Skip to main content

2025 | OriginalPaper | Buchkapitel

Artificial Intelligence as Automated Technology for Prediction of Breast Cancer

verfasst von : Ritu Chauhan, Harleen Kaur, Tisya Choudhary, Bhavya Alankar

Erschienen in: Proceedings of Third International Conference on Computational Electronics for Wireless Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Artificial intelligence techniques are utilized in cancer research and oncology which involves medical data in the detection of cancer, subtype classification, and optimization of cancer treatment. This paper discusses artificial intelligence techniques, such as K-means cluster analysis and its data interpretation based on breast cancer diagnostic dataset. This study focuses on the database of digital images of fine needle aspirate (FNA) of breast mass which shows abnormal lump, and a clustering technique was applied on this dataset. This study represents various descriptive statistics techniques of the breast cancer diagnostic dataset. Furthermore, we have also tried to show a variety of techniques of descriptive statistics like KMO and Bartlett’s test, total variance representing initial eigenvalues and extraction sum of squared loadings, scree plots, and clustering techniques like ANOVA table, initial and final cluster centers, and the distance between initial and final cluster centers of K-means cluster analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Birjais R, Mourya AK, Chauhan R, Kaur H (2019) Prediction and diagnosis of future diabetes risk: a machine learning approach. SN Applied Sciences 1(9):1–8CrossRef Birjais R, Mourya AK, Chauhan R, Kaur H (2019) Prediction and diagnosis of future diabetes risk: a machine learning approach. SN Applied Sciences 1(9):1–8CrossRef
3.
4.
Zurück zum Zitat Jain, A.K., Murty M.N., and Flynn P.J. (1999): Data Clustering: A Review. Jain, A.K., Murty M.N., and Flynn P.J. (1999): Data Clustering: A Review.
6.
Zurück zum Zitat McGuire A, Brown JAL, Kerin MJ (2015) Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev 34(1):145–155CrossRef McGuire A, Brown JAL, Kerin MJ (2015) Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev 34(1):145–155CrossRef
8.
Zurück zum Zitat Saad Awadh Alanazi, M. M. Kamruzzaman, Md Nazirul Islam Sarker, Madallah Alruwaili, Yousef Alhwaiti, Nasser Alshammari, Muhammad Hameed Siddiqi, “Boosting Breast Cancer Detection Using Convolutional Neural Network”, Journal of Healthcare Engineering, vol. 2021, Article ID 5528622, 11 pages, 2021. https://doi.org/10.1155/2021/5528622 Saad Awadh Alanazi, M. M. Kamruzzaman, Md Nazirul Islam Sarker, Madallah Alruwaili, Yousef Alhwaiti, Nasser Alshammari, Muhammad Hameed Siddiqi, “Boosting Breast Cancer Detection Using Convolutional Neural Network”, Journal of Healthcare Engineering, vol. 2021, Article ID 5528622, 11 pages, 2021. https://​doi.​org/​10.​1155/​2021/​5528622
9.
Zurück zum Zitat Alhussein M, Muhammad G, Hossain MS, Amin SU (2018) Cognitive IoT-cloud integration for smart healthcare: case study for epileptic seizure detection and monitoring. Mobile Networks and Applications 23(6):1624–1635CrossRef Alhussein M, Muhammad G, Hossain MS, Amin SU (2018) Cognitive IoT-cloud integration for smart healthcare: case study for epileptic seizure detection and monitoring. Mobile Networks and Applications 23(6):1624–1635CrossRef
10.
Zurück zum Zitat P. Kumar, S. Srivastava, R. K. Mishra, and Y. P. Sai, “End-to-end improved convolutional neural network model for breast cancer detection using mammographic data,” The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, Article ID 154851292097326, 2020. P. Kumar, S. Srivastava, R. K. Mishra, and Y. P. Sai, “End-to-end improved convolutional neural network model for breast cancer detection using mammographic data,” The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, Article ID 154851292097326, 2020.
11.
Zurück zum Zitat Beura S, Majhi B, Dash R (2015) Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer. Neurocomputing 154:1–14CrossRef Beura S, Majhi B, Dash R (2015) Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer. Neurocomputing 154:1–14CrossRef
12.
Zurück zum Zitat Acharya UR, Raghavendra U, Fujita H et al (2016) Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput Biol Med 79:250–258CrossRef Acharya UR, Raghavendra U, Fujita H et al (2016) Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput Biol Med 79:250–258CrossRef
13.
Zurück zum Zitat D. Muduli, R. Dash, and B. Majhi, “Fast discrete curvelet transform and modified PSO based improved evolutionary extreme learning machine for breast cancer detection,” Biomedical Signal Processing and Control, vol. 70, Article ID 102919, 2021. D. Muduli, R. Dash, and B. Majhi, “Fast discrete curvelet transform and modified PSO based improved evolutionary extreme learning machine for breast cancer detection,” Biomedical Signal Processing and Control, vol. 70, Article ID 102919, 2021.
15.
Zurück zum Zitat Muhammad Shoaib Jaliaawala and Rizwan Ahmed Khan. Can autism be catered with artificial intelligence-assisted intervention technology? A comprehensive survey. Artificial Intelligence Review, 2020. Muhammad Shoaib Jaliaawala and Rizwan Ahmed Khan. Can autism be catered with artificial intelligence-assisted intervention technology? A comprehensive survey. Artificial Intelligence Review, 2020.
16.
Zurück zum Zitat Andreas S Panayides, Amir Amini, Nenad D Filipovic, Ashish Sharma, Sotirios A Tsaftaris, Alistair Young, David Foran, Nhan Do, Spyretta Golemati, Tahsin Kurc, et al. Ai in medical imaging informatics: Current challenges and future directions. IEEE Journal of Biomedical and Health Informatics, 24(7): 1837{1857, 2020. Andreas S Panayides, Amir Amini, Nenad D Filipovic, Ashish Sharma, Sotirios A Tsaftaris, Alistair Young, David Foran, Nhan Do, Spyretta Golemati, Tahsin Kurc, et al. Ai in medical imaging informatics: Current challenges and future directions. IEEE Journal of Biomedical and Health Informatics, 24(7): 1837{1857, 2020.
17.
Zurück zum Zitat June-Goo Lee, Sanghoon Jun, Young-Won Cho, Hyunna Lee, Guk Bae Kim, Joon Beom Seo, and Namkug Kim. Deep learning in medical imaging: general overview. Korean journal of radiology, 18(4):570, 2017. June-Goo Lee, Sanghoon Jun, Young-Won Cho, Hyunna Lee, Guk Bae Kim, Joon Beom Seo, and Namkug Kim. Deep learning in medical imaging: general overview. Korean journal of radiology, 18(4):570, 2017.
18.
Zurück zum Zitat Anjum Nazir and Rizwan Ahmed Khan (2021) A novel combinatorial optimization based feature selection method for network intrusion detection. Comput Secur 102:102164CrossRef Anjum Nazir and Rizwan Ahmed Khan (2021) A novel combinatorial optimization based feature selection method for network intrusion detection. Comput Secur 102:102164CrossRef
20.
Zurück zum Zitat Gupta Er, Gupta Er, Mishra A (2012) Research paper on cluster techniques of data variations Gupta Er, Gupta Er, Mishra A (2012) Research paper on cluster techniques of data variations
21.
Zurück zum Zitat Kaufinan L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York Kaufinan L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York
22.
Zurück zum Zitat Chauhan R, Kaur H, Alam MA (2010) Data clustering method for discovering clusters in spatial cancer databases. Int J Comput Appl 10(6):9–14 Chauhan R, Kaur H, Alam MA (2010) Data clustering method for discovering clusters in spatial cancer databases. Int J Comput Appl 10(6):9–14
Metadaten
Titel
Artificial Intelligence as Automated Technology for Prediction of Breast Cancer
verfasst von
Ritu Chauhan
Harleen Kaur
Tisya Choudhary
Bhavya Alankar
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1943-3_28