Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

11.04.2020 | Ausgabe 5/2020

Water Resources Management 5/2020

Assessment of Extreme Precipitation in Future through Time-Invariant and Time-Varying Downscaling Approaches

Zeitschrift:
Water Resources Management > Ausgabe 5/2020
Autoren:
Subbarao Pichuka, Rajib Maity
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s11269-020-02531-6) contains supplementary material, which is available to authorized users.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Skill of a time-varying downscaling approach, namely Time-Varying Downscaling Model (TVDM), against time-invariant Statistical Downscaling Model (SDSM) approach for the assessment of precipitation extremes in the future is explored. The downscaled precipitation is also compared with a Regional Climate Model (RCM) product obtained from Coordinated Regional Climate Downscaling Experiment (CORDEX). The potential of downscaling the extreme events is assessed considering Bhadra basin in India as the study area through different models (SDSM, TVDM and RCM) during historical period (calibration: 1951–2005, testing: 2006–2012). Next, the changes in precipitation extremes during future period (2006–2035) have been assessed with respect to the observed baseline period (1971–2000), for different Representative Concentration Pathway (RCP) scenarios. All the models indicate an increasing trend in the precipitation, for the monsoon months and maximum increase is noticed using RCP8.5. The annual precipitation during the future period (RCP8.5) is likely to increase by 7.6% (TVDM) and 4.2% (SDSM) in the study basin. An increase in magnitude and number of extreme events during the future period is also noticed. Such events are expected to be doubled in number in the first quarter of the year (January–March). Moreover, the time-invariant relationship (in SDSM) between causal-target variables is needed to be switched with time-varying (TVDM). This study proves that the time-varying property in TVDM is more beneficial since its performance is better than SDSM and RCM outputs in identifying the extreme events during model calibration and testing periods. Thus, the TVDM is a better tool for assessing the extreme events.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Nur für berechtigte Nutzer zugänglich
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2020

Water Resources Management 5/2020 Zur Ausgabe