Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2016

13.01.2016

Artificial Neural Network Modeling to Evaluate the Dynamic Flow Stress of 7050 Aluminum Alloy

verfasst von: Guo-zheng Quan, Tong Wang, Yong-le Li, Zong-yang Zhan, Yu-feng Xia

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The flow stress data have been obtained by a set of isothermal hot compression tests, which were carried out in the temperature range of 573-723 K and strain rates of 0.01, 0.1, 1, and 10 s−1 with a reduction of 60% on a Gleeble-1500 thermo-mechanical simulator. On the basis of the experimental data, constitutive equation and an artificial neural network model were developed for the analysis and simulation of the flow behavior of the 7050 aluminum alloy. After training with standard back-propagation learning algorithm, the artificial neural network model has the ability to present the intrinsic relationship between the flow stress and the processing variables. In the present model, the temperature, strain, and strain rate were chosen as inputs, and the flow stress was chosen as output. By comparing the values of correlation coefficient and average absolute relative error, the prediction accuracy of the model and the improved Arrhenius-type model can be evaluated. The results indicated that the well-trained artificial neural network model is more accurate than the improved Arrhenius-type model in predicting the hot compressive behavior of the as-extruded 7050 aluminum alloy. Based on the predicted stress data and experimental stress data, the 3D continuous stress-strain maps at different strains, temperatures, and strain rates were plotted subsequently. Besides, the flow stress values at arbitrary temperature, strain rate, and strain are explicit on the 3D continuous stress-strain maps, which would be beneficial to articulate working processes more validly.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Braun, Stress Corrosion Cracking Behavior of Alloy 7050-T7451 Plate in an Aqueous Chloride-Nitra Solution, International Conference, 2009, p 251–258. R. Braun, Stress Corrosion Cracking Behavior of Alloy 7050-T7451 Plate in an Aqueous Chloride-Nitra Solution, International Conference, 2009, p 251–258.
2.
Zurück zum Zitat Y.H. Cho, S.H. Kim, and T.S. Kim, Mechanical Behaviours and Design Strengths of Single Shear Bolted Connections Fabricated with Aluminium Alloy 7075-T6, Mater. Res. Innov., 2011, 18, p 604–610 Y.H. Cho, S.H. Kim, and T.S. Kim, Mechanical Behaviours and Design Strengths of Single Shear Bolted Connections Fabricated with Aluminium Alloy 7075-T6, Mater. Res. Innov., 2011, 18, p 604–610
3.
Zurück zum Zitat D. Dumont, A. Deschamps, Y. Brechet, C. Sigli, and J.C. Ehrstrom, Characterisation of Precipitation Microstructures in Aluminium Alloys 7040 and 7050 and Their Relationship to Mechanical Behavior, Mater. Sci. Technol., 2004, 20(50), p 567–576CrossRef D. Dumont, A. Deschamps, Y. Brechet, C. Sigli, and J.C. Ehrstrom, Characterisation of Precipitation Microstructures in Aluminium Alloys 7040 and 7050 and Their Relationship to Mechanical Behavior, Mater. Sci. Technol., 2004, 20(50), p 567–576CrossRef
4.
Zurück zum Zitat D.M. Carrick, S.C. Hogg, and G.D. Wilcox, Corrosion of an Advanced Al-Cu-Li Alloy for Aerospace Applications, Light Met. Technol., 2013, 765, p 629–633 D.M. Carrick, S.C. Hogg, and G.D. Wilcox, Corrosion of an Advanced Al-Cu-Li Alloy for Aerospace Applications, Light Met. Technol., 2013, 765, p 629–633
5.
Zurück zum Zitat Serajzadeh Siamak, Prediction of Thermo-Mechanical Behavior During Hot Upsetting Using Neural Networks, J. Mater. Process. Technol., 2009, 209(2), p 894–899CrossRef Serajzadeh Siamak, Prediction of Thermo-Mechanical Behavior During Hot Upsetting Using Neural Networks, J. Mater. Process. Technol., 2009, 209(2), p 894–899CrossRef
6.
Zurück zum Zitat Y.C. Lin, M. He, M. Zhou, D.X. Wen, and J. Chen, New Constitutive Model for Hot Deformation Behaviors of Ni-Based Superalloy Considering the Effects of Initial δ Phase, J. Mater. Eng. Perform., 2015, 24, p 3527–3538CrossRef Y.C. Lin, M. He, M. Zhou, D.X. Wen, and J. Chen, New Constitutive Model for Hot Deformation Behaviors of Ni-Based Superalloy Considering the Effects of Initial δ Phase, J. Mater. Eng. Perform., 2015, 24, p 3527–3538CrossRef
7.
Zurück zum Zitat Y.C. Lin, X.M. Chen, D.X. Wen, and M.S. Chen, A Physically-Based Constitutive Model for a Typical Nickel-Based Superalloy, Comput. Mater. Sci., 2014, 83, p 282–289CrossRef Y.C. Lin, X.M. Chen, D.X. Wen, and M.S. Chen, A Physically-Based Constitutive Model for a Typical Nickel-Based Superalloy, Comput. Mater. Sci., 2014, 83, p 282–289CrossRef
8.
Zurück zum Zitat Y.C. Lin, Y.C. Xia, X.M. Chen, and M.S. Chen, Constitutive Descriptions for Hot Compressed 2124-T851 Aluminum Alloy Over a Wide Range of Temperature and Strain Rate, Comput. Mater. Sci., 2010, 50(1), p 227–233CrossRef Y.C. Lin, Y.C. Xia, X.M. Chen, and M.S. Chen, Constitutive Descriptions for Hot Compressed 2124-T851 Aluminum Alloy Over a Wide Range of Temperature and Strain Rate, Comput. Mater. Sci., 2010, 50(1), p 227–233CrossRef
9.
Zurück zum Zitat P. Changizian, A. Zarei-Hanzaki, and A.A. Roostaei, The High Temperature Flow Behavior Modeling of AZ81 Magnesium Alloy Considering Strain Effects, Mater. Des., 2012, 39, p 384–389CrossRef P. Changizian, A. Zarei-Hanzaki, and A.A. Roostaei, The High Temperature Flow Behavior Modeling of AZ81 Magnesium Alloy Considering Strain Effects, Mater. Des., 2012, 39, p 384–389CrossRef
10.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42, p 470–477CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42, p 470–477CrossRef
11.
Zurück zum Zitat P.S. Follansbee and U.F. Kocks, A Constitutive Description of the Deformation of Copper Based on the use of the Mechanical Threshold Stress as an Internal State Variable, Acta Metall., 1988, 36(1), p 81–93CrossRef P.S. Follansbee and U.F. Kocks, A Constitutive Description of the Deformation of Copper Based on the use of the Mechanical Threshold Stress as an Internal State Variable, Acta Metall., 1988, 36(1), p 81–93CrossRef
12.
Zurück zum Zitat Y.C. Lin, D.X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High-Temperature Flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 59, p 115–123CrossRef Y.C. Lin, D.X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High-Temperature Flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 59, p 115–123CrossRef
13.
Zurück zum Zitat A. Lassraoui and J.J. Jonas, Prediction of the Steel Flow Stresses at High Temperatures and Strain Rate, Metall. Mater. Trans., 1991, 22, p 1545–1558CrossRef A. Lassraoui and J.J. Jonas, Prediction of the Steel Flow Stresses at High Temperatures and Strain Rate, Metall. Mater. Trans., 1991, 22, p 1545–1558CrossRef
14.
Zurück zum Zitat Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef
15.
Zurück zum Zitat A.M. Hassan, A. Alrashdan, M.T. Hayajneh, and A.T. Mayyas, Prediction of Density, Porosity and Hardness in Aluminum-Copper-Based Composite Materials Using Artificial Neural Network, Mater. Process. Technol., 2009, 209(2), p 894–899CrossRef A.M. Hassan, A. Alrashdan, M.T. Hayajneh, and A.T. Mayyas, Prediction of Density, Porosity and Hardness in Aluminum-Copper-Based Composite Materials Using Artificial Neural Network, Mater. Process. Technol., 2009, 209(2), p 894–899CrossRef
16.
Zurück zum Zitat H. Sheikh and S. Serajzadeh, Estimation of Flow Stress Behavior of AA5083 Using Artificial Neural Networks with Regard to Dynamic Strain Ageing Effect, Mater. Process. Technol., 2008, 196(1-3), p 115–119CrossRef H. Sheikh and S. Serajzadeh, Estimation of Flow Stress Behavior of AA5083 Using Artificial Neural Networks with Regard to Dynamic Strain Ageing Effect, Mater. Process. Technol., 2008, 196(1-3), p 115–119CrossRef
17.
Zurück zum Zitat S. Serajzadeh, Prediction of Temperature Distribution and Required Energy in Hot Forging Process by Coupling Neural Networks and Finite Element Analysis, Mater. Lett., 2007, 61(14-15), p 3296–3300CrossRef S. Serajzadeh, Prediction of Temperature Distribution and Required Energy in Hot Forging Process by Coupling Neural Networks and Finite Element Analysis, Mater. Lett., 2007, 61(14-15), p 3296–3300CrossRef
18.
Zurück zum Zitat Y.C. Zhu, Z.Y. Weidong, F.F. Sun, and Y.G. Zhou, Artificial Neural Network Approach to Predict the Flow Stress in the Isothermal Compression of As-Cast TC21 Titanium Alloy, Comput. Mater. Sci., 2011, 50(5), p 1785–1790CrossRef Y.C. Zhu, Z.Y. Weidong, F.F. Sun, and Y.G. Zhou, Artificial Neural Network Approach to Predict the Flow Stress in the Isothermal Compression of As-Cast TC21 Titanium Alloy, Comput. Mater. Sci., 2011, 50(5), p 1785–1790CrossRef
19.
Zurück zum Zitat A.K. Gupta, S.K. Singh, S. Reddy, and G. Hariharan, Prediction of Flow Stress in Dynamic Strain Aging Regime of Austenitic Stainless Steel 316 Using Artificial Neural Network, Mater. Des., 2012, 35, p 589–595CrossRef A.K. Gupta, S.K. Singh, S. Reddy, and G. Hariharan, Prediction of Flow Stress in Dynamic Strain Aging Regime of Austenitic Stainless Steel 316 Using Artificial Neural Network, Mater. Des., 2012, 35, p 589–595CrossRef
20.
Zurück zum Zitat D. Samantaray, S. Mandal, and A.K. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uni-Axial Compression Testing, Mater. Des., 2011, 32(5), p 2797–2802CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uni-Axial Compression Testing, Mater. Des., 2011, 32(5), p 2797–2802CrossRef
21.
Zurück zum Zitat F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Press, Oxford, 2004 F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Press, Oxford, 2004
22.
Zurück zum Zitat A. Momeni, K. Dehghani, H. Keshmiri, and G.R. Ebrahimi, Hot Deformation Behavior and Microstructural Evolution of a Superaustenitic Stainless Steel, Mater. Sci. Eng. A, 2010, 527(6), p 1605–1611CrossRef A. Momeni, K. Dehghani, H. Keshmiri, and G.R. Ebrahimi, Hot Deformation Behavior and Microstructural Evolution of a Superaustenitic Stainless Steel, Mater. Sci. Eng. A, 2010, 527(6), p 1605–1611CrossRef
23.
Zurück zum Zitat A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Recrystallization in AISI, 304 Austenitic Stainless Steel During and After Hot Deformation, Mater. Sci. Eng. A, 2008, 485(1-2), p 664–672CrossRef A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Recrystallization in AISI, 304 Austenitic Stainless Steel During and After Hot Deformation, Mater. Sci. Eng. A, 2008, 485(1-2), p 664–672CrossRef
24.
Zurück zum Zitat M.P. Phaniraj and A.K. Lahiri, The Applicability of Neural Network Model to Predict Flow Stress for Carbon Steels, J. Mater. Process. Technol., 2003, 141(2), p 219–227CrossRef M.P. Phaniraj and A.K. Lahiri, The Applicability of Neural Network Model to Predict Flow Stress for Carbon Steels, J. Mater. Process. Technol., 2003, 141(2), p 219–227CrossRef
25.
Zurück zum Zitat S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress in a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 500(1-2), p 114–121CrossRef S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress in a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 500(1-2), p 114–121CrossRef
26.
Zurück zum Zitat G.Z. Quan and G.S.L.Y. Wang, A Characterization for the Flow Behavior of As-Extruded 7075 Aluminum Alloy by the Improved Arrhenius Model With Variable Parameters, Mater. Res. IBERO Am. J., 2013, 16(1), p 19–27 G.Z. Quan and G.S.L.Y. Wang, A Characterization for the Flow Behavior of As-Extruded 7075 Aluminum Alloy by the Improved Arrhenius Model With Variable Parameters, Mater. Res. IBERO Am. J., 2013, 16(1), p 19–27
27.
Zurück zum Zitat S. Mandal, P.V. Sivaprasad, S. Venugopal, and K.P.N. Murthy, Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of Stainless Steel Type AISI, 304L During Hot Torsion, Appl. Soft Comput., 2009, 9(1), p 237–244CrossRef S. Mandal, P.V. Sivaprasad, S. Venugopal, and K.P.N. Murthy, Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of Stainless Steel Type AISI, 304L During Hot Torsion, Appl. Soft Comput., 2009, 9(1), p 237–244CrossRef
Metadaten
Titel
Artificial Neural Network Modeling to Evaluate the Dynamic Flow Stress of 7050 Aluminum Alloy
verfasst von
Guo-zheng Quan
Tong Wang
Yong-le Li
Zong-yang Zhan
Yu-feng Xia
Publikationsdatum
13.01.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-1884-z

Weitere Artikel der Ausgabe 2/2016

Journal of Materials Engineering and Performance 2/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.