Skip to main content
Erschienen in:
Buchtitelbild

2012 | OriginalPaper | Buchkapitel

1. Assumptions in modelling of large artery hemodynamics

verfasst von : David A. Steinman

Erschienen in: Modeling of Physiological Flows

Verlag: Springer Milan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The last decade has seen tremendous growth in the use of computational methods for simulating large artery hemodynamics. As computational models become more sophisticated and their applications more varied, it is worth (re)considering the simplifying assumptions that are traditionally, and often implicitly, made. This chapter reviews some of the common assumptions about the constitutive properties of the arteries and the blood within, and their potential impact on the computed hemodynamics. It will be seen, for example, that the assumption of rigid walls, while reasonable and expedient, may be questionable for extensive domains and/or heterogeneities in the arterial wall structure and properties, and that this has implications for the way in which prevailing flow conditions are imposed. Simplifying assumptions about the properties of blood are undoubtedly necessary, but the Newtonian/non-Newtonian dichotomy may prove too simplistic, especially as simulations move from laminar flows to unstable and turbulent flows. Rather than dwelling upon the potential limitations arising from these assumptions, this chapter attempts to highlight some of the potentially interesting research opportunities that may arise in investigating and overcoming them.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
1Even then, reflections arising from the microcirculation tend to dominate over the effects of such local impedance mismatches
 
2
2Re is defined as VD/v , where V is the lumen-averaged velocity, D is the lumen diameter, and v is the blood viscosity, usually assumed to be 0.03–0.04 cm2/s.
 
3
3Wo is defined as R(ω/v)1/2, where R is the lumen radius and ω is the frequency of the heart beat in rad/s. For a typically blood viscosity of 0.035 cm2/s and a heart rate of 60 bpm, large artery Womersley numbers range from around 2 (coronaries) to 20 (aorta).
 
4
4The questions this author is most often asked after presentations are: “How can you assume the wall is rigid?” and “How can you assume blood is a Newtonian fluid”. The former tends to be asked by clinicians, the latter by engineers; I’ll not hazard a guess why.
 
5
5These descriptive terms, as well as “stiffness” are often used interchangeably, but have specific meanings for quantifying arterial wall properties [3].
 
6
6In fact, PWV is often measured in vivo by measuring this shift at two or more locations spaced a known distance apart [4].
 
7
7The italics are mine, and I will return to this point in the next section, as it has implications for the measurement and prescription of prevailing flow conditions, and for the validation of so-called “patient-specific” CFD models against in vivo measurements.
 
8
8This was the principle used by Womersley to derive his famous analytic solution for flow in compliant tubes. It was later exploited by the author for his so-called “hybrid” implicit-explicit 2D FSI approach [6], which solved for the transpiration velocities simultaneously with the rest of the velocity field, and then iteratively updated the wall position based on those wall velocities.
 
9
9Different conclusions may be drawn for other vascular territories depending on, say, the curvature of the inlet or the Reynolds number (i.e., entrance length), so the interested reader is encouraged to review the literature and/or perform their own tests specific to their application of interest.
 
10
10This differential compliance may serve to act as a kind of low pass filter to smooth the transients of the cardiac cycle and thus ensure a more quasi-steady supply of blood to the brain vs. other cerebral vascular territories.
 
11
11Although blood exhibits a variety of non-Newtonian properties, as briefly discussed later, in the large artery hemodynamics literature the term “non-Newtonian” often explicitly or implicitly refers to shear-thinning properties alone. Many shear-thinning models have been proposed, as recently reviewed by [29].
 
12
12Poise is the cgs unit of dynamic viscosity, named for Poiseuille. 1 Poise = 1 dyne-s/cm2 =0.1Pas. The cgs unit for kinematic viscosity is the Stokes, equivalent to cm2/s, and is often calculated from the dynamic viscosity assuming a blood density of 1.06 g/cm3.
 
13
13For example, the ~ 3-μm RBC-free plasma layer adjacent to the arterial wall has an appreciable effect on the apparent viscosity of blood (i.e., the Fahraeus-Lindqvist effect) for arteries below ~ 0.25mm radius [28], namely a two-order-of-magnitude scale difference.
 
14
14Turbulence caused by the external compression of an artery is thought to give rise to the so-called Korotkoff sounds used for blood pressure measurement. Noises (“bruits”) can also be detected by a stethoscope placed over a stenosed superficial vessel like the carotid artery, or intracranial aneurysms, which may also harbor turbulent flow [40].
 
15
15Reynolds stresses are terms that arise from time averaging of the Navier-Stokes equation after decomposition of the velocity into mean and fluctuating components. They are not stresses in a physical sense, but rather embody the effects of the fluctuating velocities on the mean flow.
 
Literatur
1.
Zurück zum Zitat Westerhof N., Bosman F., De Vries C.J., Noordergraaf A.: Analog studies of the human systemic arterial tree. J. Biomech. 2(2): 121–143, 1969.CrossRef Westerhof N., Bosman F., De Vries C.J., Noordergraaf A.: Analog studies of the human systemic arterial tree. J. Biomech. 2(2): 121–143, 1969.CrossRef
2.
Zurück zum Zitat Pries A.R., Secomb T.W., Gaehtgens P.: Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32(4): 654–667, 1996. Pries A.R., Secomb T.W., Gaehtgens P.: Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32(4): 654–667, 1996.
3.
Zurück zum Zitat O’Rourke M.F., Staessen J.A., Vlachopoulos C., Duprez D., Plante G.E.: Clinical applications of arterial stiffness; definitions and reference values. Am. J. Hypertens. 15(5): 426–444, 2002.CrossRef O’Rourke M.F., Staessen J.A., Vlachopoulos C., Duprez D., Plante G.E.: Clinical applications of arterial stiffness; definitions and reference values. Am. J. Hypertens. 15(5): 426–444, 2002.CrossRef
4.
Zurück zum Zitat Davies J.I., Struthers A.D.: Pulse wave analysis and pulse wave velocity: a critical review of their strengths and weaknesses. J. Hypertens. 21(3): 463–472, 2003.CrossRef Davies J.I., Struthers A.D.: Pulse wave analysis and pulse wave velocity: a critical review of their strengths and weaknesses. J. Hypertens. 21(3): 463–472, 2003.CrossRef
5.
Zurück zum Zitat O’Rourke M.F.: Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J. Appl. Physiol. 23(2), 139–149, 1967. O’Rourke M.F.: Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J. Appl. Physiol. 23(2), 139–149, 1967.
6.
Zurück zum Zitat Steinman D.A., Ethier C.R.: The effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis. J. Biomech. Eng. 116(3): 294–301 , 1994.CrossRef Steinman D.A., Ethier C.R.: The effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis. J. Biomech. Eng. 116(3): 294–301 , 1994.CrossRef
7.
Zurück zum Zitat Perktold K., Rappitsch G.: Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28(7): 845–856, 1995.CrossRef Perktold K., Rappitsch G.: Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28(7): 845–856, 1995.CrossRef
8.
Zurück zum Zitat Zhao S.Z., Xu X.Y., Hughes A.D., Thom S.A., Stanton A.V., Ariff B., Lon, Q.: Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 33(8): 975–984, 2000.CrossRef Zhao S.Z., Xu X.Y., Hughes A.D., Thom S.A., Stanton A.V., Ariff B., Lon, Q.: Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 33(8): 975–984, 2000.CrossRef
9.
Zurück zum Zitat Jin S., Oshinski J., Giddens D.P.: Effects of wall motion and compliance on flow patterns in the ascending aorta. J. Biomech. Eng. 125(3), 347–354, 2003.CrossRef Jin S., Oshinski J., Giddens D.P.: Effects of wall motion and compliance on flow patterns in the ascending aorta. J. Biomech. Eng. 125(3), 347–354, 2003.CrossRef
10.
Zurück zum Zitat Torii R., Keegan J., Wood N.B., Dowsey A.W., Hughes A.D., Yang G.Z., Firmin D.N., Thom S.A., Xu X.Y.: MR image-based geometric and hemodynamic investigation of the right coronary artery with dynamic vessel motion. Ann. Biomed. Eng. 38(8), 2606–2620, 2010.CrossRef Torii R., Keegan J., Wood N.B., Dowsey A.W., Hughes A.D., Yang G.Z., Firmin D.N., Thom S.A., Xu X.Y.: MR image-based geometric and hemodynamic investigation of the right coronary artery with dynamic vessel motion. Ann. Biomed. Eng. 38(8), 2606–2620, 2010.CrossRef
11.
Zurück zum Zitat Steinman D.A., Thomas J.B., Ladak H.M., Milner J.S., Rutt B.K., Spence J.D.: Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn. Reson. Med. 47(1), 149–159, 2002.CrossRef Steinman D.A., Thomas J.B., Ladak H.M., Milner J.S., Rutt B.K., Spence J.D.: Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn. Reson. Med. 47(1), 149–159, 2002.CrossRef
12.
Zurück zum Zitat Antiga L., Wasserman B.A., Steinman D.A.: On the overestimation of early wall thickening at the carotid bulb by black blood MRI, with implications for coronary and vulnerable plaque imaging. Magn. Reson. Med. 60(5), 1020–1028, 2008.CrossRef Antiga L., Wasserman B.A., Steinman D.A.: On the overestimation of early wall thickening at the carotid bulb by black blood MRI, with implications for coronary and vulnerable plaque imaging. Magn. Reson. Med. 60(5), 1020–1028, 2008.CrossRef
13.
Zurück zum Zitat Steinman D.A., Antiga L., Wasserman B.A.: Overestimation of cerebral aneurysm wall thickness by black blood MRI? J. Magn. Reson. Imaging 31(3), 766, 2010.CrossRef Steinman D.A., Antiga L., Wasserman B.A.: Overestimation of cerebral aneurysm wall thickness by black blood MRI? J. Magn. Reson. Imaging 31(3), 766, 2010.CrossRef
14.
Zurück zum Zitat Kips J., Vanmolkot F., Mahieu D., Vermeersch S., Fabry I., de Hoon J., Van Bortel L., Segers P.: The use of diameter distension waveforms as an alternative for tonometric pressure to assess carotid blood pressure. Physiol. Meas. 31(4), 543–553, 2010.CrossRef Kips J., Vanmolkot F., Mahieu D., Vermeersch S., Fabry I., de Hoon J., Van Bortel L., Segers P.: The use of diameter distension waveforms as an alternative for tonometric pressure to assess carotid blood pressure. Physiol. Meas. 31(4), 543–553, 2010.CrossRef
15.
Zurück zum Zitat Thomas J.B., Milner J.S., Rutt B.K., Steinman D.A.: Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation. Ann. Biomed. Eng. 31(2), 132–141, 2003.CrossRef Thomas J.B., Milner J.S., Rutt B.K., Steinman D.A.: Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation. Ann. Biomed. Eng. 31(2), 132–141, 2003.CrossRef
16.
Zurück zum Zitat Cebral J.R., Putman C.M., Pergolesi R., Burgess J., Yim P.: Multi-modality image-based models of carotid artery hemodynamics. Proc. SPIE Medical Imaging 5369, 529–538, 2004. Cebral J.R., Putman C.M., Pergolesi R., Burgess J., Yim P.: Multi-modality image-based models of carotid artery hemodynamics. Proc. SPIE Medical Imaging 5369, 529–538, 2004.
17.
Zurück zum Zitat Qiu Y., Tarbell J.M.: Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J. Biomech. Eng. 122(1), 77–85, 2000.CrossRef Qiu Y., Tarbell J.M.: Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J. Biomech. Eng. 122(1), 77–85, 2000.CrossRef
18.
Zurück zum Zitat Ford M.D., Xie J., Wasserman B.A., Steinman D.A.: Is flow in the common carotid artery fully developed? Physiol. Meas. 29(11), 1335–1349, 2008.CrossRef Ford M.D., Xie J., Wasserman B.A., Steinman D.A.: Is flow in the common carotid artery fully developed? Physiol. Meas. 29(11), 1335–1349, 2008.CrossRef
19.
Zurück zum Zitat Hoi Y., Wasserman B.A., Lakatta E.G., Steinman D.A.: Effect of common carotid artery inlet length on normal carotid bifurcation hemodynamics. J. Biomech. Eng. 132(12), 121008, 2010.CrossRef Hoi Y., Wasserman B.A., Lakatta E.G., Steinman D.A.: Effect of common carotid artery inlet length on normal carotid bifurcation hemodynamics. J. Biomech. Eng. 132(12), 121008, 2010.CrossRef
20.
Zurück zum Zitat Ford M.D., Nikolov H.N., Milner J.S., Lownie S.P., Demont E.M., Kalata W., Loth, F., Holdsworth, D.W., Steinman, D.A.: PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130(2), 021015, 2008.CrossRef Ford M.D., Nikolov H.N., Milner J.S., Lownie S.P., Demont E.M., Kalata W., Loth, F., Holdsworth, D.W., Steinman, D.A.: PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130(2), 021015, 2008.CrossRef
21.
Zurück zum Zitat Hoi Y., Zhou Y.Q., Zhang X., Henkelman R.M., Steinman D.A.: Correlation between local hemodynamics and lesion distribution in a novel aortic regurgitation murine model of atherosclerosis. Ann. Biomed. Eng. 39(5), 1414–1422, 2011.CrossRef Hoi Y., Zhou Y.Q., Zhang X., Henkelman R.M., Steinman D.A.: Correlation between local hemodynamics and lesion distribution in a novel aortic regurgitation murine model of atherosclerosis. Ann. Biomed. Eng. 39(5), 1414–1422, 2011.CrossRef
22.
Zurück zum Zitat Zhou Y.Q., Zhu S.N., Foster F.S., Cybulsky M.I., Henkelman R.M.: Aortic regurgitation dramatically alters the distribution of atherosclerotic lesions and enhances atherogenesis in mice. Arterioscler. Thromb. Vasc. Biol. 30(6), 1181–1188, 2010.CrossRef Zhou Y.Q., Zhu S.N., Foster F.S., Cybulsky M.I., Henkelman R.M.: Aortic regurgitation dramatically alters the distribution of atherosclerotic lesions and enhances atherogenesis in mice. Arterioscler. Thromb. Vasc. Biol. 30(6), 1181–1188, 2010.CrossRef
23.
Zurück zum Zitat Hoi Y., Wasserman B.A., Xie Y.J., Najjar S.S., Ferruci L., Lakatta E.G., Gerstenblith G., Steinman D.A.: Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults. Physiol. Meas. 31(3), 291–302, 2010.CrossRef Hoi Y., Wasserman B.A., Xie Y.J., Najjar S.S., Ferruci L., Lakatta E.G., Gerstenblith G., Steinman D.A.: Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults. Physiol. Meas. 31(3), 291–302, 2010.CrossRef
24.
Zurück zum Zitat Marshall I., Papathanasopoulou P., Wartolowska K.: Carotid flow rates and flow division at the bifurcation in healthy volunteers. Physiol. Meas. 25(3), 691–697, 2004.CrossRef Marshall I., Papathanasopoulou P., Wartolowska K.: Carotid flow rates and flow division at the bifurcation in healthy volunteers. Physiol. Meas. 25(3), 691–697, 2004.CrossRef
25.
Zurück zum Zitat Milner J.S., Moore J.A., Rutt B.K., Steinman D.A.: Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg. 28(1), 143–156, 1998.CrossRef Milner J.S., Moore J.A., Rutt B.K., Steinman D.A.: Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg. 28(1), 143–156, 1998.CrossRef
26.
Zurück zum Zitat Cebral J.R., Yim P.J., Lohner R., Soto O., Choyke P.L.: Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging. Acad. Radiol. 9(11), 1286–1299, 2002.CrossRef Cebral J.R., Yim P.J., Lohner R., Soto O., Choyke P.L.: Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging. Acad. Radiol. 9(11), 1286–1299, 2002.CrossRef
27.
Zurück zum Zitat Younis H.F., Kaazempur-Mofrad M.R., Chan R.C., Isasi A.G., Hinton D.P., Chau A.H., Kim L.A., Kamm R.D.: Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech. Model. Mechanobiol. 3(1), 17–32, 2004.CrossRef Younis H.F., Kaazempur-Mofrad M.R., Chan R.C., Isasi A.G., Hinton D.P., Chau A.H., Kim L.A., Kamm R.D.: Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech. Model. Mechanobiol. 3(1), 17–32, 2004.CrossRef
28.
Zurück zum Zitat Ethier C.R., Simmons C.A.: Introductory Biomechanics: From Cells to Organisms. Cambridge University Press, Cambridge, 2007.CrossRef Ethier C.R., Simmons C.A.: Introductory Biomechanics: From Cells to Organisms. Cambridge University Press, Cambridge, 2007.CrossRef
29.
Zurück zum Zitat Yilmaz F., Gundogdu M.Y.: A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Korea Australia Rheol. J. 20(4), 197–211, 2008. Yilmaz F., Gundogdu M.Y.: A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Korea Australia Rheol. J. 20(4), 197–211, 2008.
30.
Zurück zum Zitat Lee S.W., Steinman D.A.: On the relative importance of rheology for image-based CFD models of the carotid bifurcation. J. Biomech. Eng. 129(2), 273–278, 2007.CrossRef Lee S.W., Steinman D.A.: On the relative importance of rheology for image-based CFD models of the carotid bifurcation. J. Biomech. Eng. 129(2), 273–278, 2007.CrossRef
31.
Zurück zum Zitat Ballyk P.D., Steinman D.A., Ethier C.R.: Simulation of non-Newtonian blood flow in an endto-side anastomosis. Biorheology 31(5), 565–586, 1994. Ballyk P.D., Steinman D.A., Ethier C.R.: Simulation of non-Newtonian blood flow in an endto-side anastomosis. Biorheology 31(5), 565–586, 1994.
32.
Zurück zum Zitat Johnston B.M., Johnston P.R., Corney S., Kilpatrick D.: Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J. Biomech. 37(5), 709–720, 2004.CrossRef Johnston B.M., Johnston P.R., Corney S., Kilpatrick D.: Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J. Biomech. 37(5), 709–720, 2004.CrossRef
33.
Zurück zum Zitat Johnston, B.M., Johnston, P.R., Corney, S., Kilpatrick, D.: Non-Newtonian blood flow in human right coronary arteries: transient simulations. J Biomech 39(6), 1116–1128 (2006).CrossRef Johnston, B.M., Johnston, P.R., Corney, S., Kilpatrick, D.: Non-Newtonian blood flow in human right coronary arteries: transient simulations. J Biomech 39(6), 1116–1128 (2006).CrossRef
34.
Zurück zum Zitat Gijsen F.J., Allanic E., van de Vosse F.N., Janssen J.D.: The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 degrees curved tube. J. Biomech. 32(7), 705–713, 1999.CrossRef Gijsen F.J., Allanic E., van de Vosse F.N., Janssen J.D.: The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 degrees curved tube. J. Biomech. 32(7), 705–713, 1999.CrossRef
35.
Zurück zum Zitat Box F.M., van der Geest R.J., Rutten M.C., Reiber J.H.: The influence of flow, vessel diameter, and non-newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow. Invest. Radiol. 40(5), 277–294, 2005.CrossRef Box F.M., van der Geest R.J., Rutten M.C., Reiber J.H.: The influence of flow, vessel diameter, and non-newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow. Invest. Radiol. 40(5), 277–294, 2005.CrossRef
36.
Zurück zum Zitat Steinman D.A., Milner J.S., Norley C.J., Lownie S.P., Holdsworth D.W.: Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am. J. Neuroradiol. 24(4), 559–566, 2003. Steinman D.A., Milner J.S., Norley C.J., Lownie S.P., Holdsworth D.W.: Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am. J. Neuroradiol. 24(4), 559–566, 2003.
37.
Zurück zum Zitat Rayz V.L., Boussel L., Lawton M.T., Acevedo-Bolton G., Ge L., Young W.L., Higashida R.T., Saloner D.: Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation. Ann. Biomed. Eng. 36(11), 1793–1804, 2008.CrossRef Rayz V.L., Boussel L., Lawton M.T., Acevedo-Bolton G., Ge L., Young W.L., Higashida R.T., Saloner D.: Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation. Ann. Biomed. Eng. 36(11), 1793–1804, 2008.CrossRef
38.
Zurück zum Zitat Paeng D.G., Nam K.H., Shung K.K.: Cyclic and radial variation of the echogenicity of blood in human carotid arteries observed by harmonic imaging. Ultrasound. Med. Biol. 36(7), 1118–1124, 2010.CrossRef Paeng D.G., Nam K.H., Shung K.K.: Cyclic and radial variation of the echogenicity of blood in human carotid arteries observed by harmonic imaging. Ultrasound. Med. Biol. 36(7), 1118–1124, 2010.CrossRef
39.
Zurück zum Zitat Nerem R.M., Seed W.A.: An in vivo study of aortic flow disturbances. Cardiovasc. Res. 6(1), 1–14, 1972.CrossRef Nerem R.M., Seed W.A.: An in vivo study of aortic flow disturbances. Cardiovasc. Res. 6(1), 1–14, 1972.CrossRef
40.
Zurück zum Zitat Ferguson G.G.: Turbulence in human intracranial saccular aneurysms. J. Neurosurg. 33(5), 485–497, 1970.CrossRef Ferguson G.G.: Turbulence in human intracranial saccular aneurysms. J. Neurosurg. 33(5), 485–497, 1970.CrossRef
41.
Zurück zum Zitat Lee S.E., Lee S.W., Fischer P.F., Bassiouny H.S., Loth F.: Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J. Biomech. 41(11), 2551–2561, 2008.CrossRef Lee S.E., Lee S.W., Fischer P.F., Bassiouny H.S., Loth F.: Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J. Biomech. 41(11), 2551–2561, 2008.CrossRef
42.
Zurück zum Zitat Ahmed S.A., Giddens D.P.: Pulsatile poststenotic flow studies with laser Doppler anemometry. J. Biomech. 17(9), 695–705, 1984.CrossRef Ahmed S.A., Giddens D.P.: Pulsatile poststenotic flow studies with laser Doppler anemometry. J. Biomech. 17(9), 695–705, 1984.CrossRef
43.
Zurück zum Zitat Ryval J., Straatman A.G., Steinman D.A.: Two-equation turbulence modeling of pulsatile flow in a stenosed tube. J. Biomech. Eng. 126(5), 625–635, 2004.CrossRef Ryval J., Straatman A.G., Steinman D.A.: Two-equation turbulence modeling of pulsatile flow in a stenosed tube. J. Biomech. Eng. 126(5), 625–635, 2004.CrossRef
44.
Zurück zum Zitat Varghese S., Frankel S., Fischer P.: Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow. Journal of Fluid Mechanics 582, 281, 2007.MathSciNetMATHCrossRef Varghese S., Frankel S., Fischer P.: Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow. Journal of Fluid Mechanics 582, 281, 2007.MathSciNetMATHCrossRef
45.
Zurück zum Zitat Baek H., Jayaraman M.V., Richardson P.D., Karniadakis G.E.: Flow instability and wall shear stress variation in intracranial aneurysms. J. R. Soc. Interface 7(47), 967–988, 2009.CrossRef Baek H., Jayaraman M.V., Richardson P.D., Karniadakis G.E.: Flow instability and wall shear stress variation in intracranial aneurysms. J. R. Soc. Interface 7(47), 967–988, 2009.CrossRef
46.
Zurück zum Zitat Les A.S., Shadden S.C., Figueroa C.A., Park J.M., Tedesco M.M., Herfkens R.J., Dalman R.L., Taylor C.A.: Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38(4), 1288–1313. Les A.S., Shadden S.C., Figueroa C.A., Park J.M., Tedesco M.M., Herfkens R.J., Dalman R.L., Taylor C.A.: Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38(4), 1288–1313.
47.
Zurück zum Zitat Wang C., Pekkan K., de Zelicourt D., Horner M., Parihar A., Kulkarni A., Yoganathan A.P.: Progress in the CFD modeling of flow instabilities in anatomical total cavopulmonary connections. Ann. Biomed. Eng. 35(11), 1840–1856, 2007.CrossRef Wang C., Pekkan K., de Zelicourt D., Horner M., Parihar A., Kulkarni A., Yoganathan A.P.: Progress in the CFD modeling of flow instabilities in anatomical total cavopulmonary connections. Ann. Biomed. Eng. 35(11), 1840–1856, 2007.CrossRef
48.
Zurück zum Zitat Liu J.S., Lu P.C., Chu S.H.: Turbulence characteristics downstream of bileaflet aortic valve prostheses. J. Biomech. Eng. 122(2), 118–124 (2000).CrossRef Liu J.S., Lu P.C., Chu S.H.: Turbulence characteristics downstream of bileaflet aortic valve prostheses. J. Biomech. Eng. 122(2), 118–124 (2000).CrossRef
49.
Zurück zum Zitat Antiga L., Steinman D.A.: Rethinking turbulence in blood. Biorheology 46(2), 77–81, 2009. Antiga L., Steinman D.A.: Rethinking turbulence in blood. Biorheology 46(2), 77–81, 2009.
50.
Zurück zum Zitat Ge L., Dasi L.P., Sotiropoulos F., Yoganathan A.P.: Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann. Biomed. Eng. 36(2), 276–297 (2008).CrossRef Ge L., Dasi L.P., Sotiropoulos F., Yoganathan A.P.: Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann. Biomed. Eng. 36(2), 276–297 (2008).CrossRef
51.
Zurück zum Zitat Quinlan N.J., Dooley P.N.: Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Ann. Biomed. Eng. 35(8), 1347–1356, 2007.CrossRef Quinlan N.J., Dooley P.N.: Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Ann. Biomed. Eng. 35(8), 1347–1356, 2007.CrossRef
52.
Zurück zum Zitat Cristini V., Kassab G.S.: Computer modeling of red blood cell rheology in the microcirculation: a brief overview. Ann. Biomed. Eng. 33(12), 1724–1727, 2005.CrossRef Cristini V., Kassab G.S.: Computer modeling of red blood cell rheology in the microcirculation: a brief overview. Ann. Biomed. Eng. 33(12), 1724–1727, 2005.CrossRef
53.
Zurück zum Zitat Roache P.J.: Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 29, 123–160, 1997.MathSciNetCrossRef Roache P.J.: Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 29, 123–160, 1997.MathSciNetCrossRef
54.
Zurück zum Zitat Taylor C.A., Steinman D.A.: Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions: Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28–30, 2008 Pasadena, California. Ann Biomed Eng 38(3), 1188–1203, 2010.CrossRef Taylor C.A., Steinman D.A.: Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions: Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28–30, 2008 Pasadena, California. Ann Biomed Eng 38(3), 1188–1203, 2010.CrossRef
Metadaten
Titel
Assumptions in modelling of large artery hemodynamics
verfasst von
David A. Steinman
Copyright-Jahr
2012
Verlag
Springer Milan
DOI
https://doi.org/10.1007/978-88-470-1935-5_1