Skip to main content
Erschienen in:
Buchtitelbild

2013 | OriginalPaper | Buchkapitel

Assisting Oxidative Protein Folding: How Do Protein Disulphide-Isomerases Couple Conformational and Chemical Processes in Protein Folding?

verfasst von : A. Katrine Wallis, Robert B. Freedman

Erschienen in: Molecular Chaperones

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Oxidative folding is the simultaneous process of forming disulphide bonds and native structure in proteins. Pathways of oxidative folding are highly diverse and in eukaryotes are catalysed by protein disulphide isomerases (PDIs). PDI consists of four thioredoxin-like domains, two of which contain active sites responsible for disulphide interchange reactions. The four domains are arranged in a horseshoe shape with the two active sites facing each other at the opening of the horseshoe. An extended hydrophobic surface at the bottom of the horseshoe is responsible for non-covalent, hydrophobic interactions with the folding protein. This binding site is capable of distinguishing between fully-folded and partially- or un-folded proteins. PDI is not only a catalyst of the formation of disulphide bonds, but also catalyses folding steps which involve significant conformational change in the folding protein. This review brings together the latest catalytic and structural data aimed at understanding how this is achieved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lin Z, Rye HS (2006) GroEL-mediated protein folding: making the impossible, possible. Crit Rev Biochem Mol Biol 41:211–239 Lin Z, Rye HS (2006) GroEL-mediated protein folding: making the impossible, possible. Crit Rev Biochem Mol Biol 41:211–239
2.
Zurück zum Zitat Papo N, Kipnis Y, Haran G et al (2008) Concerted release of substrate domains from GroEL by ATP is demonstrated with FRET. J Mol Biol 380:717–725 Papo N, Kipnis Y, Haran G et al (2008) Concerted release of substrate domains from GroEL by ATP is demonstrated with FRET. J Mol Biol 380:717–725
3.
Zurück zum Zitat Altschuler GM, Willison KR (2008) Development of free-energy-based models for chaperonin containing TCP-1 mediated folding of actin. J R Soc Interface 5:1391–1408 Altschuler GM, Willison KR (2008) Development of free-energy-based models for chaperonin containing TCP-1 mediated folding of actin. J R Soc Interface 5:1391–1408
4.
Zurück zum Zitat Chakravarthi S, Jessop CE, Bulleid NJ (2009) Oxidative folding in the endoplasmic reticulum. In: Buchner J, Moroder L (eds) Oxidative folding of peptides and proteins. RSC Publishing, Cambridge Chakravarthi S, Jessop CE, Bulleid NJ (2009) Oxidative folding in the endoplasmic reticulum. In: Buchner J, Moroder L (eds) Oxidative folding of peptides and proteins. RSC Publishing, Cambridge
5.
Zurück zum Zitat van Anken E, Braakman I (2005) Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol 40:191–228 van Anken E, Braakman I (2005) Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol 40:191–228
6.
Zurück zum Zitat Hebert DN, Molinari M (2007) In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 87:1377–1408 Hebert DN, Molinari M (2007) In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 87:1377–1408
7.
Zurück zum Zitat Ellgaard L, Ruddock LW (2005) The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep 6:28–32 Ellgaard L, Ruddock LW (2005) The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep 6:28–32
8.
Zurück zum Zitat Appenzeller-Herzog C, Ellgaard L (2008) The human PDI family: versatility packed into a single fold. Biochim Biophys Acta 1783:535–548 Appenzeller-Herzog C, Ellgaard L (2008) The human PDI family: versatility packed into a single fold. Biochim Biophys Acta 1783:535–548
9.
Zurück zum Zitat Freedman RB (1995) The formation of protein disulphide bonds. Curr Opin Struct Biol 5:85–91 Freedman RB (1995) The formation of protein disulphide bonds. Curr Opin Struct Biol 5:85–91
10.
Zurück zum Zitat Gleiter S, Bardwell JC (2008) Disulfide bond isomerization in prokaryotes. Biochim Biophys Acta 1783:530–534 Gleiter S, Bardwell JC (2008) Disulfide bond isomerization in prokaryotes. Biochim Biophys Acta 1783:530–534
11.
Zurück zum Zitat Mamathambika BS, Bardwell JC (2008) Disulfide-linked protein folding pathways. Annu Rev Cell Dev Biol 24:211–235 Mamathambika BS, Bardwell JC (2008) Disulfide-linked protein folding pathways. Annu Rev Cell Dev Biol 24:211–235
12.
Zurück zum Zitat Riemer J, Bulleid N, Herrmann JM (2009) Disulfide formation in the ER and mitochondria: two solutions to a common process. Science 324:1284–1287 Riemer J, Bulleid N, Herrmann JM (2009) Disulfide formation in the ER and mitochondria: two solutions to a common process. Science 324:1284–1287
13.
Zurück zum Zitat Creighton T (1995) Disulphide-coupled protein folding pathways. Philos Trans R Soc Lond B Biol Sci 348:5–10 Creighton T (1995) Disulphide-coupled protein folding pathways. Philos Trans R Soc Lond B Biol Sci 348:5–10
14.
Zurück zum Zitat Narayan M, Welker E, Wedemeyer WJ et al (2000) Oxidative folding of proteins. Acc Chem Res 33:805–812 Narayan M, Welker E, Wedemeyer WJ et al (2000) Oxidative folding of proteins. Acc Chem Res 33:805–812
15.
Zurück zum Zitat Wedemeyer WJ, Welker E, Narayan M et al (2000) Disulfide bonds and protein folding. Biochemistry 39:4207–4216 Wedemeyer WJ, Welker E, Narayan M et al (2000) Disulfide bonds and protein folding. Biochemistry 39:4207–4216
16.
Zurück zum Zitat Arolas JL, Aviles FX, Chang JY et al (2006) Folding of small disulfide-rich proteins: clarifying the puzzle. Trends Biochem Sci 31:292–301 Arolas JL, Aviles FX, Chang JY et al (2006) Folding of small disulfide-rich proteins: clarifying the puzzle. Trends Biochem Sci 31:292–301
17.
Zurück zum Zitat Chang JY (2004) Evidence for the underlying cause of diversity of the disulfide folding pathway. Biochemistry 43:4522–4529 Chang JY (2004) Evidence for the underlying cause of diversity of the disulfide folding pathway. Biochemistry 43:4522–4529
18.
Zurück zum Zitat Darby NJ, van Mierlo CP, Creighton TE (1991) The 5–55 single-disulphide intermediate in folding of bovine pancreatic trypsin inhibitor. FEBS Lett 279:61–64 Darby NJ, van Mierlo CP, Creighton TE (1991) The 5–55 single-disulphide intermediate in folding of bovine pancreatic trypsin inhibitor. FEBS Lett 279:61–64
19.
Zurück zum Zitat van Mierlo CP, Darby NJ, Creighton TE (1992) The partially folded conformation of the Cys-30 Cys-51 intermediate in the disulfide folding pathway of bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci USA 89:6775–6779 van Mierlo CP, Darby NJ, Creighton TE (1992) The partially folded conformation of the Cys-30 Cys-51 intermediate in the disulfide folding pathway of bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci USA 89:6775–6779
20.
Zurück zum Zitat Ewbank JJ, Creighton TE (1993) Structural characterization of the disulfide folding intermediates of bovine alpha-lactalbumin. Biochemistry 32:3694–3707 Ewbank JJ, Creighton TE (1993) Structural characterization of the disulfide folding intermediates of bovine alpha-lactalbumin. Biochemistry 32:3694–3707
21.
Zurück zum Zitat Talluri S, Rothwarf DM, Scheraga HA (1994) Structural characterization of a three-disulfide intermediate of ribonuclease A involved in both the folding and unfolding pathways. Biochemistry 33:10437–10449 Talluri S, Rothwarf DM, Scheraga HA (1994) Structural characterization of a three-disulfide intermediate of ribonuclease A involved in both the folding and unfolding pathways. Biochemistry 33:10437–10449
22.
Zurück zum Zitat van den Berg B, Chung EW, Robinson CV et al (1999) Characterisation of the dominant oxidative folding intermediate of hen lysozyme. J Mol Biol 290:781–796 van den Berg B, Chung EW, Robinson CV et al (1999) Characterisation of the dominant oxidative folding intermediate of hen lysozyme. J Mol Biol 290:781–796
23.
Zurück zum Zitat Eigenbrot C, Randal M, Kossiakoff AA (1990) Structural effects induced by removal of a disulfide-bridge: the X-ray structure of the C30A/C51A mutant of basic pancreatic trypsin inhibitor at 1.6 A. Protein Eng 3:591–598 Eigenbrot C, Randal M, Kossiakoff AA (1990) Structural effects induced by removal of a disulfide-bridge: the X-ray structure of the C30A/C51A mutant of basic pancreatic trypsin inhibitor at 1.6 A. Protein Eng 3:591–598
24.
Zurück zum Zitat van Mierlo CP, Darby NJ, Keeler J et al (1993) Partially folded conformation of the (30–51) intermediate in the disulphide folding pathway of bovine pancreatic trypsin inhibitor. 1 H and 15 N resonance assignments and determination of backbone dynamics from 15 N relaxation measurements. J Mol Biol 229:1125–1146 van Mierlo CP, Darby NJ, Keeler J et al (1993) Partially folded conformation of the (30–51) intermediate in the disulphide folding pathway of bovine pancreatic trypsin inhibitor. 1 H and 15 N resonance assignments and determination of backbone dynamics from 15 N relaxation measurements. J Mol Biol 229:1125–1146
25.
Zurück zum Zitat Laity JH, Lester CC, Shimotakahara S et al (1997) Structural characterization of an analog of the major rate-determining disulfide folding intermediate of bovine pancreatic ribonuclease A. Biochemistry 36:12683–12699 Laity JH, Lester CC, Shimotakahara S et al (1997) Structural characterization of an analog of the major rate-determining disulfide folding intermediate of bovine pancreatic ribonuclease A. Biochemistry 36:12683–12699
26.
Zurück zum Zitat Vinci F, Ruoppolo M, Pucci P et al (2000) Early intermediates in the PDI-assisted folding of ribonuclease A. Protein Sci 9:525–535 Vinci F, Ruoppolo M, Pucci P et al (2000) Early intermediates in the PDI-assisted folding of ribonuclease A. Protein Sci 9:525–535
27.
Zurück zum Zitat Weissman JS, Kim PS (1991) Reexamination of the folding of BPTI: predominance of native intermediates. Science 253:1386–1393 Weissman JS, Kim PS (1991) Reexamination of the folding of BPTI: predominance of native intermediates. Science 253:1386–1393
28.
Zurück zum Zitat Weissman JS, Kim PS (1995) A kinetic explanation for the rearrangement pathway of BPTI folding. Nat Struct Biol 2:1123–1130 Weissman JS, Kim PS (1995) A kinetic explanation for the rearrangement pathway of BPTI folding. Nat Struct Biol 2:1123–1130
29.
Zurück zum Zitat Goldenberg DP (1992) Native and non-native intermediates in the BPTI folding pathway. Trends Biochem Sci 17:257–261 Goldenberg DP (1992) Native and non-native intermediates in the BPTI folding pathway. Trends Biochem Sci 17:257–261
30.
Zurück zum Zitat Karala AR, Lappi AK, Saaranen MJ et al (2009) Efficient peroxide-mediated oxidative refolding of a protein at physiological pH and implications for oxidative folding in the endoplasmic reticulum. Antioxid Redox Signal 11:963–970 Karala AR, Lappi AK, Saaranen MJ et al (2009) Efficient peroxide-mediated oxidative refolding of a protein at physiological pH and implications for oxidative folding in the endoplasmic reticulum. Antioxid Redox Signal 11:963–970
31.
Zurück zum Zitat Chang JY (1994) Controlling the speed of hirudin folding. Biochem J 300(Pt 3):643–650 Chang JY (1994) Controlling the speed of hirudin folding. Biochem J 300(Pt 3):643–650
32.
Zurück zum Zitat Roux P, Ruoppolo M, Chaffotte AF et al (1999) Comparison of the kinetics of S–S bond, secondary structure, and active site formation during refolding of reduced denatured hen egg white lysozyme. Protein Sci 8:2751–2760 Roux P, Ruoppolo M, Chaffotte AF et al (1999) Comparison of the kinetics of S–S bond, secondary structure, and active site formation during refolding of reduced denatured hen egg white lysozyme. Protein Sci 8:2751–2760
33.
Zurück zum Zitat Ruoppolo M, Freedman RB, Pucci P et al (1996) Glutathione-dependent pathways of refolding of RNase T1 by oxidation and disulfide isomerization: catalysis by protein disulfide isomerase. Biochemistry 35:13636–13646 Ruoppolo M, Freedman RB, Pucci P et al (1996) Glutathione-dependent pathways of refolding of RNase T1 by oxidation and disulfide isomerization: catalysis by protein disulfide isomerase. Biochemistry 35:13636–13646
34.
Zurück zum Zitat Ruoppolo M, Freedman RB (1995) Refolding by disulfide isomerization: the mixed disulfide between ribonuclease T1 and glutathione as a model refolding substrate. Biochemistry 34:9380–9388 Ruoppolo M, Freedman RB (1995) Refolding by disulfide isomerization: the mixed disulfide between ribonuclease T1 and glutathione as a model refolding substrate. Biochemistry 34:9380–9388
35.
Zurück zum Zitat Kibria FM, Lees WJ (2008) Balancing conformational and oxidative kinetic traps during the folding of bovine pancreatic trypsin inhibitor (BPTI) with glutathione and glutathione disulfide. J Am Chem Soc 130:796–797 Kibria FM, Lees WJ (2008) Balancing conformational and oxidative kinetic traps during the folding of bovine pancreatic trypsin inhibitor (BPTI) with glutathione and glutathione disulfide. J Am Chem Soc 130:796–797
36.
Zurück zum Zitat Goldberger RF, Epstein CJ, Anfinsen CB (1963) Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J Biol Chem 238:628–635 Goldberger RF, Epstein CJ, Anfinsen CB (1963) Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J Biol Chem 238:628–635
37.
Zurück zum Zitat Venetianer P, Straub FB (1963) The enzymic reactivation of reduced ribonuclease. Biochim Biophys Acta 67:166–168 Venetianer P, Straub FB (1963) The enzymic reactivation of reduced ribonuclease. Biochim Biophys Acta 67:166–168
38.
Zurück zum Zitat Givol D, Goldberger RF, Anfinsen CB (1964) Oxidation and disulfide interchange in the reactivation of reduced ribonuclease. J Biol Chem 239:PC3114–PC3116 Givol D, Goldberger RF, Anfinsen CB (1964) Oxidation and disulfide interchange in the reactivation of reduced ribonuclease. J Biol Chem 239:PC3114–PC3116
39.
Zurück zum Zitat Freedman RB (1984) Native disulphide bond formation in protein biosynthesis: evidence for the role of protein disulphide isomerase. Trends Biochem Sci 9:438–441 Freedman RB (1984) Native disulphide bond formation in protein biosynthesis: evidence for the role of protein disulphide isomerase. Trends Biochem Sci 9:438–441
40.
Zurück zum Zitat Freedman RB, Hirst TR, Tuite MF (1994) Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci 19:331–336 Freedman RB, Hirst TR, Tuite MF (1994) Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci 19:331–336
41.
Zurück zum Zitat Creighton TE, Hillson DA, Freedman RB (1980) Catalysis by protein-disulphide isomerase of the unfolding and refolding of proteins with disulphide bonds. J Mol Biol 142:43–62 Creighton TE, Hillson DA, Freedman RB (1980) Catalysis by protein-disulphide isomerase of the unfolding and refolding of proteins with disulphide bonds. J Mol Biol 142:43–62
42.
Zurück zum Zitat Creighton TE, Bagley CJ, Cooper L et al (1993) On the biosynthesis of bovine pancreatic trypsin inhibitor (BPTI). Structure, processing, folding and disulphide bond formation of the precursor in vitro and in microsomes. J Mol Biol 232:1176–1196 Creighton TE, Bagley CJ, Cooper L et al (1993) On the biosynthesis of bovine pancreatic trypsin inhibitor (BPTI). Structure, processing, folding and disulphide bond formation of the precursor in vitro and in microsomes. J Mol Biol 232:1176–1196
43.
Zurück zum Zitat Darby NJ, Freedman RB, Creighton TE (1994) Dissecting the mechanism of protein disulfide isomerase: catalysis of disulfide bond formation in a model peptide. Biochemistry 33:7937–7947 Darby NJ, Freedman RB, Creighton TE (1994) Dissecting the mechanism of protein disulfide isomerase: catalysis of disulfide bond formation in a model peptide. Biochemistry 33:7937–7947
44.
Zurück zum Zitat Weissman JS, Kim PS (1993) Efficient catalysis of disulphide bond rearrangements by protein disulphide isomerase. Nature 365:185–188 Weissman JS, Kim PS (1993) Efficient catalysis of disulphide bond rearrangements by protein disulphide isomerase. Nature 365:185–188
45.
Zurück zum Zitat Shin HC, Scheraga HA (2000) Catalysis of the oxidative folding of bovine pancreatic ribonuclease A by protein disulfide isomerase. J Mol Biol 300:995–1003 Shin HC, Scheraga HA (2000) Catalysis of the oxidative folding of bovine pancreatic ribonuclease A by protein disulfide isomerase. J Mol Biol 300:995–1003
46.
Zurück zum Zitat Shin HC, Song MC, Scheraga HA (2002) Effect of protein disulfide isomerase on the rate-determining steps of the folding of bovine pancreatic ribonuclease A. FEBS Lett 521:77–80 Shin HC, Song MC, Scheraga HA (2002) Effect of protein disulfide isomerase on the rate-determining steps of the folding of bovine pancreatic ribonuclease A. FEBS Lett 521:77–80
47.
Zurück zum Zitat van den Berg B, Chung EW, Robinson CV et al (1999) The oxidative refolding of hen lysozyme and its catalysis by protein disulfide isomerase. EMBO J 18:4794–4803 van den Berg B, Chung EW, Robinson CV et al (1999) The oxidative refolding of hen lysozyme and its catalysis by protein disulfide isomerase. EMBO J 18:4794–4803
48.
Zurück zum Zitat Huber-Wunderlich M, Glockshuber R (1998) A single dipeptide sequence modulates the redox properties of a whole enzyme family. Fold Des 3:161–171 Huber-Wunderlich M, Glockshuber R (1998) A single dipeptide sequence modulates the redox properties of a whole enzyme family. Fold Des 3:161–171
49.
Zurück zum Zitat Lundstrom J, Holmgren A (1993) Determination of the reduction-oxidation potential of the thioredoxin-like domains of protein disulfide-isomerase from the equilibrium with glutathione and thioredoxin. Biochemistry 32:6649–6655 Lundstrom J, Holmgren A (1993) Determination of the reduction-oxidation potential of the thioredoxin-like domains of protein disulfide-isomerase from the equilibrium with glutathione and thioredoxin. Biochemistry 32:6649–6655
50.
Zurück zum Zitat Hatahet F, Ruddock LW (2009) Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 11:2807–2850 Hatahet F, Ruddock LW (2009) Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 11:2807–2850
51.
Zurück zum Zitat Krause G, Lundstrom J, Barea JL et al (1991) Mimicking the active site of protein disulfide-isomerase by substitution of proline 34 in Escherichia coli thioredoxin. J Biol Chem 266:9494–9500 Krause G, Lundstrom J, Barea JL et al (1991) Mimicking the active site of protein disulfide-isomerase by substitution of proline 34 in Escherichia coli thioredoxin. J Biol Chem 266:9494–9500
52.
Zurück zum Zitat Lundstrom J, Krause G, Holmgren A (1992) A Pro to His mutation in active site of thioredoxin increases its disulfide-isomerase activity 10-fold. New refolding systems for reduced or randomly oxidized ribonuclease. J Biol Chem 267:9047–9052 Lundstrom J, Krause G, Holmgren A (1992) A Pro to His mutation in active site of thioredoxin increases its disulfide-isomerase activity 10-fold. New refolding systems for reduced or randomly oxidized ribonuclease. J Biol Chem 267:9047–9052
53.
Zurück zum Zitat Zapun A, Creighton TE (1994) Effects of DsbA on the disulfide folding of bovine pancreatic trypsin inhibitor and alpha-lactalbumin. Biochemistry 33:5202–5211 Zapun A, Creighton TE (1994) Effects of DsbA on the disulfide folding of bovine pancreatic trypsin inhibitor and alpha-lactalbumin. Biochemistry 33:5202–5211
54.
Zurück zum Zitat Bader MW, Xie T, Yu CA et al (2000) Disulfide bonds are generated by quinone reduction. J Biol Chem 275:26082–26088 Bader MW, Xie T, Yu CA et al (2000) Disulfide bonds are generated by quinone reduction. J Biol Chem 275:26082–26088
55.
Zurück zum Zitat Darby NJ, Creighton TE (1995) Catalytic mechanism of DsbA and its comparison with that of protein disulfide isomerase. Biochemistry 34:3576–3587 Darby NJ, Creighton TE (1995) Catalytic mechanism of DsbA and its comparison with that of protein disulfide isomerase. Biochemistry 34:3576–3587
56.
Zurück zum Zitat Qiu J, Swartz JR, Georgiou G (1998) Expression of active human tissue-type plasminogen activator in Escherichia coli. Appl Environ Microbiol 64:4891–4896 Qiu J, Swartz JR, Georgiou G (1998) Expression of active human tissue-type plasminogen activator in Escherichia coli. Appl Environ Microbiol 64:4891–4896
57.
Zurück zum Zitat Gebendorfer KM, Winter J (1999) The periplasm of E. coli – oxidative folding of recombinant proteins. In: Buchner J, Moroder L (eds) Oxidative folding of peptides and proteins. RSC Publishing, Cambridge Gebendorfer KM, Winter J (1999) The periplasm of E. coli – oxidative folding of recombinant proteins. In: Buchner J, Moroder L (eds) Oxidative folding of peptides and proteins. RSC Publishing, Cambridge
58.
Zurück zum Zitat Berkmen M, Boyd D, Beckwith J (2005) The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC. J Biol Chem 280:11387–11394 Berkmen M, Boyd D, Beckwith J (2005) The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC. J Biol Chem 280:11387–11394
59.
Zurück zum Zitat Messens J, Collet JF, Van Belle K et al (2007) The oxidase DsbA folds a protein with a nonconsecutive disulfide. J Biol Chem 282:31302–31307 Messens J, Collet JF, Van Belle K et al (2007) The oxidase DsbA folds a protein with a nonconsecutive disulfide. J Biol Chem 282:31302–31307
60.
Zurück zum Zitat Zapun A, Missiakas D, Raina S et al (1995) Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry 34:5075–5089 Zapun A, Missiakas D, Raina S et al (1995) Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry 34:5075–5089
61.
Zurück zum Zitat Klappa P, Hawkins HC, Freedman RB (1997) Interactions between protein disulphide isomerase and peptides. Eur J Biochem 248:37–42 Klappa P, Hawkins HC, Freedman RB (1997) Interactions between protein disulphide isomerase and peptides. Eur J Biochem 248:37–42
62.
Zurück zum Zitat Klappa P, Stromer T, Zimmermann R et al (1998) A pancreas-specific glycosylated protein disulphide-isomerase binds to misfolded proteins and peptides with an interaction inhibited by oestrogens. Eur J Biochem 254:63–69 Klappa P, Stromer T, Zimmermann R et al (1998) A pancreas-specific glycosylated protein disulphide-isomerase binds to misfolded proteins and peptides with an interaction inhibited by oestrogens. Eur J Biochem 254:63–69
63.
Zurück zum Zitat Klappa P, Ruddock LW, Darby NJ et al (1998) The b′ domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J 17:927–935 Klappa P, Ruddock LW, Darby NJ et al (1998) The b′ domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J 17:927–935
64.
Zurück zum Zitat Ruddock LW, Freedman RB, Klappa P (2000) Specificity in substrate binding by protein folding catalysts: tyrosine and tryptophan residues are the recognition motifs for the binding of peptides to the pancreas-specific protein disulfide isomerase PDIp. Protein Sci 9:758–764 Ruddock LW, Freedman RB, Klappa P (2000) Specificity in substrate binding by protein folding catalysts: tyrosine and tryptophan residues are the recognition motifs for the binding of peptides to the pancreas-specific protein disulfide isomerase PDIp. Protein Sci 9:758–764
65.
Zurück zum Zitat Cai H, Wang CC, Tsou CL (1994) Chaperone-like activity of protein disulfide isomerase in the refolding of a protein with no disulfide bonds. J Biol Chem 269:24550–24552 Cai H, Wang CC, Tsou CL (1994) Chaperone-like activity of protein disulfide isomerase in the refolding of a protein with no disulfide bonds. J Biol Chem 269:24550–24552
66.
Zurück zum Zitat Song JL, Wang CC (1995) Chaperone-like activity of protein disulfide-isomerase in the refolding of rhodanese. Eur J Biochem 231:312–316 Song JL, Wang CC (1995) Chaperone-like activity of protein disulfide-isomerase in the refolding of rhodanese. Eur J Biochem 231:312–316
67.
Zurück zum Zitat Wilson R, Lees JF, Bulleid NJ (1998) Protein disulfide isomerase acts as a molecular chaperone during the assembly of procollagen. J Biol Chem 273:9637–9643 Wilson R, Lees JF, Bulleid NJ (1998) Protein disulfide isomerase acts as a molecular chaperone during the assembly of procollagen. J Biol Chem 273:9637–9643
68.
Zurück zum Zitat McLaughlin SH, Bulleid NJ (1998) Thiol-independent interaction of protein disulphide isomerase with type X collagen during intra-cellular folding and assembly. Biochem J 331(Pt 3):793–800 McLaughlin SH, Bulleid NJ (1998) Thiol-independent interaction of protein disulphide isomerase with type X collagen during intra-cellular folding and assembly. Biochem J 331(Pt 3):793–800
69.
Zurück zum Zitat Kivirikko KI, Pihlajaniemi T (1998) Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases. Adv Enzymol Relat Areas Mol Biol 72:325–398 Kivirikko KI, Pihlajaniemi T (1998) Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases. Adv Enzymol Relat Areas Mol Biol 72:325–398
70.
Zurück zum Zitat Hussain MM, Shi J, Dreizen P (2003) Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res 44:22–32 Hussain MM, Shi J, Dreizen P (2003) Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res 44:22–32
71.
Zurück zum Zitat Kersteen EA, Higgin JJ, Raines RT (2004) Production of human prolyl 4-hydroxylase in Escherichia coli. Protein Expr Purif 38:279–291 Kersteen EA, Higgin JJ, Raines RT (2004) Production of human prolyl 4-hydroxylase in Escherichia coli. Protein Expr Purif 38:279–291
72.
Zurück zum Zitat Zapun A, Creighton TE, Rowling PJ et al (1992) Folding in vitro of bovine pancreatic trypsin inhibitor in the presence of proteins of the endoplasmic reticulum. Proteins 14:10–15 Zapun A, Creighton TE, Rowling PJ et al (1992) Folding in vitro of bovine pancreatic trypsin inhibitor in the presence of proteins of the endoplasmic reticulum. Proteins 14:10–15
73.
Zurück zum Zitat Hwang C, Sinskey AJ, Lodish HF (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496–1502 Hwang C, Sinskey AJ, Lodish HF (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496–1502
74.
Zurück zum Zitat Bass R, Ruddock LW, Klappa P et al (2004) A major fraction of endoplasmic reticulum-located glutathione is present as mixed disulfides with protein. J Biol Chem 279:5257–5262 Bass R, Ruddock LW, Klappa P et al (2004) A major fraction of endoplasmic reticulum-located glutathione is present as mixed disulfides with protein. J Biol Chem 279:5257–5262
75.
Zurück zum Zitat Dixon BM, Heath SH, Kim R et al (2008) Assessment of endoplasmic reticulum glutathione redox status is confounded by extensive ex vivo oxidation. Antioxid Redox Signal 10:963–972 Dixon BM, Heath SH, Kim R et al (2008) Assessment of endoplasmic reticulum glutathione redox status is confounded by extensive ex vivo oxidation. Antioxid Redox Signal 10:963–972
76.
Zurück zum Zitat Sevier CS, Kaiser CA (2008) Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta 1783:549–556 Sevier CS, Kaiser CA (2008) Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta 1783:549–556
77.
Zurück zum Zitat Mezghrani A, Fassio A, Benham A et al (2001) Manipulation of oxidative protein folding and PDI redox state in mammalian cells. EMBO J 20:6288–6296 Mezghrani A, Fassio A, Benham A et al (2001) Manipulation of oxidative protein folding and PDI redox state in mammalian cells. EMBO J 20:6288–6296
78.
Zurück zum Zitat Tu BP, Ho-Schleyer SC, Travers KJ et al (2000) Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science 290:1571–1574 Tu BP, Ho-Schleyer SC, Travers KJ et al (2000) Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science 290:1571–1574
79.
Zurück zum Zitat Kulp MS, Frickel EM, Ellgaard L et al (2006) Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation. J Biol Chem 281:876–884 Kulp MS, Frickel EM, Ellgaard L et al (2006) Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation. J Biol Chem 281:876–884
80.
Zurück zum Zitat Wang L, Li SJ, Sidhu A et al (2009) Reconstitution of human Ero1-Lalpha/protein-disulfide isomerase oxidative folding pathway in vitro. Position-dependent differences in role between the a and a′ domains of protein-disulfide isomerase. J Biol Chem 284:199–206 Wang L, Li SJ, Sidhu A et al (2009) Reconstitution of human Ero1-Lalpha/protein-disulfide isomerase oxidative folding pathway in vitro. Position-dependent differences in role between the a and a′ domains of protein-disulfide isomerase. J Biol Chem 284:199–206
81.
Zurück zum Zitat Bulleid NJ, Freedman RB (1988) Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature 335:649–651 Bulleid NJ, Freedman RB (1988) Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature 335:649–651
82.
Zurück zum Zitat Marquardt T, Hebert DN, Helenius A (1993) Post-translational folding of influenza hemagglutinin in isolated endoplasmic reticulum-derived microsomes. J Biol Chem 268:19618–19625 Marquardt T, Hebert DN, Helenius A (1993) Post-translational folding of influenza hemagglutinin in isolated endoplasmic reticulum-derived microsomes. J Biol Chem 268:19618–19625
83.
Zurück zum Zitat Braakman I, Helenius J, Helenius A (1992) Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J 11:1717–1722 Braakman I, Helenius J, Helenius A (1992) Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J 11:1717–1722
84.
Zurück zum Zitat Jansens A, van Duijn E, Braakman I (2002) Coordinated nonvectorial folding in a newly synthesized multidomain protein. Science 298:2401–2403 Jansens A, van Duijn E, Braakman I (2002) Coordinated nonvectorial folding in a newly synthesized multidomain protein. Science 298:2401–2403
85.
Zurück zum Zitat Land A, Zonneveld D, Braakman I (2003) Folding of HIV-1 envelope glycoprotein involves extensive isomerization of disulfide bonds and conformation-dependent leader peptide cleavage. FASEB J 17:1058–1067 Land A, Zonneveld D, Braakman I (2003) Folding of HIV-1 envelope glycoprotein involves extensive isomerization of disulfide bonds and conformation-dependent leader peptide cleavage. FASEB J 17:1058–1067
86.
Zurück zum Zitat Edman JC, Ellis L, Blacher RW et al (1985) Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317:267–270 Edman JC, Ellis L, Blacher RW et al (1985) Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317:267–270
87.
Zurück zum Zitat Gruber CW, Cemazar M, Heras B et al (2006) Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci 31:455–464 Gruber CW, Cemazar M, Heras B et al (2006) Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci 31:455–464
88.
Zurück zum Zitat Charbonnier JB, Belin P, Moutiez M et al (1999) On the role of the cis-proline residue in the active site of DsbA. Protein Sci 8:96–105 Charbonnier JB, Belin P, Moutiez M et al (1999) On the role of the cis-proline residue in the active site of DsbA. Protein Sci 8:96–105
89.
Zurück zum Zitat Tian G, Xiang S, Noiva R et al (2006) The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell 124:61–73 Tian G, Xiang S, Noiva R et al (2006) The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell 124:61–73
90.
Zurück zum Zitat Su D, Berndt C, Fomenko DE et al (2007) A conserved cis-proline precludes metal binding by the active site thiolates in members of the thioredoxin family of proteins. Biochemistry 46:6903–6910 Su D, Berndt C, Fomenko DE et al (2007) A conserved cis-proline precludes metal binding by the active site thiolates in members of the thioredoxin family of proteins. Biochemistry 46:6903–6910
91.
Zurück zum Zitat Kemmink J, Dijkstra K, Mariani M et al (1999) The structure in solution of the b domain of protein disulfide isomerase. J Biomol NMR 13:357–368 Kemmink J, Dijkstra K, Mariani M et al (1999) The structure in solution of the b domain of protein disulfide isomerase. J Biomol NMR 13:357–368
92.
Zurück zum Zitat Bardwell JC, McGovern K, Beckwith J (1991) Identification of a protein required for disulfide bond formation in vivo. Cell 67:581–589 Bardwell JC, McGovern K, Beckwith J (1991) Identification of a protein required for disulfide bond formation in vivo. Cell 67:581–589
93.
Zurück zum Zitat Nelson JW, Creighton TE (1994) Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry 33:5974–5983 Nelson JW, Creighton TE (1994) Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry 33:5974–5983
94.
Zurück zum Zitat Grauschopf U, Winther JR, Korber P et al (1995) Why is DsbA such an oxidizing disulfide catalyst? Cell 83:947–955 Grauschopf U, Winther JR, Korber P et al (1995) Why is DsbA such an oxidizing disulfide catalyst? Cell 83:947–955
95.
Zurück zum Zitat Dyson HJ, Jeng MF, Tennant LL et al (1997) Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. Biochemistry 36:2622–2636 Dyson HJ, Jeng MF, Tennant LL et al (1997) Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. Biochemistry 36:2622–2636
96.
Zurück zum Zitat Forman-Kay JD, Clore GM, Gronenborn AM (1992) Relationship between electrostatics and redox function in human thioredoxin: characterization of pH titration shifts using two-dimensional homo- and heteronuclear NMR. Biochemistry 31:3442–3452 Forman-Kay JD, Clore GM, Gronenborn AM (1992) Relationship between electrostatics and redox function in human thioredoxin: characterization of pH titration shifts using two-dimensional homo- and heteronuclear NMR. Biochemistry 31:3442–3452
97.
Zurück zum Zitat Chivers PT, Laboissiere MC, Raines RT (1996) The CXXC motif: imperatives for the formation of native disulfide bonds in the cell. EMBO J 15:2659–2667 Chivers PT, Laboissiere MC, Raines RT (1996) The CXXC motif: imperatives for the formation of native disulfide bonds in the cell. EMBO J 15:2659–2667
98.
Zurück zum Zitat Chambers JE, Tavender TJ, Oka OB et al (2010) The reduction potential of the active site disulfides of human protein disulfide isomerase limits oxidation of the enzyme by Ero1alpha. J Biol Chem 285:29200–29207 Chambers JE, Tavender TJ, Oka OB et al (2010) The reduction potential of the active site disulfides of human protein disulfide isomerase limits oxidation of the enzyme by Ero1alpha. J Biol Chem 285:29200–29207
99.
Zurück zum Zitat Chivers PT, Prehoda KE, Raines RT (1997) The CXXC motif: a rheostat in the active site. Biochemistry 36:4061–4066 Chivers PT, Prehoda KE, Raines RT (1997) The CXXC motif: a rheostat in the active site. Biochemistry 36:4061–4066
100.
Zurück zum Zitat Ren G, Stephan D, Xu Z et al (2009) Properties of the thioredoxin fold superfamily are modulated by a single amino acid residue. J Biol Chem 284:10150–10159 Ren G, Stephan D, Xu Z et al (2009) Properties of the thioredoxin fold superfamily are modulated by a single amino acid residue. J Biol Chem 284:10150–10159
101.
Zurück zum Zitat Krause G, Holmgren A (1991) Substitution of the conserved tryptophan 31 in Escherichia coli thioredoxin by site-directed mutagenesis and structure-function analysis. J Biol Chem 266:4056–4066 Krause G, Holmgren A (1991) Substitution of the conserved tryptophan 31 in Escherichia coli thioredoxin by site-directed mutagenesis and structure-function analysis. J Biol Chem 266:4056–4066
102.
Zurück zum Zitat Kersteen EA, Barrows SR, Raines RT (2005) Catalysis of protein disulfide bond isomerization in a homogeneous substrate. Biochemistry 44:12168–12178 Kersteen EA, Barrows SR, Raines RT (2005) Catalysis of protein disulfide bond isomerization in a homogeneous substrate. Biochemistry 44:12168–12178
103.
Zurück zum Zitat Wang L, Vavassori S, Li S et al (2008) Crystal structure of human ERp44 shows a dynamic functional modulation by its carboxy-terminal tail. EMBO Rep 9:642–647 Wang L, Vavassori S, Li S et al (2008) Crystal structure of human ERp44 shows a dynamic functional modulation by its carboxy-terminal tail. EMBO Rep 9:642–647
104.
Zurück zum Zitat Karala AR, Lappi AK, Ruddock LW (2010) Modulation of an active-site cysteine pKa allows PDI to act as a catalyst of both disulfide bond formation and isomerization. J Mol Biol 396:883–892 Karala AR, Lappi AK, Ruddock LW (2010) Modulation of an active-site cysteine pKa allows PDI to act as a catalyst of both disulfide bond formation and isomerization. J Mol Biol 396:883–892
105.
Zurück zum Zitat Lappi AK, Lensink MF, Alanen HI et al (2004) A conserved arginine plays a role in the catalytic cycle of the protein disulphide isomerases. J Mol Biol 335:283–295 Lappi AK, Lensink MF, Alanen HI et al (2004) A conserved arginine plays a role in the catalytic cycle of the protein disulphide isomerases. J Mol Biol 335:283–295
106.
Zurück zum Zitat Darby NJ, Creighton TE (1995) Functional properties of the individual thioredoxin-like domains of protein disulfide isomerase. Biochemistry 34:11725–11735 Darby NJ, Creighton TE (1995) Functional properties of the individual thioredoxin-like domains of protein disulfide isomerase. Biochemistry 34:11725–11735
107.
Zurück zum Zitat Darby NJ, Penka E, Vincentelli R (1998) The multi-domain structure of protein disulfide isomerase is essential for high catalytic efficiency. J Mol Biol 276:239–247 Darby NJ, Penka E, Vincentelli R (1998) The multi-domain structure of protein disulfide isomerase is essential for high catalytic efficiency. J Mol Biol 276:239–247
108.
Zurück zum Zitat Ruoppolo M, Orru S, Talamo F et al (2003) Mutations in domain a′ of protein disulfide isomerase affect the folding pathway of bovine pancreatic ribonuclease A. Protein Sci 12:939–952 Ruoppolo M, Orru S, Talamo F et al (2003) Mutations in domain a′ of protein disulfide isomerase affect the folding pathway of bovine pancreatic ribonuclease A. Protein Sci 12:939–952
109.
Zurück zum Zitat Karala AR, Ruddock LW (2010) Bacitracin is not a specific inhibitor of protein disulfide isomerase. FEBS J 277:2454–2462 Karala AR, Ruddock LW (2010) Bacitracin is not a specific inhibitor of protein disulfide isomerase. FEBS J 277:2454–2462
110.
Zurück zum Zitat Freedman RB, Klappa P, Ruddock LW (2002) Model peptide substrates and ligands in analysis of action of mammalian protein disulfide-isomerase. Methods Enzymol 348:342–354 Freedman RB, Klappa P, Ruddock LW (2002) Model peptide substrates and ligands in analysis of action of mammalian protein disulfide-isomerase. Methods Enzymol 348:342–354
111.
Zurück zum Zitat Denisov AY, Maattanen P, Dabrowski C et al (2009) Solution structure of the bb' domains of human protein disulfide isomerase. FEBS J 276:1440–1449 Denisov AY, Maattanen P, Dabrowski C et al (2009) Solution structure of the bb' domains of human protein disulfide isomerase. FEBS J 276:1440–1449
112.
Zurück zum Zitat Byrne LJ, Sidhu A, Wallis AK et al (2009) Mapping of the ligand binding site on the b' domain of human PDI; interaction with peptide ligands and the x-linker region. Biochem J 423:209–217 Byrne LJ, Sidhu A, Wallis AK et al (2009) Mapping of the ligand binding site on the b' domain of human PDI; interaction with peptide ligands and the x-linker region. Biochem J 423:209–217
113.
Zurück zum Zitat Cheng H, Wang L, Wang CC (2009) Domain a′ of protein disulfide isomerase plays key role in inhibiting alpha-synuclein fibril formation. Cell Stress Chaperones 15:415–421. doi:10.1007/s12192-009-0157-2 Cheng H, Wang L, Wang CC (2009) Domain a′ of protein disulfide isomerase plays key role in inhibiting alpha-synuclein fibril formation. Cell Stress Chaperones 15:415–421. doi:10.1007/s12192-009-0157-2
114.
Zurück zum Zitat Serve O, Kamiya Y, Maeno A et al (2010) Redox-dependent domain rearrangement of protein disulfide isomerase coupled with exposure of its substrate-binding hydrophobic surface. J Mol Biol 396:361–374 Serve O, Kamiya Y, Maeno A et al (2010) Redox-dependent domain rearrangement of protein disulfide isomerase coupled with exposure of its substrate-binding hydrophobic surface. J Mol Biol 396:361–374
115.
Zurück zum Zitat Wallis AK, Sidhu A, Byrne LJ et al (2009) The ligand-binding b′ domain of human protein disulphide-isomerase mediates homodimerization. Protein Sci 18:2569–2577 Wallis AK, Sidhu A, Byrne LJ et al (2009) The ligand-binding b′ domain of human protein disulphide-isomerase mediates homodimerization. Protein Sci 18:2569–2577
116.
Zurück zum Zitat Tian G, Kober FX, Lewandrowski U et al (2008) The catalytic activity of protein-disulfide isomerase requires a conformationally flexible molecule. J Biol Chem 283:33630–33640 Tian G, Kober FX, Lewandrowski U et al (2008) The catalytic activity of protein-disulfide isomerase requires a conformationally flexible molecule. J Biol Chem 283:33630–33640
117.
Zurück zum Zitat Dong G, Wearsch PA, Peaper DR et al (2009) Insights into MHC class I peptide loading from the structure of the tapasin-ERp57 thiol oxidoreductase heterodimer. Immunity 30:21–32 Dong G, Wearsch PA, Peaper DR et al (2009) Insights into MHC class I peptide loading from the structure of the tapasin-ERp57 thiol oxidoreductase heterodimer. Immunity 30:21–32
118.
Zurück zum Zitat Li SJ, Hong XG, Shi YY et al (2006) Annular arrangement and collaborative actions of four domains of protein-disulfide isomerase: a small angle X-ray scattering study in solution. J Biol Chem 281:6581–6588 Li SJ, Hong XG, Shi YY et al (2006) Annular arrangement and collaborative actions of four domains of protein-disulfide isomerase: a small angle X-ray scattering study in solution. J Biol Chem 281:6581–6588
119.
Zurück zum Zitat Kemmink J, Darby NJ, Dijkstra K et al (1997) The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules. Curr Biol 7:239–245 Kemmink J, Darby NJ, Dijkstra K et al (1997) The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules. Curr Biol 7:239–245
120.
Zurück zum Zitat Freedman RB, Gane PJ, Hawkins HC et al (1998) Experimental and theoretical analyses of the domain architecture of mammalian protein disulphide-isomerase. Biol Chem 379:321–328 Freedman RB, Gane PJ, Hawkins HC et al (1998) Experimental and theoretical analyses of the domain architecture of mammalian protein disulphide-isomerase. Biol Chem 379:321–328
121.
Zurück zum Zitat Ferrari DM, Soling HD (1999) The protein disulphide-isomerase family: unravelling a string of folds. Biochem J 339(Pt 1):1–10 Ferrari DM, Soling HD (1999) The protein disulphide-isomerase family: unravelling a string of folds. Biochem J 339(Pt 1):1–10
122.
Zurück zum Zitat Alanen HI, Salo KE, Pekkala M et al (2003) Defining the domain boundaries of the human protein disulfide isomerases. Antioxid Redox Signal 5:367–374 Alanen HI, Salo KE, Pekkala M et al (2003) Defining the domain boundaries of the human protein disulfide isomerases. Antioxid Redox Signal 5:367–374
123.
Zurück zum Zitat Pirneskoski A, Klappa P, Lobell M et al (2004) Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulfide isomerase. J Biol Chem 279:10374–10381 Pirneskoski A, Klappa P, Lobell M et al (2004) Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulfide isomerase. J Biol Chem 279:10374–10381
124.
Zurück zum Zitat Serve O, Kamiya Y, Maeno A et al (2009) Redox-dependent domain rearrangement of protein disulfide isomerase coupled with exposure of its substrate-binding hydrophobic surface. J Mol Biol 396:361–374 Serve O, Kamiya Y, Maeno A et al (2009) Redox-dependent domain rearrangement of protein disulfide isomerase coupled with exposure of its substrate-binding hydrophobic surface. J Mol Biol 396:361–374
125.
Zurück zum Zitat Freedman RB, Klappa P, Ruddock LW (2002) Protein disulfide isomerases exploit synergy between catalytic and specific binding domains. EMBO Rep 3:136–140 Freedman RB, Klappa P, Ruddock LW (2002) Protein disulfide isomerases exploit synergy between catalytic and specific binding domains. EMBO Rep 3:136–140
126.
Zurück zum Zitat Pirneskoski A, Ruddock LW, Klappa P et al (2001) Domains b′ and a′ of protein disulfide isomerase fulfill the minimum requirement for function as a subunit of prolyl 4-hydroxylase. The N-terminal domains a and b enhances this function and can be substituted in part by those of ERp57. J Biol Chem 276:11287–11293 Pirneskoski A, Ruddock LW, Klappa P et al (2001) Domains b′ and a′ of protein disulfide isomerase fulfill the minimum requirement for function as a subunit of prolyl 4-hydroxylase. The N-terminal domains a and b enhances this function and can be substituted in part by those of ERp57. J Biol Chem 276:11287–11293
127.
Zurück zum Zitat Koivunen P, Salo KE, Myllyharju J et al (2005) Three binding sites in protein-disulfide isomerase cooperate in collagen prolyl 4-hydroxylase tetramer assembly. J Biol Chem 280:5227–5235 Koivunen P, Salo KE, Myllyharju J et al (2005) Three binding sites in protein-disulfide isomerase cooperate in collagen prolyl 4-hydroxylase tetramer assembly. J Biol Chem 280:5227–5235
128.
Zurück zum Zitat Inaba K, Masui S, Iida H et al (2010) Crystal structures of human Ero1alpha reveal the mechanisms of regulated and targeted oxidation of PDI. EMBO J 29:3330–3343 Inaba K, Masui S, Iida H et al (2010) Crystal structures of human Ero1alpha reveal the mechanisms of regulated and targeted oxidation of PDI. EMBO J 29:3330–3343
129.
Zurück zum Zitat Kozlov G, Maattanen P, Thomas DY et al (2010) A structural overview of the PDI family of proteins. FEBS J 19:3924–3936 Kozlov G, Maattanen P, Thomas DY et al (2010) A structural overview of the PDI family of proteins. FEBS J 19:3924–3936
130.
Zurück zum Zitat Nguyen VD, Wallis K, Howard MJ et al (2008) Alternative conformations of the x region of human protein disulphide-isomerase modulate exposure of the substrate binding b′ domain. J Mol Biol 383:1144–1155 Nguyen VD, Wallis K, Howard MJ et al (2008) Alternative conformations of the x region of human protein disulphide-isomerase modulate exposure of the substrate binding b′ domain. J Mol Biol 383:1144–1155
131.
Zurück zum Zitat Wang C, Chen S, Wang X et al (2010) Plasticity of human protein disulphide isomerase: evidence for mobility around the x-linker region and its functional significance. J Biol Chem 35:26788–26797 Wang C, Chen S, Wang X et al (2010) Plasticity of human protein disulphide isomerase: evidence for mobility around the x-linker region and its functional significance. J Biol Chem 35:26788–26797
132.
Zurück zum Zitat Klappa P, Freedman RB, Langenbuch M et al (2001) The pancreas-specific protein disulphide-isomerase PDIp interacts with a hydroxyaryl group in ligands. Biochem J 354:553–559 Klappa P, Freedman RB, Langenbuch M et al (2001) The pancreas-specific protein disulphide-isomerase PDIp interacts with a hydroxyaryl group in ligands. Biochem J 354:553–559
133.
Zurück zum Zitat Kozlov G, Maattanen P, Schrag JD et al (2009) Structure of the noncatalytic domains and global fold of the protein disulfide isomerase ERp72. Structure 17:651–659 Kozlov G, Maattanen P, Schrag JD et al (2009) Structure of the noncatalytic domains and global fold of the protein disulfide isomerase ERp72. Structure 17:651–659
134.
Zurück zum Zitat Tsai B, Rodighiero C, Lencer WI et al (2001) Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104:937–948 Tsai B, Rodighiero C, Lencer WI et al (2001) Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104:937–948
135.
Zurück zum Zitat Lumb RA, Bulleid NJ (2002) Is protein disulfide isomerase a redox-dependent molecular chaperone? EMBO J 21:6763–6770 Lumb RA, Bulleid NJ (2002) Is protein disulfide isomerase a redox-dependent molecular chaperone? EMBO J 21:6763–6770
136.
Zurück zum Zitat Nakasako M, Maeno A, Kurimoto E et al (2010) Redox-dependent domain rearrangement of protein disulfide isomerase from a thermophilic fungus. Biochemistry 49:6953–6962 Nakasako M, Maeno A, Kurimoto E et al (2010) Redox-dependent domain rearrangement of protein disulfide isomerase from a thermophilic fungus. Biochemistry 49:6953–6962
Metadaten
Titel
Assisting Oxidative Protein Folding: How Do Protein Disulphide-Isomerases Couple Conformational and Chemical Processes in Protein Folding?
verfasst von
A. Katrine Wallis
Robert B. Freedman
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/128_2011_171