Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2022 | OriginalPaper | Buchkapitel

Artificial Intelligence for Automated Vehicle Control and Traffic Operations: Challenges and Opportunities

verfasst von : David A. Abbink, Peng Hao, Jorge Laval, Shai Shalev-Shwartz, Cathy Wu, Terry Yang, Samer Hamdar, Danjue Chen, Yuanchang Xie, Xiaopeng Li, Mohaiminul Haque

Erschienen in: Road Vehicle Automation 8

Verlag: Springer International Publishing

share
TEILEN

Abstract

This chapter summarizes the presentations of speakers addressing such issues during the Automated Vehicles Symposium 2020 (AVS20) held virtually on July 27–30, 2020. These speakers participated in the break-out session titled “Artificial Intelligence for Automated Vehicle Control and Traffic Operations: Challenges and Opportunities”. The corresponding discussion and recommendations are presented in terms of the lessons learned and the future research directions to be adopted to benefit from AI in order to develop safer and more efficient connected and automated vehicles (CAV). This session was organized by the Transportation Research Board (TRB) Committee on Traffic Flow Theory and Characteristics (ACP50) and the TRB Committee on Artificial Intelligence and Advanced Computing Applications (AED50).
Fußnoten
1
By David A. Abbink, Delft University of Technology, Netherlands.
 
2
By Peng Hao, University of California Riverside, U.S.A.
 
3
By Jorge Laval, Georgia Institute of Technology, U.S.A.
 
4
By Shai Shalev-Shwartz, Mobileye.
 
5
By Cathy Wu, Massachusetts Institute of Technology, U.S.A.
 
6
By Terry Yang, University of Utah, U.S.A.
 
Literatur
Zurück zum Zitat Abbink, D.A., Mulder, M., Boer, E.R.: Haptic shared control: smoothly shifting control authority? Cogn. Technol. Work 14(1), 19–28 (2012) CrossRef Abbink, D.A., Mulder, M., Boer, E.R.: Haptic shared control: smoothly shifting control authority? Cogn. Technol. Work 14(1), 19–28 (2012) CrossRef
Zurück zum Zitat Hao, P., Wu, G., Boriboonsomsin, K., Barth, M.J.: Developing a framework of eco-approach and departure application for actuated signal control. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 796–801. IEEE (2015) Hao, P., Wu, G., Boriboonsomsin, K., Barth, M.J.: Developing a framework of eco-approach and departure application for actuated signal control. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 796–801. IEEE (2015)
Zurück zum Zitat Kolekar, S., de Winter, J., Abbink, D.: Which parts of the road guide obstacle avoidance? Quantifying the driver’s risk field. Appl. Ergon. 89, 103196 (2020a) Kolekar, S., de Winter, J., Abbink, D.: Which parts of the road guide obstacle avoidance? Quantifying the driver’s risk field. Appl. Ergon. 89, 103196 (2020a)
Zurück zum Zitat Kolekar, S., de Winter, J., Abbink, D.: Human-like driving behaviour emerges from a risk-based driver model. Nat. Commun. 11(1), 1–13 (2020b) Kolekar, S., de Winter, J., Abbink, D.: Human-like driving behaviour emerges from a risk-based driver model. Nat. Commun. 11(1), 1–13 (2020b)
Zurück zum Zitat Kreidieh, A.R., Wu, C., Bayen, A.M.: Dissipating stop-and-go waves in closed and open networks via deep reinforcement learning. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 1475–1480. IEEE (2018) Kreidieh, A.R., Wu, C., Bayen, A.M.: Dissipating stop-and-go waves in closed and open networks via deep reinforcement learning. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 1475–1480. IEEE (2018)
Zurück zum Zitat Laval, J., Zhou, H.: Congested urban networks tend to be insensitive to signal settings: implications for learning-based control. arXiv preprint arXiv:​2008.​10989 (2020) Laval, J., Zhou, H.: Congested urban networks tend to be insensitive to signal settings: implications for learning-based control. arXiv preprint arXiv:​2008.​10989 (2020)
Zurück zum Zitat Melman, T., De Winter, J.C.F., Abbink, D.A.: Does haptic steering guidance instigate speeding? A driving simulator study into causes and remedies. Accid. Anal. Prev. 98, 372–387 (2017) CrossRef Melman, T., De Winter, J.C.F., Abbink, D.A.: Does haptic steering guidance instigate speeding? A driving simulator study into causes and remedies. Accid. Anal. Prev. 98, 372–387 (2017) CrossRef
Zurück zum Zitat Melman, T., Beckers, N., Abbink, D.: Mitigating undesirable emergent behavior arising between driver and semi-automated vehicle. arXiv preprint arXiv:​2006.​16572 (2020) Melman, T., Beckers, N., Abbink, D.: Mitigating undesirable emergent behavior arising between driver and semi-automated vehicle. arXiv preprint arXiv:​2006.​16572 (2020)
Zurück zum Zitat Wu, C., Kreidieh, A., Parvate, K., Vinitsky, E., Bayen, A.M.: Flow: Architecture and benchmarking for reinforcement learning in traffic control. arXiv preprint arXiv:​1710.​05465, October 2017 Wu, C., Kreidieh, A., Parvate, K., Vinitsky, E., Bayen, A.M.: Flow: Architecture and benchmarking for reinforcement learning in traffic control. arXiv preprint arXiv:​1710.​05465, October 2017
Zurück zum Zitat Yuan, Y., Yang, X.T., Zhang, Z., Zhe, S.: Macroscopic traffic flow modeling with physics regularized Gaussian process: a new insight into machine learning applications. arXiv preprint arXiv:​2002.​02374 (2020) Yuan, Y., Yang, X.T., Zhang, Z., Zhe, S.: Macroscopic traffic flow modeling with physics regularized Gaussian process: a new insight into machine learning applications. arXiv preprint arXiv:​2002.​02374 (2020)
Metadaten
Titel
Artificial Intelligence for Automated Vehicle Control and Traffic Operations: Challenges and Opportunities
verfasst von
David A. Abbink
Peng Hao
Jorge Laval
Shai Shalev-Shwartz
Cathy Wu
Terry Yang
Samer Hamdar
Danjue Chen
Yuanchang Xie
Xiaopeng Li
Mohaiminul Haque
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-80063-5_6