Skip to main content

2024 | OriginalPaper | Buchkapitel

Artificial Intelligence and Machine Learning with IoT

verfasst von : Shailendra W. Shende, Jitendra V. Tembhurne, Tapan Kumar Jain

Erschienen in: Modern Approaches in IoT and Machine Learning for Cyber Security

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dieses Kapitel vertieft sich in die Schnittmenge von künstlicher Intelligenz, maschinellem Lernen und Deep Learning mit dem Internet der Dinge (IoT). Es beginnt mit der Definition zentraler Begriffe und Konzepte wie KI, ML und DL und ihrer Beziehung. Das Kapitel untersucht dann verschiedene Algorithmen des maschinellen Lernens, einschließlich überwachter Lernmethoden wie k-Nearest Neighbors und Support Vector Machines, unbeaufsichtigter Lerntechniken wie Principal Component Analysis und K-means Clustering sowie Verstärkungslernen. Darüber hinaus werden die Herausforderungen und das Potenzial von KI und ML in IoT-Anwendungen wie Datenaggregation, Routing und Sicherheit diskutiert. Das Kapitel schließt mit der Betonung der Bedeutung dieser Technologien für die Verbesserung der Leistung und Sicherheit von IoT-Systemen, insbesondere im Gesundheitswesen und in der Smart-Home-Industrie.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Celino, D. Dell’Aglio, E. Dell Valle, R. Grothmann, F. Steinke, V. Tresp, Integrating machine learning in a semantic web platform for traffic forecasting and routing, in Proc. 3rd Int. Work. Inductive Reason. Mach. Learn. Semant. Web, (IRMLES 2011, 2011), pp. 1–12 Celino, D. Dell’Aglio, E. Dell Valle, R. Grothmann, F. Steinke, V. Tresp, Integrating machine learning in a semantic web platform for traffic forecasting and routing, in Proc. 3rd Int. Work. Inductive Reason. Mach. Learn. Semant. Web, (IRMLES 2011, 2011), pp. 1–12
6.
Zurück zum Zitat H.-S. Ham et al., Linear SVM-based android malware detection for reliable IoT services. J. Appl. Math. 2014, 594501 (2014)CrossRef H.-S. Ham et al., Linear SVM-based android malware detection for reliable IoT services. J. Appl. Math. 2014, 594501 (2014)CrossRef
8.
Zurück zum Zitat A. Burrello, A. Marchioni, D. Brunelli, L. Benini, Embedding principal component analysis for data reduction in structural health monitoring on low-cost IoT gateways. ACM Int. Conf. Comput. Front. 2019, CF 2019 – Proc, 235–239 (2019). https://doi.org/10.1145/3310273.3322822 A. Burrello, A. Marchioni, D. Brunelli, L. Benini, Embedding principal component analysis for data reduction in structural health monitoring on low-cost IoT gateways. ACM Int. Conf. Comput. Front. 2019, CF 2019 – Proc, 235–239 (2019). https://​doi.​org/​10.​1145/​3310273.​3322822
20.
Zurück zum Zitat M. Cuka, D. Elmazi, R. Obukata, K. Ozera, T. Oda, L. Barolli, An integrated intelligent system for iot device selection and placement in opportunistic networks using fuzzy logic and genetic algorithm, in Proc. - 31st IEEE Int. Conf. Adv. Inf. Netw. Appl. Work. WAINA 2017, (2017), pp. 201–207. https://doi.org/10.1109/WAINA.2017.178CrossRef M. Cuka, D. Elmazi, R. Obukata, K. Ozera, T. Oda, L. Barolli, An integrated intelligent system for iot device selection and placement in opportunistic networks using fuzzy logic and genetic algorithm, in Proc. - 31st IEEE Int. Conf. Adv. Inf. Netw. Appl. Work. WAINA 2017, (2017), pp. 201–207. https://​doi.​org/​10.​1109/​WAINA.​2017.​178CrossRef
25.
Zurück zum Zitat T. Peng, S. Sellami, O. Boucelma, IoT data imputation with incremental multiple linear regression. Open J. Internet Things 5(1) (2019) T. Peng, S. Sellami, O. Boucelma, IoT data imputation with incremental multiple linear regression. Open J. Internet Things 5(1) (2019)
26.
Zurück zum Zitat O. Said, Analysis, design and simulation of internet of things routing algorithm based on ant colony optimization international journal of communication systems. Wiley 30, e3174 (2016) O. Said, Analysis, design and simulation of internet of things routing algorithm based on ant colony optimization international journal of communication systems. Wiley 30, e3174 (2016)
30.
Zurück zum Zitat F. Zantalis, G. Koulouras, S. Karabetsos, D. Kandris, A review of machine learning and IoT in smart transportation. Future Internet, (2019) 11(4), p.94. F. Zantalis, G. Koulouras, S. Karabetsos, D. Kandris, A review of machine learning and IoT in smart transportation. Future Internet, (2019) 11(4), p.94.
31.
Zurück zum Zitat A. McCallum, K. Nigam, et al., A comparison of event models for naive bayes text classification, in AAAI-98 Workshop on Learning for Text Categorization, vol. 752, (Citeseer, 1998), pp. 41–48 A. McCallum, K. Nigam, et al., A comparison of event models for naive bayes text classification, in AAAI-98 Workshop on Learning for Text Categorization, vol. 752, (Citeseer, 1998), pp. 41–48
32.
Zurück zum Zitat V. Metsis, I. Androutsopoulos, G. Paliouras, Spam filtering with naive Bayeswhich naive Bayes? CEAS, 27–28 (2006) V. Metsis, I. Androutsopoulos, G. Paliouras, Spam filtering with naive Bayeswhich naive Bayes? CEAS, 27–28 (2006)
33.
Zurück zum Zitat G.I. Webb, J.R. Boughton, Not so naive bayes: Aggregating one dependence estimators. Mach. Learn. 58(1), 5–24 (2005)MATHCrossRef G.I. Webb, J.R. Boughton, Not so naive bayes: Aggregating one dependence estimators. Mach. Learn. 58(1), 5–24 (2005)MATHCrossRef
34.
35.
Zurück zum Zitat S. Devi, T. Neetha, Machine learning based traffic congestion prediction in a IoT based Smart City. Int. Res. J. Eng. Technol. 4, 3442–3445 (2017) S. Devi, T. Neetha, Machine learning based traffic congestion prediction in a IoT based Smart City. Int. Res. J. Eng. Technol. 4, 3442–3445 (2017)
36.
Zurück zum Zitat P.E. Utgoff, Incremental induction of decision trees. Mach. Learn. 4, 161–186 (1989)CrossRef P.E. Utgoff, Incremental induction of decision trees. Mach. Learn. 4, 161–186 (1989)CrossRef
37.
Zurück zum Zitat C.M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006)MATH C.M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006)MATH
38.
Zurück zum Zitat G.A. Seber, A.J. Lee, Linear Regression Analysis, vol 936 (John Wiley & Sons, 2012)MATH G.A. Seber, A.J. Lee, Linear Regression Analysis, vol 936 (John Wiley & Sons, 2012)MATH
39.
Zurück zum Zitat K.P. Murphy, Machine Learning: A Probabilistic Perspective (MIT press, 2012)MATH K.P. Murphy, Machine Learning: A Probabilistic Perspective (MIT press, 2012)MATH
40.
Zurück zum Zitat J. Neter, M.H. Kutner, C.J. Nachtsheim, W. Wasserman, Applied Linear Statistical Models, vol 4 (Irwin, Chicago, 1996) J. Neter, M.H. Kutner, C.J. Nachtsheim, W. Wasserman, Applied Linear Statistical Models, vol 4 (Irwin, Chicago, 1996)
41.
Zurück zum Zitat W. Derguech, E. Bruke, E. Curry, An autonomic approach to real-time predictive analytics using open data and internet of things, in Ubiquitous Intelligence and Computing, 2014 IEEE 11th Intl Conf on and IEEE 11th Intl Conf on and Autonomic and Trusted Computing, and IEEE 14th Intl Conf on Scalable Computing and Communications and its Associated Workshops (UTC-ATCScalCom), (IEEE, 2014), pp. 204–211 W. Derguech, E. Bruke, E. Curry, An autonomic approach to real-time predictive analytics using open data and internet of things, in Ubiquitous Intelligence and Computing, 2014 IEEE 11th Intl Conf on and IEEE 11th Intl Conf on and Autonomic and Trusted Computing, and IEEE 14th Intl Conf on Scalable Computing and Communications and its Associated Workshops (UTC-ATCScalCom), (IEEE, 2014), pp. 204–211
42.
Zurück zum Zitat T.D. Buskirk et al., An introduction to machine learning methods for survey researchers. Surv. Pract. 11(1), 2718 (2018)CrossRef T.D. Buskirk et al., An introduction to machine learning methods for survey researchers. Surv. Pract. 11(1), 2718 (2018)CrossRef
43.
Zurück zum Zitat M.H. Alsharif, A.H. Kelechi, K. Yahya, S.A. Chaudhry, Machine learning algorithms for smart data analysis in internet of things environment: Taxonomies and research trends. Symmetry 12, 88 (2020b)CrossRef M.H. Alsharif, A.H. Kelechi, K. Yahya, S.A. Chaudhry, Machine learning algorithms for smart data analysis in internet of things environment: Taxonomies and research trends. Symmetry 12, 88 (2020b)CrossRef
44.
Zurück zum Zitat H. Hotelling, Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417 (1933)MATHCrossRef H. Hotelling, Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417 (1933)MATHCrossRef
45.
Zurück zum Zitat H. Abdi, L.J. Williams, Principal component analysis. Wiley Interdiscip. Rev Comput. Stat. 2(4), 433–459 (2010)CrossRef H. Abdi, L.J. Williams, Principal component analysis. Wiley Interdiscip. Rev Comput. Stat. 2(4), 433–459 (2010)CrossRef
47.
Zurück zum Zitat Ozawa et al., A Study of IoT Malware Activities Using Association Rule Learning for Darknet Sensor Data International Journal of Information Security, vol 19 (Springer Science and Business Media LLC, 2019), pp. 83–92 Ozawa et al., A Study of IoT Malware Activities Using Association Rule Learning for Darknet Sensor Data International Journal of Information Security, vol 19 (Springer Science and Business Media LLC, 2019), pp. 83–92
48.
Zurück zum Zitat A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: A review. ACM Comput. Surv. (CSUR) 31, 264–323 (1999)CrossRef A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: A review. ACM Comput. Surv. (CSUR) 31, 264–323 (1999)CrossRef
49.
Zurück zum Zitat A. Coates, A.Y. Ng, Learning feature representations with K-means, in Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, ed. by G. Montavon, G.B. Orr, K.R. Müller, vol. 7700, (Springer, Berlin, Heidelberg, 2012) A. Coates, A.Y. Ng, Learning feature representations with K-means, in Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, ed. by G. Montavon, G.B. Orr, K.R. Müller, vol. 7700, (Springer, Berlin, Heidelberg, 2012)
51.
52.
Zurück zum Zitat E. Warriach, K. Tei, A comparative analysis of machine learning algorithms for faults detection in wireless sensor networks. International Journal of Sensor Networks 24(1), 1–13 (2017)CrossRef E. Warriach, K. Tei, A comparative analysis of machine learning algorithms for faults detection in wireless sensor networks. International Journal of Sensor Networks 24(1), 1–13 (2017)CrossRef
53.
Zurück zum Zitat Y. Li, L. Parker, Nearest neighbor imputation using spatial–temporal correlations in wireless sensor networks. Information Fusion 15, 64–79 (2014)CrossRef Y. Li, L. Parker, Nearest neighbor imputation using spatial–temporal correlations in wireless sensor networks. Information Fusion 15, 64–79 (2014)CrossRef
54.
Zurück zum Zitat V. Jafarizadeh, A. Keshavarzi, T. Derikvand, Efficient cluster head selection using naïve bayes classifier for wireless sensor networks. Wirel. Netw 23(3), 779–785 (2017)CrossRef V. Jafarizadeh, A. Keshavarzi, T. Derikvand, Efficient cluster head selection using naïve bayes classifier for wireless sensor networks. Wirel. Netw 23(3), 779–785 (2017)CrossRef
55.
Zurück zum Zitat B. Sun, Y. Guo, N. Li, D. Fang, Multiple target counting and localization using variational Bayesian EM algorithm in wireless sensor networks. IEEE Trans. Commun. 65(7), 2985–2998 (2017)CrossRef B. Sun, Y. Guo, N. Li, D. Fang, Multiple target counting and localization using variational Bayesian EM algorithm in wireless sensor networks. IEEE Trans. Commun. 65(7), 2985–2998 (2017)CrossRef
56.
Zurück zum Zitat Z. Wang, H. Liu, S. Xu, X. Bu, J. An, Bayesian device-free localization and tracking in a binary RF sensor network. Sensors 17(5), 1–21 (2017a)CrossRef Z. Wang, H. Liu, S. Xu, X. Bu, J. An, Bayesian device-free localization and tracking in a binary RF sensor network. Sensors 17(5), 1–21 (2017a)CrossRef
57.
Zurück zum Zitat Y. Guo, B. Sun, N. Li, D. Fang, Variational bayesian inference-based counting and localization for off-grid targets with faulty prior information in wireless sensor networks. IEEE Trans. Commun. 66(3), 1273–1283 (2018)CrossRef Y. Guo, B. Sun, N. Li, D. Fang, Variational bayesian inference-based counting and localization for off-grid targets with faulty prior information in wireless sensor networks. IEEE Trans. Commun. 66(3), 1273–1283 (2018)CrossRef
58.
Zurück zum Zitat J. Kang, Y. Park, J. Lee, S. Wang, D. Eom, Novel leakage detection by ensemble CNNSVM and graph-based localization in water distribution systems. IEEE Trans. Ind. Electron. 65(5), 4279–4289 (2018)CrossRef J. Kang, Y. Park, J. Lee, S. Wang, D. Eom, Novel leakage detection by ensemble CNNSVM and graph-based localization in water distribution systems. IEEE Trans. Ind. Electron. 65(5), 4279–4289 (2018)CrossRef
59.
Zurück zum Zitat S. Zidi, T. Moulahi, B. Alaya, Fault detection in wireless sensor networks through SVM classifier. IEEE Sensors J. 18(1), 340–347 (2018)CrossRef S. Zidi, T. Moulahi, B. Alaya, Fault detection in wireless sensor networks through SVM classifier. IEEE Sensors J. 18(1), 340–347 (2018)CrossRef
60.
Zurück zum Zitat S. Varsha, P. Shubha, T. Avanish, Intrusion detection using data mining with correlation, in 2nd International Conference for Convergence in Technology (I2CT), (2017) S. Varsha, P. Shubha, T. Avanish, Intrusion detection using data mining with correlation, in 2nd International Conference for Convergence in Technology (I2CT), (2017)
61.
Zurück zum Zitat J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation. ACM SIGMOD Rec. 29(2), 1–12 (2000)CrossRef J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation. ACM SIGMOD Rec. 29(2), 1–12 (2000)CrossRef
62.
Zurück zum Zitat J. Han, P.Y. Mao, Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)MathSciNetCrossRef J. Han, P.Y. Mao, Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)MathSciNetCrossRef
63.
Zurück zum Zitat C. Borgelt, Frequent item set mining. Data Min. Knowl. Discov. 2(6), 437–456 (2012)CrossRef C. Borgelt, Frequent item set mining. Data Min. Knowl. Discov. 2(6), 437–456 (2012)CrossRef
64.
Zurück zum Zitat A. Habib, M. Arafat, S. Moh, Routing protocols based on reinforcement learning for wireless sensor networks: A comparative study. Journal of Advanced Research in Dynamical and Control Systems 14, 427–435 (2018) A. Habib, M. Arafat, S. Moh, Routing protocols based on reinforcement learning for wireless sensor networks: A comparative study. Journal of Advanced Research in Dynamical and Control Systems 14, 427–435 (2018)
65.
Zurück zum Zitat S. Banihashemian, F. Adibnia, M. Sarram, A new range-free and storage-efficient localization algorithm using neural networks in wireless sensor networks. Wirel. Pers. Commun. 98(1), 1547–1568 (2018)CrossRef S. Banihashemian, F. Adibnia, M. Sarram, A new range-free and storage-efficient localization algorithm using neural networks in wireless sensor networks. Wirel. Pers. Commun. 98(1), 1547–1568 (2018)CrossRef
66.
Zurück zum Zitat A. El Assaf, S. Zaidi, S. Affes, N. Kandil, Robust ANNs-based WSN localization in the presence of anisotropic signal attenuation. IEEE Wireless Communications Letters 5(5), 504–507 (2016)CrossRef A. El Assaf, S. Zaidi, S. Affes, N. Kandil, Robust ANNs-based WSN localization in the presence of anisotropic signal attenuation. IEEE Wireless Communications Letters 5(5), 504–507 (2016)CrossRef
67.
Zurück zum Zitat P. Chanak, I. Banerjee, Fuzzy rule-based faulty node classification and management scheme for large scale wireless sensor networks. Expert Syst. Appl. 45(C), 307–321 (2016)CrossRef P. Chanak, I. Banerjee, Fuzzy rule-based faulty node classification and management scheme for large scale wireless sensor networks. Expert Syst. Appl. 45(C), 307–321 (2016)CrossRef
68.
Zurück zum Zitat A. Mehmood, Z. Lv, J. Lloret, M. Umar, ELDC: An artificial neural network based energy-efficient and robust routing scheme for pollution monitoring in WSNs. IEEE Trans. Emerg. Topics. Comput., 1–1 (2017) A. Mehmood, Z. Lv, J. Lloret, M. Umar, ELDC: An artificial neural network based energy-efficient and robust routing scheme for pollution monitoring in WSNs. IEEE Trans. Emerg. Topics. Comput., 1–1 (2017)
69.
Zurück zum Zitat A. Umarikar, Fuzzy Logic and Brief Overview of its Applications (University Västerås Suecia, 2003) A. Umarikar, Fuzzy Logic and Brief Overview of its Applications (University Västerås Suecia, 2003)
70.
Zurück zum Zitat S. Liu, L. Feng, J. Wu, G. Hou, G. Han, Concept drift detection for data stream learning based on angle optimized global embedding and principal component analysis in sensor networks. Comput. Electr. Eng. 58, 327–336 (2017)CrossRef S. Liu, L. Feng, J. Wu, G. Hou, G. Han, Concept drift detection for data stream learning based on angle optimized global embedding and principal component analysis in sensor networks. Comput. Electr. Eng. 58, 327–336 (2017)CrossRef
71.
Zurück zum Zitat J. Wang, Y. Gao, W. Liu, A. Sangaiah, H. Kim, An improved routing schema with special clustering using PSO algorithm for heterogeneous wireless sensor network. Sensors 19(3), 671 (2019)CrossRef J. Wang, Y. Gao, W. Liu, A. Sangaiah, H. Kim, An improved routing schema with special clustering using PSO algorithm for heterogeneous wireless sensor network. Sensors 19(3), 671 (2019)CrossRef
72.
Zurück zum Zitat G.J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition (Wiley Interscience, 2004) ISBN 978-0-471-69115-0. MR 1190469MATH G.J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition (Wiley Interscience, 2004) ISBN 978-0-471-69115-0. MR 1190469MATH
73.
Zurück zum Zitat R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large databases. ACM SIGMOD Rec. 22(2), 207–216 (1993)CrossRef R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large databases. ACM SIGMOD Rec. 22(2), 207–216 (1993)CrossRef
75.
Zurück zum Zitat H. Hu, X. Wang, Z. Yang, B. Zheng, A spectral clustering approach to identifying cuts in wireless sensor networks. IEEE Sensors J. 15, 1838–1848 (2015) H. Hu, X. Wang, Z. Yang, B. Zheng, A spectral clustering approach to identifying cuts in wireless sensor networks. IEEE Sensors J. 15, 1838–1848 (2015)
76.
Zurück zum Zitat Kung, H.T.; Vlah, D. A spectral clustering approach to validating sensors via their peers in distributed sensor networks. In Proceedings of the 18th International Conference on Computer Communications and Networks, San Francisco, CA, USA, 3–6 August 2009a; pp. 1–7 Kung, H.T.; Vlah, D. A spectral clustering approach to validating sensors via their peers in distributed sensor networks. In Proceedings of the 18th International Conference on Computer Communications and Networks, San Francisco, CA, USA, 3–6 August 2009a; pp. 1–7
78.
Zurück zum Zitat J. Kennedy, R.C. Eberhart, Particle swarm optimization, in Proc. IEEE int'l Conf. On Neural Networks, vol. IV, (IEEE service center, Piscataway, NJ, 1995), pp. 1942–1948 J. Kennedy, R.C. Eberhart, Particle swarm optimization, in Proc. IEEE int'l Conf. On Neural Networks, vol. IV, (IEEE service center, Piscataway, NJ, 1995), pp. 1942–1948
79.
Zurück zum Zitat J. Wang, Y. Cao, H. Kim, S. Lee, Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Gener. Comput. Syst. 76, 452–457 (2017b)CrossRef J. Wang, Y. Cao, H. Kim, S. Lee, Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Gener. Comput. Syst. 76, 452–457 (2017b)CrossRef
80.
Zurück zum Zitat L. Atzori, A. Iera, G. Morabito, The internet of things: A survey. Comput. Netw. 54(15), 2787–2805 (2010)MATHCrossRef L. Atzori, A. Iera, G. Morabito, The internet of things: A survey. Comput. Netw. 54(15), 2787–2805 (2010)MATHCrossRef
81.
Zurück zum Zitat A. Smola, V. Vapnik, Support vector regression machines. Adv. Neural Inf. Process. Syst. 9, 155–161 (1997) A. Smola, V. Vapnik, Support vector regression machines. Adv. Neural Inf. Process. Syst. 9, 155–161 (1997)
82.
Zurück zum Zitat A.J. Smola, B. Scholkopf, A tutorial on support vector regression. Statistics Comput. 14(3), 199–222 (2004)MathSciNetCrossRef A.J. Smola, B. Scholkopf, A tutorial on support vector regression. Statistics Comput. 14(3), 199–222 (2004)MathSciNetCrossRef
83.
Zurück zum Zitat P. Ni, C. Zhang, Y. Ji, A hybrid method for short-term sensor data forecasting in internet of things, in 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), (2014) P. Ni, C. Zhang, Y. Ji, A hybrid method for short-term sensor data forecasting in internet of things, in 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), (2014)
84.
Zurück zum Zitat T. Cover, P. Hart, Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)MATHCrossRef T. Cover, P. Hart, Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)MATHCrossRef
85.
Zurück zum Zitat H. Zhang, The optimality of naive bayes. AA 1(2), 3 (2004) H. Zhang, The optimality of naive bayes. AA 1(2), 3 (2004)
86.
Zurück zum Zitat L. Ting, M. Khan, A. Sharma, M.D. Ansari, A secure framework for IoT-based smart climate agriculture system: Toward blockchain and edge computing. J. Intell. Syst. 31(1), 221–236 (2022) L. Ting, M. Khan, A. Sharma, M.D. Ansari, A secure framework for IoT-based smart climate agriculture system: Toward blockchain and edge computing. J. Intell. Syst. 31(1), 221–236 (2022)
87.
Zurück zum Zitat V.K. Gunjan, S. Kumar, M.D. Ansari, Y. Vijayalata, Prediction of agriculture yields using machine learning algorithms, in Proceedings of the 2nd International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications: ICMISC 2021, (Springer, Singapore, 2022), pp. 17–26CrossRef V.K. Gunjan, S. Kumar, M.D. Ansari, Y. Vijayalata, Prediction of agriculture yields using machine learning algorithms, in Proceedings of the 2nd International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications: ICMISC 2021, (Springer, Singapore, 2022), pp. 17–26CrossRef
Metadaten
Titel
Artificial Intelligence and Machine Learning with IoT
verfasst von
Shailendra W. Shende
Jitendra V. Tembhurne
Tapan Kumar Jain
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-09955-7_10