Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2022 | OriginalPaper | Buchkapitel

6. Artificial Intelligence and Machine Learning in Manufacturing

verfasst von : Surjya Kanta Pal, Debasish Mishra, Arpan Pal, Samik Dutta, Debashish Chakravarty, Srikanta Pal

Erschienen in: Digital Twin – Fundamental Concepts to Applications in Advanced Manufacturing

Verlag: Springer International Publishing

Abstract

The diagnosis of manufacturing processes and systems, prediction of machine health for corrective measures are mainly achieved through various machine learning techniques. In the previous chapters, discussions were held around the signal and image processing techniques, using which meaningful information was gathered from the raw data. The results are validated by correlating with the experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Schintler LA, McNeely CL (2020) Encyclopedia of Big Data. Springer International Publishing, Cham CrossRef Schintler LA, McNeely CL (2020) Encyclopedia of Big Data. Springer International Publishing, Cham CrossRef
9.
Zurück zum Zitat Maddala GS (1992) Introduction to econometrics II. Macmillan Publishing Company Maddala GS (1992) Introduction to econometrics II. Macmillan Publishing Company
10.
Zurück zum Zitat Frigo M, Johnson SG, FFTW: an adaptive software architecture for the FFT. In: Proceedings of the 1998 IEEE international conference on acoustics, speech and signal processing, ICASSP ’98 (Cat. No.98CH36181). IEEE, pp 1381–1384 Frigo M, Johnson SG, FFTW: an adaptive software architecture for the FFT. In: Proceedings of the 1998 IEEE international conference on acoustics, speech and signal processing, ICASSP ’98 (Cat. No.98CH36181). IEEE, pp 1381–1384
12.
Zurück zum Zitat Kay SM, Fundamentals of statistical signal processing: practical algorithm development Kay SM, Fundamentals of statistical signal processing: practical algorithm development
13.
Zurück zum Zitat Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop on research issues in data mining and knowledge discovery—DMKD ’03. ACM Press, New York, New York, USA, p 2 Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop on research issues in data mining and knowledge discovery—DMKD ’03. ACM Press, New York, New York, USA, p 2
15.
Zurück zum Zitat Liggins M II, Hall D, Llinas J (2017) Handbook of multisensor data fusion. CRC Press CrossRef Liggins M II, Hall D, Llinas J (2017) Handbook of multisensor data fusion. CRC Press CrossRef
18.
Zurück zum Zitat Poor HV (1994) An introduction to signal detection and estimation. Springer New York, NY Poor HV (1994) An introduction to signal detection and estimation. Springer New York, NY
19.
Zurück zum Zitat Kay SM (1991) Fundamentals of statistical signal processing, vol 1. Prantice Hall Kay SM (1991) Fundamentals of statistical signal processing, vol 1. Prantice Hall
25.
Zurück zum Zitat Awad M, Khanna R (2015) Machine learning. In: Efficient learning machines. Apress, Berkeley, CA, pp 1–18 Awad M, Khanna R (2015) Machine learning. In: Efficient learning machines. Apress, Berkeley, CA, pp 1–18
26.
Zurück zum Zitat Ernest F-H (2008) Jess, the rule engine for the java platform Ernest F-H (2008) Jess, the rule engine for the java platform
27.
Zurück zum Zitat Proctor M (2012) Drools: a rule engine for complex event processing, pp 2–2 Proctor M (2012) Drools: a rule engine for complex event processing, pp 2–2
28.
Zurück zum Zitat Zalta EN (2020) The problem of induction, the stanford encyclopedia of philosophy, Spring 202. Metaphysics Research Lab, Stanford University Zalta EN (2020) The problem of induction, the stanford encyclopedia of philosophy, Spring 202. Metaphysics Research Lab, Stanford University
29.
Zurück zum Zitat Magnani L (2001) Abduction, reason and science. Springer US, Boston, MA Magnani L (2001) Abduction, reason and science. Springer US, Boston, MA
33.
Zurück zum Zitat Martinez GS, Sierla S, Karhela T, Vyatkin V (2018) Automatic generation of a simulation-based digital twin of an industrial process plant. In: IECON 2018 44th annual conference of the IEEE industrial electronics society. IEEE, pp 3084–3089 Martinez GS, Sierla S, Karhela T, Vyatkin V (2018) Automatic generation of a simulation-based digital twin of an industrial process plant. In: IECON 2018 44th annual conference of the IEEE industrial electronics society. IEEE, pp 3084–3089
35.
Zurück zum Zitat Pal A, Mukherjee A, P. B (2015) Model-driven development for internet of things: towards easing the concerns of application developers, pp 339–346 Pal A, Mukherjee A, P. B (2015) Model-driven development for internet of things: towards easing the concerns of application developers, pp 339–346
36.
Zurück zum Zitat Dey S, Jaiswal D, Paul HS, Mukherjee A (2016) A Semantic algorithm repository and workflow designer tool: signal processing use case, pp 53–61 Dey S, Jaiswal D, Paul HS, Mukherjee A (2016) A Semantic algorithm repository and workflow designer tool: signal processing use case, pp 53–61
37.
Zurück zum Zitat Murphy KP (2012) Machine learning: a probabilistic perspective. The MIT Press Cambridge, Massachusetts London, England MATH Murphy KP (2012) Machine learning: a probabilistic perspective. The MIT Press Cambridge, Massachusetts London, England MATH
40.
Zurück zum Zitat Machine learning. http://​mlclass.​stanford.​edu/​#:~:text=What Is Machine Learning%3F,understandingofthehumangenome Machine learning. http://​mlclass.​stanford.​edu/​#:~:text=What Is Machine Learning%3F,understandingofthehumangenome
45.
Zurück zum Zitat Madisetti VK, Williams DB (2018) The digital signal processing handbook, vol 3. CRC Press Madisetti VK, Williams DB (2018) The digital signal processing handbook, vol 3. CRC Press
46.
Zurück zum Zitat Goodwin GC, Sin KSS adaptive filtering prediction and control Goodwin GC, Sin KSS adaptive filtering prediction and control
47.
Zurück zum Zitat Simon H (1996) Adaptive filter theory. Prentice Hall, Upper Saddle River, New Jersey Simon H (1996) Adaptive filter theory. Prentice Hall, Upper Saddle River, New Jersey
48.
Zurück zum Zitat Ingle VK, Kogon SM, Manolakis DG (2005) Statistical and adaptive signal processing Ingle VK, Kogon SM, Manolakis DG (2005) Statistical and adaptive signal processing
49.
Zurück zum Zitat Honig ML, Messerschmitt DG, Adaptive filters: structures, algorithms and application. Springer, US Honig ML, Messerschmitt DG, Adaptive filters: structures, algorithms and application. Springer, US
50.
Zurück zum Zitat Jenkins WK, Hull AW, Strait JC et al (1996) Advanced concepts in adaptive signal processing. Springer, US, Boston, MA CrossRef Jenkins WK, Hull AW, Strait JC et al (1996) Advanced concepts in adaptive signal processing. Springer, US, Boston, MA CrossRef
51.
Zurück zum Zitat Pal A, Ukil A, Deb T, et al (2020) Instant adaptive learning: an adaptive filter based fast learning model construction for sensor signal time series classification on edge devices. In: ICASSP 2020—2020 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 8339–8343 Pal A, Ukil A, Deb T, et al (2020) Instant adaptive learning: an adaptive filter based fast learning model construction for sensor signal time series classification on edge devices. In: ICASSP 2020—2020 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 8339–8343
52.
Zurück zum Zitat Liu W, Prncipe JC, Haykin S (2010) Kernel adaptive filtering. Wiley, Hoboken, NJ, USA CrossRef Liu W, Prncipe JC, Haykin S (2010) Kernel adaptive filtering. Wiley, Hoboken, NJ, USA CrossRef
55.
Zurück zum Zitat Ukil A, Malhotra P, Bandyopadhyay S, et al (2019) Fusing features based on signal properties and TimeNet for time series classification. In: ESANN 2019 proceedings, European symposium on artificial neural networks, computational intelligence and machine learning Ukil A, Malhotra P, Bandyopadhyay S, et al (2019) Fusing features based on signal properties and TimeNet for time series classification. In: ESANN 2019 proceedings, European symposium on artificial neural networks, computational intelligence and machine learning
56.
Zurück zum Zitat Ukil A, Bandyopadhyay S, Pal A (2020) Sig-R 2ResNet: residual network with signal processing-refined residual mapping, auto-tuned L 1-regularization with modified Adam optimizer for time series classification. In: 2020 international joint conference on neural networks (IJCNN). IEEE, pp 1–8 Ukil A, Bandyopadhyay S, Pal A (2020) Sig-R 2ResNet: residual network with signal processing-refined residual mapping, auto-tuned L 1-regularization with modified Adam optimizer for time series classification. In: 2020 international joint conference on neural networks (IJCNN). IEEE, pp 1–8
57.
Zurück zum Zitat Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2012) Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2012) Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms
67.
Zurück zum Zitat Ukil A, Sahu I, Puri C, et al (2018) AutoModeling: integrated approach for automated model generation by ensemble selection of feature subset and classifier. In: 2018 international joint conference on neural networks (IJCNN). IEEE, pp 1–8 Ukil A, Sahu I, Puri C, et al (2018) AutoModeling: integrated approach for automated model generation by ensemble selection of feature subset and classifier. In: 2018 international joint conference on neural networks (IJCNN). IEEE, pp 1–8
68.
Zurück zum Zitat Thokala NK, Kumar K, Girish Chandra M, Ravikumar K (2019) Long-term forecasting of heterogenous variables with automatic algorithm selection. pp 186–197 Thokala NK, Kumar K, Girish Chandra M, Ravikumar K (2019) Long-term forecasting of heterogenous variables with automatic algorithm selection. pp 186–197
72.
Zurück zum Zitat Rajbhoj A, Deshpande S, Gubbi J, et al (2019) A system for semi-automatic construction of image processing pipeline for complex problems. pp 295–310 Rajbhoj A, Deshpande S, Gubbi J, et al (2019) A system for semi-automatic construction of image processing pipeline for complex problems. pp 295–310
73.
Zurück zum Zitat Bapna A, Thokala N, Chandra MG, Kumar K (2018) Deep learning based tool wear monitoring in CNC machines. In: European conference on machine learning (ECML-PKDD workshop), Dublin, Ireland Bapna A, Thokala N, Chandra MG, Kumar K (2018) Deep learning based tool wear monitoring in CNC machines. In: European conference on machine learning (ECML-PKDD workshop), Dublin, Ireland
77.
Zurück zum Zitat Banerjee A, Mishra D, Nayak P, Pal SK (2020) Low-cost real-time machine vision based quality inspection system (Filed) Banerjee A, Mishra D, Nayak P, Pal SK (2020) Low-cost real-time machine vision based quality inspection system (Filed)
79.
Zurück zum Zitat Sahu S, Kumar K, Majumdar A, Chandra MG (2021) Deep transform learning for multi-sensor fusion. In: 2020 28th European signal processing conference (EUSIPCO). IEEE, pp 1996–2000 Sahu S, Kumar K, Majumdar A, Chandra MG (2021) Deep transform learning for multi-sensor fusion. In: 2020 28th European signal processing conference (EUSIPCO). IEEE, pp 1996–2000
81.
Zurück zum Zitat Hegde S, Prasad R, Hebbalaguppe R, Kumar V (2019) Variational student: learning compact and sparser networks in knowledge distillation framework Hegde S, Prasad R, Hebbalaguppe R, Kumar V (2019) Variational student: learning compact and sparser networks in knowledge distillation framework
82.
Zurück zum Zitat Dey S, Mukherjee A, Pal A, Balamuralidhar P (2018) Partitioning of CNN models for execution on fog devices. In: Proceedings of the 1st ACM international workshop on smart cities and fog computing. ACM, New York, NY, USA, pp 19–24 Dey S, Mukherjee A, Pal A, Balamuralidhar P (2018) Partitioning of CNN models for execution on fog devices. In: Proceedings of the 1st ACM international workshop on smart cities and fog computing. ACM, New York, NY, USA, pp 19–24
83.
Zurück zum Zitat Dey S, Mukherjee A, Pal A, P B (2019) Embedded deep inference in practice. In: Proceedings of the 1st workshop on machine learning on edge in sensor systems—SenSys-ML 2019. ACM Press, New York, USA, pp 25–30 Dey S, Mukherjee A, Pal A, P B (2019) Embedded deep inference in practice. In: Proceedings of the 1st workshop on machine learning on edge in sensor systems—SenSys-ML 2019. ACM Press, New York, USA, pp 25–30
84.
Zurück zum Zitat Mondal J, Dey S, Mukherjee A, et al (2019) Edge acceleration of deep neural networks (demo). In: Proceedings of the 17th annual international conference on mobile systems, applications, and services. ACM, New York, NY, USA, pp 691–692 Mondal J, Dey S, Mukherjee A, et al (2019) Edge acceleration of deep neural networks (demo). In: Proceedings of the 17th annual international conference on mobile systems, applications, and services. ACM, New York, NY, USA, pp 691–692
85.
Zurück zum Zitat Dey S, Dutta J (2020) A low footprint automatic speech recognition system for resource constrained edge devices. In: Proceedings of the 2nd international workshop on challenges in artificial intelligence and machine learning for internet of things. ACM, New York, NY, USA, pp 48–54 Dey S, Dutta J (2020) A low footprint automatic speech recognition system for resource constrained edge devices. In: Proceedings of the 2nd international workshop on challenges in artificial intelligence and machine learning for internet of things. ACM, New York, NY, USA, pp 48–54
Metadaten
Titel
Artificial Intelligence and Machine Learning in Manufacturing
verfasst von
Surjya Kanta Pal
Debasish Mishra
Arpan Pal
Samik Dutta
Debashish Chakravarty
Srikanta Pal
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-81815-9_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.