Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.08.2013 | Original Article | Ausgabe 2/2013

Neural Computing and Applications 2/2013

Artificial neural networks application to predict the compressive damage of lightweight geopolymer

Zeitschrift:
Neural Computing and Applications > Ausgabe 2/2013
Autor:
Ali Nazari

Abstract

In this work, compressive strength of lightweight geopolymers produced by fine fly ash and rice husk–bark ash together with palm oil clinker (POC) aggregates has been investigated experimentally and modeled based on artificial neural networks. Different specimens made from a mixture of fine fly ash and rice husk–bark ash with and without POC were subjected to compressive strength tests at 2, 7, and 28 days of curing. A model based on artificial neural networks for predicting the compressive strength of the specimens has been presented. To build the model, training and testing using experimental results from 144 specimens were conducted. The data used in the multilayer feed-forward neural networks models are arranged in a format of six input parameters that cover the quantity of fine POC particles, the quantity of coarse POC particles, the quantity of FA + RHBA mixture, the ratio of alkali activator to ashes mixture, the age of curing and the test trial number. According to these input parameters, in the neural networks model, the compressive strength of each specimen was predicted. The training and testing results in the neural networks model have shown a strong potential for predicting the compressive strength of the geopolymer specimens in the considered range.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2013

Neural Computing and Applications 2/2013 Zur Ausgabe

Premium Partner

    Bildnachweise