Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.08.2014 | Ausgabe 1-2/2014

International Journal of Computer Vision 1-2/2014

Asymmetric and Category Invariant Feature Transformations for Domain Adaptation

Zeitschrift:
International Journal of Computer Vision > Ausgabe 1-2/2014
Autoren:
Judy Hoffman, Erik Rodner, Jeff Donahue, Brian Kulis, Kate Saenko
Wichtige Hinweise
Communicated by Hal Daumé.

Abstract

-1We address the problem of visual domain adaptation for transferring object models from one dataset or visual domain to another. We introduce a unified flexible model for both supervised and semi-supervised learning that allows us to learn transformations between domains. Additionally, we present two instantiations of the model, one for general feature adaptation/alignment, and one specifically designed for classification. First, we show how to extend metric learning methods for domain adaptation, allowing for learning metrics independent of the domain shift and the final classifier used. Furthermore, we go beyond classical metric learning by extending the method to asymmetric, category independent transformations. Our framework can adapt features even when the target domain does not have any labeled examples for some categories, and when the target and source features have different dimensions. Finally, we develop a joint learning framework for adaptive classifiers, which outperforms competing methods in terms of multi-class accuracy and scalability. We demonstrate the ability of our approach to adapt object recognition models under a variety of situations, such as differing imaging conditions, feature types, and codebooks. The experiments show its strong performance compared to previous approaches and its applicability to large-scale scenarios.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1-2/2014

International Journal of Computer Vision 1-2/2014Zur Ausgabe

Premium Partner

Neuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Product Lifecycle Management im Konzernumfeld – Herausforderungen, Lösungsansätze und Handlungsempfehlungen

Für produzierende Unternehmen hat sich Product Lifecycle Management in den letzten Jahrzehnten in wachsendem Maße zu einem strategisch wichtigen Ansatz entwickelt. Forciert durch steigende Effektivitäts- und Effizienzanforderungen stellen viele Unternehmen ihre Product Lifecycle Management-Prozesse und -Informationssysteme auf den Prüfstand. Der vorliegende Beitrag beschreibt entlang eines etablierten Analyseframeworks Herausforderungen und Lösungsansätze im Product Lifecycle Management im Konzernumfeld.
Jetzt gratis downloaden!

Bildnachweise