Skip to main content
Erschienen in:

22.02.2024

Artificial Intelligence Approach for Tuning Speech-Adaptive Watermarking using Higher-Order Statistics (HOS)

verfasst von: Xin Liu, Mohammad Ali Nematollahi

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ever-increasing use of artificial intelligence (AI) to optimize embedding a watermark or find the optimal location in the host image for inserting a watermark might solve some problems in this field. However, the main problem, which is finding the optimum trade-off point among several watermarking criteria, has still not been investigated by researchers in this field, especially for speech signals. This paper aims to find the best trade-off among the watermarking requirements such as capacity, inaudibility, and robustness by applying an AI model. Moreover, a novel watermarking technique is proposed by modification of the probability density function (PDF) of the linear predictive (LP) residual and wavelet detail coefficient. For this method, a mathematical model is developed based on applying higher-order statistics for embedding and extracting the watermark. Sinh-arcsinh is used to shape the skewness and kurtosis of normal distribution for the LP residual or the wavelet high-frequency sub-bands, respectively, based on the watermark bits. Experimental results will show that although LP residual is not robust and it shows random behavior for modeling its PDF, the wavelet high-frequency band is quite robust and it can model the PDF of the wavelet. Moreover, it is demonstrated that AI has the capability to compromise among the watermarking criteria. Conclusions are drawn based on theoretical (maximum likelihood) and AI (machine learning) approaches, which confirm the effectiveness of the proposed model. Finally, in conclusion, several potential areas are discussed for further exploration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat M.A. Akhaee, N.K. Kalantari, F. Marvasti, Robust audio and speech watermarking using Gaussian and Laplacian modeling. Signal Process. 90(8), 2487–2497 (2010)CrossRef M.A. Akhaee, N.K. Kalantari, F. Marvasti, Robust audio and speech watermarking using Gaussian and Laplacian modeling. Signal Process. 90(8), 2487–2497 (2010)CrossRef
2.
Zurück zum Zitat L. Alzubaidi et al., A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. J. Big Data 10(1), 46 (2023)CrossRef L. Alzubaidi et al., A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. J. Big Data 10(1), 46 (2023)CrossRef
3.
Zurück zum Zitat P. Amrit, A.K. Singh, Survey on watermarking methods in the artificial intelligence domain and beyond. Comput. Commun. 188, 52–65 (2022)CrossRef P. Amrit, A.K. Singh, Survey on watermarking methods in the artificial intelligence domain and beyond. Comput. Commun. 188, 52–65 (2022)CrossRef
4.
Zurück zum Zitat P. Bhinder, N. Jindal, K. Singh, An improved robust image-adaptive watermarking with two watermarks using statistical decoder. Multimed. Tools Appl. 79, 183–217 (2020)CrossRef P. Bhinder, N. Jindal, K. Singh, An improved robust image-adaptive watermarking with two watermarks using statistical decoder. Multimed. Tools Appl. 79, 183–217 (2020)CrossRef
5.
Zurück zum Zitat F. Deeba et al., Digital watermarking using deep neural network. Int. J. Mach. Learn. Comput. 10(2), 277–282 (2020)CrossRef F. Deeba et al., Digital watermarking using deep neural network. Int. J. Mach. Learn. Comput. 10(2), 277–282 (2020)CrossRef
6.
Zurück zum Zitat S. Gazor, W. Zhang, Speech probability distribution. IEEE Signal Process. Lett. 10(7), 204–207 (2003)CrossRef S. Gazor, W. Zhang, Speech probability distribution. IEEE Signal Process. Lett. 10(7), 204–207 (2003)CrossRef
10.
Zurück zum Zitat C.T. Leondes, Stochastic Digital Control System Techniques: Advances in Theory and Applications (Academic Press, 1996) C.T. Leondes, Stochastic Digital Control System Techniques: Advances in Theory and Applications (Academic Press, 1996)
11.
Zurück zum Zitat Y. Li, H. Wang, M. Barni, A survey of deep neural network watermarking techniques. Neurocomputing 461, 171–193 (2021)CrossRef Y. Li, H. Wang, M. Barni, A survey of deep neural network watermarking techniques. Neurocomputing 461, 171–193 (2021)CrossRef
12.
Zurück zum Zitat X. Liang, S. Xiang, Robust reversible audio watermarking based on high-order difference statistics. Signal Process. 173, 107584 (2020)CrossRef X. Liang, S. Xiang, Robust reversible audio watermarking based on high-order difference statistics. Signal Process. 173, 107584 (2020)CrossRef
13.
Zurück zum Zitat S. Lounici et al. Yes we can: watermarking machine learning models beyond classification, in 2021 IEEE 34th Computer Security Foundations Symposium (CSF). IEEE (2021) S. Lounici et al. Yes we can: watermarking machine learning models beyond classification, in 2021 IEEE 34th Computer Security Foundations Symposium (CSF). IEEE (2021)
14.
Zurück zum Zitat C.O. Mawalim, M. Unoki, Speech watermarking method using McAdams coefficient based on random forest learning. Entropy 23(10), 1246 (2021)CrossRef C.O. Mawalim, M. Unoki, Speech watermarking method using McAdams coefficient based on random forest learning. Entropy 23(10), 1246 (2021)CrossRef
15.
Zurück zum Zitat I. Miller, Probability, Random Variables, and Stochastic Processes (JSTOR, 1966)CrossRef I. Miller, Probability, Random Variables, and Stochastic Processes (JSTOR, 1966)CrossRef
16.
Zurück zum Zitat S.-M. Mun et al., Finding robust domain from attacks: a learning framework for blind watermarking. Neurocomputing 337, 191–202 (2019)CrossRef S.-M. Mun et al., Finding robust domain from attacks: a learning framework for blind watermarking. Neurocomputing 337, 191–202 (2019)CrossRef
17.
Zurück zum Zitat M.A. Nematollahi, Digital speech watermarking for online speaker recognition systems (2015) M.A. Nematollahi, Digital speech watermarking for online speaker recognition systems (2015)
19.
Zurück zum Zitat M.A. Nematollahi et al., Speaker frame selection for digital speech watermarking. Natl. Acad. Sci. Lett. 39, 197–201 (2016)CrossRef M.A. Nematollahi et al., Speaker frame selection for digital speech watermarking. Natl. Acad. Sci. Lett. 39, 197–201 (2016)CrossRef
20.
Zurück zum Zitat M.A. Nematollahi, S.A.R. Al-Haddad, An overview of digital speech watermarking. Int. J. Speech Technol. 16, 471–488 (2013)CrossRef M.A. Nematollahi, S.A.R. Al-Haddad, An overview of digital speech watermarking. Int. J. Speech Technol. 16, 471–488 (2013)CrossRef
21.
Zurück zum Zitat M.A. Nematollahi et al., Multi-factor authentication model based on multipurpose speech watermarking and online speaker recognition. Multimed. Tools Appl. 76, 7251–7281 (2017)CrossRef M.A. Nematollahi et al., Multi-factor authentication model based on multipurpose speech watermarking and online speaker recognition. Multimed. Tools Appl. 76, 7251–7281 (2017)CrossRef
22.
Zurück zum Zitat M.A. Nematollahi, C. Vorakulpipat, H. Gamboa Rosales, Optimization of a blind speech watermarking technique against amplitude scaling. Secur. Commun. Netw. 2017 (2017) M.A. Nematollahi, C. Vorakulpipat, H. Gamboa Rosales, Optimization of a blind speech watermarking technique against amplitude scaling. Secur. Commun. Netw. 2017 (2017)
23.
Zurück zum Zitat M.A. Nematollahi, C. Vorakulpipat, H. Gamboa Rosales, Semifragile speech watermarking based on least significant bit replacement of line spectral frequencies. Math. Probl. Eng. 2017 (2017) M.A. Nematollahi, C. Vorakulpipat, H. Gamboa Rosales, Semifragile speech watermarking based on least significant bit replacement of line spectral frequencies. Math. Probl. Eng. 2017 (2017)
24.
Zurück zum Zitat M.A. Nematollahi et al., Digital speech watermarking based on linear predictive analysis and singular value decomposition. Proc. Natl. Acad. Sci. India Sect. A 87, 433–446 (2017)CrossRef M.A. Nematollahi et al., Digital speech watermarking based on linear predictive analysis and singular value decomposition. Proc. Natl. Acad. Sci. India Sect. A 87, 433–446 (2017)CrossRef
25.
Zurück zum Zitat M.A. Nematollahi, C. Vorakulpipat, H.G. Rosales, Digital Watermarking (Springer, 2017)CrossRef M.A. Nematollahi, C. Vorakulpipat, H.G. Rosales, Digital Watermarking (Springer, 2017)CrossRef
26.
Zurück zum Zitat K. Pavlović et al., Robust speech watermarking by a jointly trained embedder and detector using a DNN. Digital Signal Process. 122, 103381 (2022)CrossRef K. Pavlović et al., Robust speech watermarking by a jointly trained embedder and detector using a DNN. Digital Signal Process. 122, 103381 (2022)CrossRef
27.
Zurück zum Zitat M. Płachta et al., Detection of image steganography using deep learning and ensemble classifiers. Electronics 11(10), 1565 (2022)CrossRef M. Płachta et al., Detection of image steganography using deep learning and ensemble classifiers. Electronics 11(10), 1565 (2022)CrossRef
28.
Zurück zum Zitat P. Rathi, S. Bhadauria, S. Rathi, Watermarking of deep recurrent neural network using adversarial examples to protect intellectual property. Appl. Artif. Intell. 36(1), 2008613 (2022)CrossRef P. Rathi, S. Bhadauria, S. Rathi, Watermarking of deep recurrent neural network using adversarial examples to protect intellectual property. Appl. Artif. Intell. 36(1), 2008613 (2022)CrossRef
29.
Zurück zum Zitat M. Steinebach et al. StirMark benchmark: audio watermarking attacks, in Proceedings International Conference on Information Technology: Coding and Computing. IEEE (2001) M. Steinebach et al. StirMark benchmark: audio watermarking attacks, in Proceedings International Conference on Information Technology: Coding and Computing. IEEE (2001)
30.
Zurück zum Zitat S. Sun et al. Detect and remove watermark in deep neural networks via generative adversarial networks. in Information Security: 24th International Conference, ISC 2021, Virtual Event, November 10–12, 2021, Proceedings 24. Springer (2021) S. Sun et al. Detect and remove watermark in deep neural networks via generative adversarial networks. in Information Security: 24th International Conference, ISC 2021, Virtual Event, November 10–12, 2021, Proceedings 24. Springer (2021)
31.
Zurück zum Zitat L. Tegendal, Watermarking in audio using deep learning (2019) L. Tegendal, Watermarking in audio using deep learning (2019)
32.
33.
Zurück zum Zitat J. Zhang et al., An integrated multi-head dual sparse self-attention network for remaining useful life prediction. Reliab. Eng. Syst. Saf. 233, 109096 (2023)CrossRef J. Zhang et al., An integrated multi-head dual sparse self-attention network for remaining useful life prediction. Reliab. Eng. Syst. Saf. 233, 109096 (2023)CrossRef
35.
Zurück zum Zitat J. Zhang et al., A parallel hybrid neural network with integration of spatial and temporal features for remaining useful life prediction in prognostics. IEEE Trans. Instrum. Meas. 72, 1–12 (2022) J. Zhang et al., A parallel hybrid neural network with integration of spatial and temporal features for remaining useful life prediction in prognostics. IEEE Trans. Instrum. Meas. 72, 1–12 (2022)
37.
Zurück zum Zitat W.R. Zwet, Convex Transformations of Random Variables (Mathematisch Centrum, Amsterdam, 1964) W.R. Zwet, Convex Transformations of Random Variables (Mathematisch Centrum, Amsterdam, 1964)
Metadaten
Titel
Artificial Intelligence Approach for Tuning Speech-Adaptive Watermarking using Higher-Order Statistics (HOS)
verfasst von
Xin Liu
Mohammad Ali Nematollahi
Publikationsdatum
22.02.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 5/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02618-0