Immunother. 2008;57(2):175–83.CrossRef
22.
Zurück zum Zitat Matic J, Deeg J, Scheffold A, Goldstein I, Spatz JP. Fine tuning and efficient T cell activation with stimulatory aCD3 nanoarrays. Nano Lett. 2013;13(11):5090–7.CrossRef Matic J, Deeg J, Scheffold A, Goldstein I, Spatz JP. Fine tuning and efficient T cell activation with stimulatory aCD3 nanoarrays. Nano Lett. 2013;13(11):5090–7.CrossRef
23.
Zurück zum Zitat Ansen S, Butler MO, Berezovskaya A, et al. Dissociation of its opposing immunologic effects is critical for the optimization of antitumor CD8+ T-cell responses induced by interleukin 21. Clin Cancer Res. 2008;14(19):6125–36.CrossRef Ansen S, Butler MO, Berezovskaya A, et al. Dissociation of its opposing immunologic effects is critical for the optimization of antitumor CD8+ T-cell responses induced by interleukin 21. Clin Cancer Res. 2008;14(19):6125–36.CrossRef
24.
Zurück zum Zitat Steenblock ER, Fadel T, Labowsky M, Pober JS, Fahmy TM. An artificial antigen-presenting cell with paracrine delivery of IL-2 impacts the magnitude and direction of the T cell response. J Biol Chem. 2011;286(40):34883–92.CrossRef Steenblock ER, Fadel T, Labowsky M, Pober JS, Fahmy TM. An artificial antigen-presenting cell with paracrine delivery of IL-2 impacts the magnitude and direction of the T cell response. J Biol Chem. 2011;286(40):34883–92.CrossRef
25.
Zurück zum Zitat Prakken B, Wauben M, Genini D, et al. Artificial antigen-presenting cells as a tool to exploit the immunesynapse’. Nat Med. 2000;6(12):1406–10.CrossRef Prakken B, Wauben M, Genini D, et al. Artificial antigen-presenting cells as a tool to exploit the immunesynapse’. Nat Med. 2000;6(12):1406–10.CrossRef
26.
Zurück zum Zitat Mossman KD, Campi G, Groves JT, Dustin ML. Altered TCR signaling from geometrically repatterned immunological synapses. Science. 2005;310(5751):1191–3.CrossRef Mossman KD, Campi G, Groves JT, Dustin ML. Altered TCR signaling from geometrically repatterned immunological synapses. Science. 2005;310(5751):1191–3.CrossRef
27.
Zurück zum Zitat Mandal B, Bhattacharjee H, Mittal N, et al. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomed: Nanotechnol, Biol Med. 2013;9(4):474–91. Mandal B, Bhattacharjee H, Mittal N, et al. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomed: Nanotechnol, Biol Med. 2013;9(4):474–91.
28.
Zurück zum Zitat Butler MO, Hirano N. Human cell- based artificial antigen- presenting cells for cancer immunotherapy. Immunol Rev. 2014;257(1):191–209.CrossRef Butler MO, Hirano N. Human cell- based artificial antigen- presenting cells for cancer immunotherapy. Immunol Rev. 2014;257(1):191–209.CrossRef
29.
Zurück zum Zitat Butler MO, Ansen S, Tanaka M, et al. A panel of human cell-based artificial APC enables the expansion of long-lived antigen-specific CD4+ T cells restricted by prevalent HLA-DR alleles. Int Immunol. 2010;22(11):863–73.CrossRef Butler MO, Ansen S, Tanaka M, et al. A panel of human cell-based artificial APC enables the expansion of long-lived antigen-specific CD4+ T cells restricted by prevalent HLA-DR alleles. Int Immunol. 2010;22(11):863–73.CrossRef
30.
Zurück zum Zitat Maus MV, Thomas AK, Leonard DG, et al. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat Biotechnol. 2002;20(2):143–8.CrossRef Maus MV, Thomas AK, Leonard DG, et al. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat Biotechnol. 2002;20(2):143–8.CrossRef
31.
Zurück zum Zitat Torikai H, Reik A, Liu PQ, et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood. 2012;119(24):5697–705.CrossRef Torikai H, Reik A, Liu PQ, et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood. 2012;119(24):5697–705.CrossRef
32.
Zurück zum Zitat Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood. 2005;106(1):376–83.CrossRef Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood. 2005;106(1):376–83.CrossRef
33.
Zurück zum Zitat Sun S, Cai Z, Langlade-Demoyen P, et al. Dual function of Drosophila cells as APCs for naive CD8+ T cells: implications for tumor immunotherapy. Immunity. 1996;4(6):555–64.CrossRef Sun S, Cai Z, Langlade-Demoyen P, et al. Dual function of Drosophila cells as APCs for naive CD8+ T cells: implications for tumor immunotherapy. Immunity. 1996;4(6):555–64.CrossRef
34.
Zurück zum Zitat Latouche J-B, Sadelain M. Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. Nat Biotechnol. 2000;18(4):405–9.CrossRef Latouche J-B, Sadelain M. Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. Nat Biotechnol. 2000;18(4):405–9.CrossRef
35.
Zurück zum Zitat Steenblock ER, Wrzesinski SH, Flavell RA, Fahmy TM. Antigen presentation on artificial acellular substrates: modular systems for flexible, adaptable immunotherapy. Expert Opin Biol Ther. 2009;9(4):451–64.CrossRef Steenblock ER, Wrzesinski SH, Flavell RA, Fahmy TM. Antigen presentation on artificial acellular substrates: modular systems for flexible, adaptable immunotherapy. Expert Opin Biol Ther. 2009;9(4):451–64.CrossRef
36.
Zurück zum Zitat Turtle CJ, Riddell SR. Artificial antigen-presenting cells for use in adoptive immunotherapy. Cancer J. 2010;16(4):374–81.CrossRef Turtle CJ, Riddell SR. Artificial antigen-presenting cells for use in adoptive immunotherapy. Cancer J. 2010;16(4):374–81.CrossRef
37.
Zurück zum Zitat Tham EL, Jensen PL, Mescher MF. Activation of antigen-specific T cells by artificial cell constructs having immobilized multimeric peptide—class I complexes and recombinant B7–Fc proteins. J Immunol Methods. 2001;249(1):111–9.CrossRef Tham EL, Jensen PL, Mescher MF. Activation of antigen-specific T cells by artificial cell constructs having immobilized multimeric peptide—class I complexes and recombinant B7–Fc proteins. J Immunol Methods. 2001;249(1):111–9.CrossRef
38.
Zurück zum Zitat Shalaby WS, Yeh H, Woo E, et al. Absorbable microparticulate cation exchanger for immunotherapeutic delivery. J Biomed Mater Res Part B: Appl Biomater. 2004;69(2):173–82.CrossRef Shalaby WS, Yeh H, Woo E, et al. Absorbable microparticulate cation exchanger for immunotherapeutic delivery. J Biomed Mater Res Part B: Appl Biomater. 2004;69(2):173–82.CrossRef
39.
Zurück zum Zitat Engelhard VH, Strominger JL, Mescher M, Burakoff S. Induction of secondary cytotoxic T lymphocytes by purified HLA-A and HLA-B antigens reconstituted into phospholipid vesicles. Proc Natl Acad Sci U S A. 1978;75(11):5688–91.CrossRef Engelhard VH, Strominger JL, Mescher M, Burakoff S. Induction of secondary cytotoxic T lymphocytes by purified HLA-A and HLA-B antigens reconstituted into phospholipid vesicles. Proc Natl Acad Sci U S A. 1978;75(11):5688–91.CrossRef
40.
Zurück zum Zitat Zappasodi R, Di Nicola M, Carlo-Stella C, et al. The effect of artificial antigen-presenting cells with preclustered anti-CD28/-CD3/-LFA-1 monoclonal antibodies on the induction of ex vivo expansion of functional human antitumor T cells. Haematologica. 2008;93(10):1523–34.CrossRef Zappasodi R, Di Nicola M, Carlo-Stella C, et al. The effect of artificial antigen-presenting cells with preclustered anti-CD28/-CD3/-LFA-1 monoclonal antibodies on the induction of ex vivo expansion of functional human antitumor T cells. Haematologica. 2008;93(10):1523–34.CrossRef
41.
Zurück zum Zitat Oelke M, Maus MV, Didiano D, June CH, Mackensen A, Schneck JP. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med. 2003;9(5):619–24.CrossRef Oelke M, Maus MV, Didiano D, June CH, Mackensen A, Schneck JP. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med. 2003;9(5):619–24.CrossRef
42.
Zurück zum Zitat Perica K, Tu A, Richter A, Bieler JG, Edidin M, Schneck JP. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano. 2014;8(3):2252–60.CrossRef Perica K, Tu A, Richter A, Bieler JG, Edidin M, Schneck JP. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano. 2014;8(3):2252–60.CrossRef
43.
Zurück zum Zitat Fadel TR, Steenblock ER, Stern E, et al. Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli. Nano Lett. 2008;8(7):2070–6.CrossRef Fadel TR, Steenblock ER, Stern E, et al. Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli. Nano Lett. 2008;8(7):2070–6.CrossRef
44.
Zurück zum Zitat Perica K, De Leon Medero A, Durai M, et al. Nanoscale artificial antigen presenting cells for T cell immunotherapy. Nanomed: Nanotechnol Biol Med. 2014;10(1):119–29.CrossRef Perica K, De Leon Medero A, Durai M, et al. Nanoscale artificial antigen presenting cells for T cell immunotherapy. Nanomed: Nanotechnol Biol Med. 2014;10(1):119–29.CrossRef
45.
Zurück zum Zitat Lu X, Jiang X, Liu R, Zhao H, Liang Z. Adoptive transfer of pTRP2-specific CTLs expanding by bead-based artificial antigen-presenting cells mediates anti-melanoma response. Cancer Lett. 2008;271(1):129–39.CrossRef Lu X, Jiang X, Liu R, Zhao H, Liang Z. Adoptive transfer of pTRP2-specific CTLs expanding by bead-based artificial antigen-presenting cells mediates anti-melanoma response. Cancer Lett. 2008;271(1):129–39.CrossRef
46.
Zurück zum Zitat Butler MO, Lee J-S, Ansén S, et al. Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clin Cancer Res. 2007;13(6):1857–67.CrossRef Butler MO, Lee J-S, Ansén S, et al. Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clin Cancer Res. 2007;13(6):1857–67.CrossRef
47.
Zurück zum Zitat Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333(16):1038–44.CrossRef Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333(16):1038–44.CrossRef
48.
Zurück zum Zitat Papanicolaou GA, Latouche JB, Tan C, et al. Rapid expansion of cytomegalovirus-specific cytotoxic T lymphocytes by artificial antigen-presenting cells expressing a single HLA allele. Blood. 2003;102(7):2498–505.CrossRef Papanicolaou GA, Latouche JB, Tan C, et al. Rapid expansion of cytomegalovirus-specific cytotoxic T lymphocytes by artificial antigen-presenting cells expressing a single HLA allele. Blood. 2003;102(7):2498–505.CrossRef
49.
Zurück zum Zitat Lu X-L, Liang Z-H, Zhang C-E, Lu S-J, Weng X-F, Wu X-W. Induction of the Epstein-Barr Virus latent membrane protein 2 antigen-specific cytotoxic T lymphocytes using human leukocyte antigen tetramer-based artificial antigen-presenting cells. Acta Biochim Biophys Sin. 2006;38(3):157–63.CrossRef Lu X-L, Liang Z-H, Zhang C-E, Lu S-J, Weng X-F, Wu X-W. Induction of the Epstein-Barr Virus latent membrane protein 2 antigen-specific cytotoxic T lymphocytes using human leukocyte antigen tetramer-based artificial antigen-presenting cells. Acta Biochim Biophys Sin. 2006;38(3):157–63.CrossRef
50.
Zurück zum Zitat Brodie SJ, Lewinsohn DA, Patterson BK, et al. In vivo migration and function of transferred HIV-1-specific cytotoxic T cells. Nat Med. 1999;5(1):34–41.CrossRef Brodie SJ, Lewinsohn DA, Patterson BK, et al. In vivo migration and function of transferred HIV-1-specific cytotoxic T cells. Nat Med. 1999;5(1):34–41.CrossRef
51.
Zurück zum Zitat Schütz C, Oelke M, Schneck JP, Mackensen A, Fleck M. Killer artificial antigen-presenting cells: the synthetic embodiment of a ‘guided missile’. Immunotherapy. 2010;2(4):539–50.CrossRef Schütz C, Oelke M, Schneck JP, Mackensen A, Fleck M. Killer artificial antigen-presenting cells: the synthetic embodiment of a ‘guided missile’. Immunotherapy. 2010;2(4):539–50.CrossRef
52.
Zurück zum Zitat Schütz C, Fleck M, Mackensen A, et al. Killer artificial antigen-presenting cells: a novel strategy to delete specific T cells. Blood. 2008;111(7):3546–52.CrossRef Schütz C, Fleck M, Mackensen A, et al. Killer artificial antigen-presenting cells: a novel strategy to delete specific T cells. Blood. 2008;111(7):3546–52.CrossRef
Metadaten
Titel
Artificial Antigen-Presenting Cells: Biomimetic Strategies for Directing the Immune Response
verfasst von
Randall A. Meyer
Dr. Jordan J. Green
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-18045-8_14

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.