Skip to main content

31.12.2024

Artificial Bandwidth Extension using Frequency Shifting, \(H^\infty \) Optimization, and Deep Neural Network

verfasst von: Deepika Gupta, Hanumant Singh Shekhawat

Erschienen in: Circuits, Systems, and Signal Processing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Artificial bandwidth extension (ABE) approach expands signal bandwidth. In narrowband communication, the ABE approach is used to expand the bandwidth at the receiver end of a narrowband signal. An ABE approach is proposed to improve the perception of narrowband signals. A novel error system is proposed and designed by combining the bandwidth extension process, reference band-pass shifted signal generating process, and narrowband signal generating process. The error system is transformed into a closed-loop system. Solution of the closed-loop system is obtained using the \(H^\infty \)-norm. Solution of the closed-loop system is a synthesis filter utilized in ABE process for synthesizing high-frequency components. A gain factor corresponding to the synthesis filter is computed and used for adjusting energy levels of the estimated high-frequency components. Speech signals have time-varying characteristics. Therefore, several synthesis filters and corresponding gains are needed for constructing the whole signal. Two distinct deep neural networks (DNNs) are designed to predict them. The proposed approach is evaluated on the TIMIT and RSR15 datasets and improves the MOS-LQO and CMOS values more than the baselines. The proposed approach reduces the \(\text {LSD}_{UB}\) value by 1.85 dB and \(\text {LSD}_{FB}\) value by 1.08 dB and increases the MOS-LQO value by 0.07 points when compared with our prior work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In this work, terms signal model and pole-zero model are used interchangeably.
 
Literatur
1.
Zurück zum Zitat J. Abel, Fingscheidt T, A DNN regression approach to speech enhancement by artificial bandwidth extension. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), IEEE, pp 219–223 (2017) J. Abel, Fingscheidt T, A DNN regression approach to speech enhancement by artificial bandwidth extension. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), IEEE, pp 219–223 (2017)
2.
Zurück zum Zitat J. Abel, T. Fingscheidt, Artificial speech bandwidth extension using deep neural networks for wideband spectral envelope estimation. IEEE/ACM Trans. Audio Speech Language Process. 26(1), 71–83 (2018)CrossRef J. Abel, T. Fingscheidt, Artificial speech bandwidth extension using deep neural networks for wideband spectral envelope estimation. IEEE/ACM Trans. Audio Speech Language Process. 26(1), 71–83 (2018)CrossRef
3.
Zurück zum Zitat J. Abel, M. Kaniewska, C. Guillaumé et al., An instrumental quality measure for artificially bandwidth-extended speech signals. IEEE/ACM Trans. Audio Speech Language Process. 25(2), 384–396 (2016)CrossRef J. Abel, M. Kaniewska, C. Guillaumé et al., An instrumental quality measure for artificially bandwidth-extended speech signals. IEEE/ACM Trans. Audio Speech Language Process. 25(2), 384–396 (2016)CrossRef
4.
Zurück zum Zitat J. Abel, M. Strake, Fingscheidt T, A simple cepstral domain DNN approach to artificial speech bandwidth extension, in Proceedings IEEE International Conference on Acoustics. (IEEE, Speech and Signal Processing (ICASSP), 2018), pp.5469–5473 J. Abel, M. Strake, Fingscheidt T, A simple cepstral domain DNN approach to artificial speech bandwidth extension, in Proceedings IEEE International Conference on Acoustics. (IEEE, Speech and Signal Processing (ICASSP), 2018), pp.5469–5473
5.
Zurück zum Zitat F. Albu, L.Tran , Radhika S, et al Acoustic feedback cancellation using the variable step size affine projection tanh algorithm. In: 2023 IEEE Statistical Signal Processing Workshop (SSP), IEEE, pp 522–526 (2023) F. Albu, L.Tran , Radhika S, et al Acoustic feedback cancellation using the variable step size affine projection tanh algorithm. In: 2023 IEEE Statistical Signal Processing Workshop (SSP), IEEE, pp 522–526 (2023)
6.
Zurück zum Zitat L. Alzubaidi, J. Bai, A. Al-Sabaawi et al., A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. J. Big Data 10(1), 46 (2023)CrossRefMATH L. Alzubaidi, J. Bai, A. Al-Sabaawi et al., A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. J. Big Data 10(1), 46 (2023)CrossRefMATH
7.
Zurück zum Zitat B. Andersen , J. Dyreby , Jensen B, et al Bandwidth Expansion of Narrow Band speech using Linear Prediction. web source 26 (2015) B. Andersen , J. Dyreby , Jensen B, et al Bandwidth Expansion of Narrow Band speech using Linear Prediction. web source 26 (2015)
8.
Zurück zum Zitat P.B. Bachhav, M. Todisco, Mossi M, et al., Artificial bandwidth extension using the constant-Q transform, in Proceedings International Conference on Acoustics. (IEEE, Speech and Signal Processing (ICASSP), 2017), pp.5550–5554 P.B. Bachhav, M. Todisco, Mossi M, et al., Artificial bandwidth extension using the constant-Q transform, in Proceedings International Conference on Acoustics. (IEEE, Speech and Signal Processing (ICASSP), 2017), pp.5550–5554
9.
Zurück zum Zitat Y. Bengio, I. Goodfellow, A. Courville, Deep learning (MIT press Cambridge, MA, USA, 2017), p.1MATH Y. Bengio, I. Goodfellow, A. Courville, Deep learning (MIT press Cambridge, MA, USA, 2017), p.1MATH
10.
Zurück zum Zitat E. Berdahl , Harris D, Frequency shifting for acoustic howling suppression. In: Proceedings of the 13th International Conference on Digital Audio Effects, Graz, Austria (2010) E. Berdahl , Harris D, Frequency shifting for acoustic howling suppression. In: Proceedings of the 13th International Conference on Digital Audio Effects, Graz, Austria (2010)
11.
Zurück zum Zitat L. Bin , T. Jianhua , Zhengqi W, et al A novel method of artificial bandwidth extension using deep architecture (2015) L. Bin , T. Jianhua , Zhengqi W, et al A novel method of artificial bandwidth extension using deep architecture (2015)
12.
Zurück zum Zitat T. Chen, B.A. Francis, Design of multirate filter banks by \(H^{\infty }\) optimization. IEEE Trans. Signal Process. 43(12), 2822–2830 (1995)CrossRefMATH T. Chen, B.A. Francis, Design of multirate filter banks by \(H^{\infty }\) optimization. IEEE Trans. Signal Process. 43(12), 2822–2830 (1995)CrossRefMATH
13.
Zurück zum Zitat T. Chen , Francis BA, Optimal sampled-data control systems. Springer Science & Business Media (2012) T. Chen , Francis BA, Optimal sampled-data control systems. Springer Science & Business Media (2012)
14.
Zurück zum Zitat R.Y. Chiang , Safonov MG, Matlab. Robust Control toolbox User’s guide (The Mathworks Inc, 1998) (1984) R.Y. Chiang , Safonov MG, Matlab. Robust Control toolbox User’s guide (The Mathworks Inc, 1998) (1984)
15.
Zurück zum Zitat R. Crochiere, A weighted overlap-add method of short-time fourier analysis/synthesis. IEEE Trans. Acoustics Speech Signal Process. 28(1), 99–102 (1980)CrossRefMATH R. Crochiere, A weighted overlap-add method of short-time fourier analysis/synthesis. IEEE Trans. Acoustics Speech Signal Process. 28(1), 99–102 (1980)CrossRefMATH
16.
Zurück zum Zitat N.Enbom , Kleijn WB, Bandwidth expansion of speech based on vector quantization of the mel frequency cepstral coefficients. In: Proceedings IEEE Workshop on Speech Coding, IEEE, pp 171–173 (1999) N.Enbom , Kleijn WB, Bandwidth expansion of speech based on vector quantization of the mel frequency cepstral coefficients. In: Proceedings IEEE Workshop on Speech Coding, IEEE, pp 171–173 (1999)
17.
Zurück zum Zitat EVS Permanent Document EVS-7c: Processing Functions for Characterization Phase (3GPP S4 141126, V. 1.0.0)(2014) EVS Permanent Document EVS-7c: Processing Functions for Characterization Phase (3GPP S4 141126, V. 1.0.0)(2014)
18.
Zurück zum Zitat J.A. Fuemmeler, R.C. Hardie, Gardner WR (2001) Techniques for the regeneration of wideband speech from narrowband speech. EURASIP J. Appl. Signal Process. 1, 266–274 (2001)CrossRef J.A. Fuemmeler, R.C. Hardie, Gardner WR (2001) Techniques for the regeneration of wideband speech from narrowband speech. EURASIP J. Appl. Signal Process. 1, 266–274 (2001)CrossRef
19.
Zurück zum Zitat J.S. Garofolo, Timit acoustic phonetic continuous speech corpus (Linguistic Data Consortium, 1993) J.S. Garofolo, Timit acoustic phonetic continuous speech corpus (Linguistic Data Consortium, 1993)
20.
Zurück zum Zitat D. Gupta, Artificial bandwidth extension using \(h^\infty \) sampled-data control theory and speech production model. PhD thesis (2022) D. Gupta, Artificial bandwidth extension using \(h^\infty \) sampled-data control theory and speech production model. PhD thesis (2022)
21.
Zurück zum Zitat D.Gupta, Shekhawat H, Artificial bandwidth extension using \(H^\infty \) optimization and speech production model. In: Proceedings 29th International Conference Radioelektronika (RADIOELEKTRONIKA), IEEE, pp 1–6 (2019a) D.Gupta, Shekhawat H, Artificial bandwidth extension using \(H^\infty \) optimization and speech production model. In: Proceedings 29th International Conference Radioelektronika (RADIOELEKTRONIKA), IEEE, pp 1–6 (2019a)
22.
Zurück zum Zitat D. Gupta , Shekhawat HS, Artificial bandwidth extension using \(H^\infty \) optimization. Proceedings Interspeech pp 3421–3425 (2019b) D. Gupta , Shekhawat HS, Artificial bandwidth extension using \(H^\infty \) optimization. Proceedings Interspeech pp 3421–3425 (2019b)
24.
Zurück zum Zitat D. Gupta, H.S. Shekhawat, High-band feature extraction for artificial bandwidth extension using deep neural network and \(H^\infty \) optimisation. IET Signal Process. 14(10), 783–790 (2021)CrossRefMATH D. Gupta, H.S. Shekhawat, High-band feature extraction for artificial bandwidth extension using deep neural network and \(H^\infty \) optimisation. IET Signal Process. 14(10), 783–790 (2021)CrossRefMATH
25.
Zurück zum Zitat G. Hinton, L.Deng , D. Yu, et al Deep neural networks for acoustic modeling in speech recognition. IEEE Signal processing magazine 29 (2012) G. Hinton, L.Deng , D. Yu, et al Deep neural networks for acoustic modeling in speech recognition. IEEE Signal processing magazine 29 (2012)
26.
Zurück zum Zitat B. Iser ,G. Schmidt , Minker W, Bandwidth extension of speech signals. Springer Science & Business Media 13 (2008) B. Iser ,G. Schmidt , Minker W, Bandwidth extension of speech signals. Springer Science & Business Media 13 (2008)
27.
Zurück zum Zitat ITU-T, Recommendation P.800: Methods for subjective determination of transmission quality. International Telecommunication Union, Geneva p 22 (1996) ITU-T, Recommendation P.800: Methods for subjective determination of transmission quality. International Telecommunication Union, Geneva p 22 (1996)
29.
Zurück zum Zitat ITU-T, Recommendation P. 56, Objective Measurement of Active Speech Level. International Telecommunication Union (2011) ITU-T, Recommendation P. 56, Objective Measurement of Active Speech Level. International Telecommunication Union (2011)
30.
Zurück zum Zitat ITU-T Software Tool Library 2009 User’s Manual. ITU-T Recommendation G191 (2009) ITU-T Software Tool Library 2009 User’s Manual. ITU-T Recommendation G191 (2009)
31.
Zurück zum Zitat P. Jax, P. Vary, On artificial bandwidth extension of telephone speech. Signal Process. 83(8), 1707–1719 (2003)CrossRefMATH P. Jax, P. Vary, On artificial bandwidth extension of telephone speech. Signal Process. 83(8), 1707–1719 (2003)CrossRefMATH
32.
Zurück zum Zitat K.T. Kim, M.K. Lee, H.G. Kang, Speech bandwidth extension using temporal envelope modeling. IEEE Signal Process. Lett. 15, 429–432 (2008)CrossRefMATH K.T. Kim, M.K. Lee, H.G. Kang, Speech bandwidth extension using temporal envelope modeling. IEEE Signal Process. Lett. 15, 429–432 (2008)CrossRefMATH
33.
Zurück zum Zitat A. Larcher, K.A. Lee, B. Ma et al., Text-dependent speaker verification: Classifiers, databases and RSR2015. Speech Commun. 60, 56–77 (2014)CrossRefMATH A. Larcher, K.A. Lee, B. Ma et al., Text-dependent speaker verification: Classifiers, databases and RSR2015. Speech Commun. 60, 56–77 (2014)CrossRefMATH
34.
Zurück zum Zitat K. Li, Lee CH, A deep neural network approach to speech bandwidth expansion, in Proceedings IEEE International Conference on Acoustics. (IEEE, Speech and Signal Processing (ICASSP), 2015), pp.4395–4399 K. Li, Lee CH, A deep neural network approach to speech bandwidth expansion, in Proceedings IEEE International Conference on Acoustics. (IEEE, Speech and Signal Processing (ICASSP), 2015), pp.4395–4399
35.
Zurück zum Zitat S. Li, S. Villette, P. Ramadas et al., Speech bandwidth extension using generative adversarial networks, in Proceedings IEEE International Conference on Acoustics. (IEEE, Speech and Signal Processing (ICASSP), 2018), pp.5029–5033 S. Li, S. Villette, P. Ramadas et al., Speech bandwidth extension using generative adversarial networks, in Proceedings IEEE International Conference on Acoustics. (IEEE, Speech and Signal Processing (ICASSP), 2018), pp.5029–5033
36.
Zurück zum Zitat Y. Li, S. Kang, Artificial bandwidth extension using deep neural network-based spectral envelope estimation and enhanced excitation estimation. IET Signal Process. 10(4), 422–427 (2016)CrossRefMATH Y. Li, S. Kang, Artificial bandwidth extension using deep neural network-based spectral envelope estimation and enhanced excitation estimation. IET Signal Process. 10(4), 422–427 (2016)CrossRefMATH
37.
Zurück zum Zitat Z.H. Ling, Y. Ai, Y. Gu et al., Waveform modeling and generation using hierarchical recurrent neural networks for speech bandwidth extension. IEEE/ACM Trans. Audio Speech Language Process. 26(5), 883–894 (2018)CrossRefMATH Z.H. Ling, Y. Ai, Y. Gu et al., Waveform modeling and generation using hierarchical recurrent neural networks for speech bandwidth extension. IEEE/ACM Trans. Audio Speech Language Process. 26(5), 883–894 (2018)CrossRefMATH
38.
Zurück zum Zitat Y.X. Lu , Y. Ai , Du HP, et al Towards high-quality and efficient speech bandwidth extension with parallel amplitude and phase prediction. arXiv preprint (2024) arXiv:2401.06387 Y.X. Lu , Y. Ai , Du HP, et al Towards high-quality and efficient speech bandwidth extension with parallel amplitude and phase prediction. arXiv preprint (2024) arXiv:​2401.​06387
39.
Zurück zum Zitat J. Makhoul, Linear prediction: A tutorial review. Proceedings IEEE 63(4), 561–580 (1975)CrossRefMATH J. Makhoul, Linear prediction: A tutorial review. Proceedings IEEE 63(4), 561–580 (1975)CrossRefMATH
40.
Zurück zum Zitat J. Makhoul, Berouti M, High-frequency regeneration in speech coding systems, in Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing. (United Kingdom, IEEE, Cambridge, 1979), pp.428–431 J. Makhoul, Berouti M, High-frequency regeneration in speech coding systems, in Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing. (United Kingdom, IEEE, Cambridge, 1979), pp.428–431
41.
Zurück zum Zitat D. Marelli, P. Balazs, On pole-zero model estimation methods minimizing a logarithmic criterion for speech analysis. IEEE Trans. Audio Speech Language Process. 18(2), 237–248 (2010)CrossRefMATH D. Marelli, P. Balazs, On pole-zero model estimation methods minimizing a logarithmic criterion for speech analysis. IEEE Trans. Audio Speech Language Process. 18(2), 237–248 (2010)CrossRefMATH
42.
Zurück zum Zitat J.D. Markel , Gray AJ, Linear prediction of speech. Springer Science & Business Media 12 (2013) J.D. Markel , Gray AJ, Linear prediction of speech. Springer Science & Business Media 12 (2013)
43.
Zurück zum Zitat Mandatory speech codec speech processing functions: Adaptive Multi-rate (AMR) (2008)speech codec; transcoding fucntions, 3GPP TS 26.090 Rel. 8 (2008) Mandatory speech codec speech processing functions: Adaptive Multi-rate (AMR) (2008)speech codec; transcoding fucntions, 3GPP TS 26.090 Rel. 8 (2008)
44.
Zurück zum Zitat A.H. Nour-Eldin , Kabal P, Memory-based approximation of the gaussian mixture model framework for bandwidth extension of narrowband speech. In: Proceedings Twelfth Annual Conference of the International Speech Communication Association (2011) A.H. Nour-Eldin , Kabal P, Memory-based approximation of the gaussian mixture model framework for bandwidth extension of narrowband speech. In: Proceedings Twelfth Annual Conference of the International Speech Communication Association (2011)
45.
Zurück zum Zitat Y.Ohtani ,M .Tamura , Morita M , et al Gmm-based bandwidth extension using sub-band basis spectrum model. In: Proceedings Fifteenth Annual Conference of the International Speech Communication Association (2014) Y.Ohtani ,M .Tamura , Morita M , et al Gmm-based bandwidth extension using sub-band basis spectrum model. In: Proceedings Fifteenth Annual Conference of the International Speech Communication Association (2014)
46.
Zurück zum Zitat H. Pulakka, P. Alku, Bandwidth extension of telephone speech using a neural network and a filter bank implementation for highband mel spectrum. IEEE Trans. Audio Speech Language Process. 19(7), 2170–2183 (2011)CrossRefMATH H. Pulakka, P. Alku, Bandwidth extension of telephone speech using a neural network and a filter bank implementation for highband mel spectrum. IEEE Trans. Audio Speech Language Process. 19(7), 2170–2183 (2011)CrossRefMATH
47.
Zurück zum Zitat H. Pulakka, U. Remes, K. Palomäki et al., Speech bandwidth extension using gaussian mixture model-based estimation of the highband mel spectrum, in Proceedings IEEE International Conference on Acoustics. (IEEE, Speech and Signal Processing (ICASSP), 2011), pp.5100–5103 H. Pulakka, U. Remes, K. Palomäki et al., Speech bandwidth extension using gaussian mixture model-based estimation of the highband mel spectrum, in Proceedings IEEE International Conference on Acoustics. (IEEE, Speech and Signal Processing (ICASSP), 2011), pp.5100–5103
48.
Zurück zum Zitat Y. Qian, Kabal P, Dual-mode wideband speech recovery from narrowband speech, in Eighth European Conference on Speech Communication and Technology. (GENEVA, Switzerland, 2003), pp.1433–1436 Y. Qian, Kabal P, Dual-mode wideband speech recovery from narrowband speech, in Eighth European Conference on Speech Communication and Technology. (GENEVA, Switzerland, 2003), pp.1433–1436
49.
Zurück zum Zitat N.C. Rakotonirina, Self-attention for audio super-resolution. In: 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP), IEEE, pp 1–6 (2021) N.C. Rakotonirina, Self-attention for audio super-resolution. In: 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP), IEEE, pp 1–6 (2021)
50.
Zurück zum Zitat J. Sadasivan, S. Mukherjee, Seelamantula CS, Joint dictionary training for bandwidth extension of speech signals, in Proceedings International Conference on Acoustics. (IEEE, Speech and Signal Processing (ICASSP), 2016), pp.5925–5929 J. Sadasivan, S. Mukherjee, Seelamantula CS, Joint dictionary training for bandwidth extension of speech signals, in Proceedings International Conference on Acoustics. (IEEE, Speech and Signal Processing (ICASSP), 2016), pp.5925–5929
51.
Zurück zum Zitat M.L. Seltzer, A. Acero, Training wideband acoustic models using mixed-bandwidth training data for speech recognition. IEEE Trans. Audio Speech Language Process. 15(1), 235–245 (2007)CrossRefMATH M.L. Seltzer, A. Acero, Training wideband acoustic models using mixed-bandwidth training data for speech recognition. IEEE Trans. Audio Speech Language Process. 15(1), 235–245 (2007)CrossRefMATH
52.
Zurück zum Zitat U. Shaked ,Y. Theodor, \(H^\infty \) optimal estimation: a tutorial. In: Proceedings 31st IEEE Conference on Decision and Control, IEEE, pp 2278–2286 (1992) U. Shaked ,Y. Theodor, \(H^\infty \) optimal estimation: a tutorial. In: Proceedings 31st IEEE Conference on Decision and Control, IEEE, pp 2278–2286 (1992)
53.
Zurück zum Zitat X. Shao , Robust Algorithms for Speech Reconstruction on Mobile Devices. PhD thesis, University of East Anglia (2005) X. Shao , Robust Algorithms for Speech Reconstruction on Mobile Devices. PhD thesis, University of East Anglia (2005)
54.
Zurück zum Zitat G.B. Song, P. Martynovich, A study of HMM-based bandwidth extension of speech signals. Signal Process. 89(10), 2036–2044 (2009)CrossRefMATH G.B. Song, P. Martynovich, A study of HMM-based bandwidth extension of speech signals. Signal Process. 89(10), 2036–2044 (2009)CrossRefMATH
55.
Zurück zum Zitat Y. Sunil , Sinha R, Exploration of class specific ABWE for robust children’s ASR under mismatched condition. In: Proceedings International Conference on Signal Processing and Communications (SPCOM), IEEE, pp 1–5 (2012) Y. Sunil , Sinha R, Exploration of class specific ABWE for robust children’s ASR under mismatched condition. In: Proceedings International Conference on Signal Processing and Communications (SPCOM), IEEE, pp 1–5 (2012)
56.
Zurück zum Zitat H. Tolba , D. O’Shaughnessy On the application of the am-fm model for the recovery of missing frequency bands of telephone speech. In: Fifth International Conference on Spoken Language Processing, Sydney, Australia (1998) H. Tolba , D. O’Shaughnessy On the application of the am-fm model for the recovery of missing frequency bands of telephone speech. In: Fifth International Conference on Spoken Language Processing, Sydney, Australia (1998)
57.
Zurück zum Zitat T. Unno ,A. McCree, A robust narrowband to wideband extension system featuring enhanced codebook mapping. In: Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing, IEEE, pp I–805 (2005) T. Unno ,A. McCree, A robust narrowband to wideband extension system featuring enhanced codebook mapping. In: Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing, IEEE, pp I–805 (2005)
58.
Zurück zum Zitat S. Vaseghi , E. Zavarehei , Yan Q, Speech bandwidth extension: Extrapolations of spectral envelop and harmonicity quality of excitation. In: Proceedings International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp III–844–III–847 (2006) S. Vaseghi , E. Zavarehei , Yan Q, Speech bandwidth extension: Extrapolations of spectral envelop and harmonicity quality of excitation. In: Proceedings International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp III–844–III–847 (2006)
59.
Zurück zum Zitat W. Verhelst, Overlap-add methods for time-scaling of speech. Speech Commun. 30(4), 207–221 (2000)CrossRefMATH W. Verhelst, Overlap-add methods for time-scaling of speech. Speech Commun. 30(4), 207–221 (2000)CrossRefMATH
60.
Zurück zum Zitat H. Wang, D. Wang, Towards robust speech super-resolution. IEEE/ACM Trans. Audio Speech Language Process. 29, 2058–2066 (2021)CrossRefMATH H. Wang, D. Wang, Towards robust speech super-resolution. IEEE/ACM Trans. Audio Speech Language Process. 29, 2058–2066 (2021)CrossRefMATH
61.
Zurück zum Zitat Y. Wang ,S. Zhao ,W. Liu , et al Speech bandwidth expansion based on deep neural networks. In: Proceedings Sixteenth Annual Conference of the International Speech Communication Association (2015) Y. Wang ,S. Zhao ,W. Liu , et al Speech bandwidth expansion based on deep neural networks. In: Proceedings Sixteenth Annual Conference of the International Speech Communication Association (2015)
63.
Zurück zum Zitat Y. Xu, J. Du, L.R. Dai et al., An experimental study on speech enhancement based on deep neural networks. IEEE Signal Process. Lett. 21(1), 65–68 (2014)CrossRefMATH Y. Xu, J. Du, L.R. Dai et al., An experimental study on speech enhancement based on deep neural networks. IEEE Signal Process. Lett. 21(1), 65–68 (2014)CrossRefMATH
64.
Zurück zum Zitat C. YağLı, M.T. Turan, E. Erzin, Artificial bandwidth extension of spectral envelope along a viterbi path. Speech Commun. 55(1), 111–118 (2013)CrossRef C. YağLı, M.T. Turan, E. Erzin, Artificial bandwidth extension of spectral envelope along a viterbi path. Speech Commun. 55(1), 111–118 (2013)CrossRef
65.
Zurück zum Zitat Y. Yamamoto, M. Nagahara, P.P. Khargonekar, Signal Reconstruction via \(H^{\infty }\) Sampled-Data Control Theory Beyond the Shannon Paradigm. IEEE Trans. Signal Process. 60(2), 613–625 (2012)MathSciNetCrossRefMATH Y. Yamamoto, M. Nagahara, P.P. Khargonekar, Signal Reconstruction via \(H^{\infty }\) Sampled-Data Control Theory Beyond the Shannon Paradigm. IEEE Trans. Signal Process. 60(2), 613–625 (2012)MathSciNetCrossRefMATH
66.
Zurück zum Zitat J. Zhang ,L. Chai , Zhang C, et al Multi-objective approximation of iir by fir digital filters. In: 6th World Congress on Intelligent Control and Automation, IEEE, pp 6574–6577 (2006) J. Zhang ,L. Chai , Zhang C, et al Multi-objective approximation of iir by fir digital filters. In: 6th World Congress on Intelligent Control and Automation, IEEE, pp 6574–6577 (2006)
Metadaten
Titel
Artificial Bandwidth Extension using Frequency Shifting, Optimization, and Deep Neural Network
verfasst von
Deepika Gupta
Hanumant Singh Shekhawat
Publikationsdatum
31.12.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02911-y