Skip to main content
Erschienen in: Journal of Materials Science 3/2018

05.10.2017 | Computation

Asymmetrical semisphere nanopores on monolayer graphene for gas permeation

Erschienen in: Journal of Materials Science | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanoporous graphene membrane (NGM) has enormous potential and excellent properties in practical applications. But almost all of the previous studies were based on the assumption that the nanopores were symmetric along the normal vector of the graphene plane. Asymmetric nanoporous graphene membrane (A-NGM), a promising membrane material in energy, environment and bionic, was seldom researched until now. A kind of graphene membrane with asymmetric semisphere nanopore embedded in it is designed. Such a membrane is provided with the properties of A-NGM. Its electron properties and van der Waals surface are analyzed by quantum chemistry approach. Permeation mechanism of helium, neon and argon across this graphene membrane is analyzed by employing Langmuir adsorption isotherm. Molecular dynamics simulations are used to characterize the asymmetric performance of A-NGM for gas permeance. The driving force of these dynamical processes is revealed by implementing noncovalent interaction analysis. These results are considered not only assist in the designing of asymmetric membrane material, but also pave the way toward the realization of unidirectional graphene membrane in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Description and analytical expressions of all variables and constants used in Eqs. 6 and 7 are summarized in Table 2.
 
2
The barrier height for helium atom passing through N-6 is the smallest when compared with that for N-2, N-3 and N-4. The details are given in Fig. S(3) and S(4).
 
3
This assumption is reasonable and realistic because \(S_{2}^{\dagger }\) is the rate limiting according to Lee W. Drahushuk and Michael S. Strano’s research [23].
 
Literatur
1.
Zurück zum Zitat Koenig SP, Wang L, Pellegrino J, Bunch JS (2012) Selective molecular sieving through porous graphene. Nat Nanotechnol 7(11):728CrossRef Koenig SP, Wang L, Pellegrino J, Bunch JS (2012) Selective molecular sieving through porous graphene. Nat Nanotechnol 7(11):728CrossRef
2.
Zurück zum Zitat Huang L, Zhang M, Li C, Shi G (2015) Graphene-based membranes for molecular separation. J Phys Chem Lett 6(14):2806CrossRef Huang L, Zhang M, Li C, Shi G (2015) Graphene-based membranes for molecular separation. J Phys Chem Lett 6(14):2806CrossRef
3.
Zurück zum Zitat Liu G, Jin W, Xu N (2015) Graphene-based membranes. Chem Soc Rev 44(15):5016CrossRef Liu G, Jin W, Xu N (2015) Graphene-based membranes. Chem Soc Rev 44(15):5016CrossRef
4.
Zurück zum Zitat Mi B (2014) Graphene oxide membranes for ionic and molecular sieving. Science 343(6172):740CrossRef Mi B (2014) Graphene oxide membranes for ionic and molecular sieving. Science 343(6172):740CrossRef
5.
Zurück zum Zitat Schrier J (2010) Helium separation using porous graphene membranes. J Phys Chem Lett 1(15):2284CrossRef Schrier J (2010) Helium separation using porous graphene membranes. J Phys Chem Lett 1(15):2284CrossRef
6.
Zurück zum Zitat Hauser AW, Schrier J, Schwerdtfeger P (2012) Helium tunneling through nitrogen-functionalized graphene pores: pressure-and temperature-driven approaches to isotope separation. J Phys Chem C 116(19):10819CrossRef Hauser AW, Schrier J, Schwerdtfeger P (2012) Helium tunneling through nitrogen-functionalized graphene pores: pressure-and temperature-driven approaches to isotope separation. J Phys Chem C 116(19):10819CrossRef
7.
Zurück zum Zitat Jiao Y, Du A, Hankel M, Smith SC (2013) Modelling carbon membranes for gas and isotope separation. Phys Chem Chem Phys 15(14):4832CrossRef Jiao Y, Du A, Hankel M, Smith SC (2013) Modelling carbon membranes for gas and isotope separation. Phys Chem Chem Phys 15(14):4832CrossRef
8.
Zurück zum Zitat Hauser AW, Schwerdtfeger P (2012) Nanoporous graphene membranes for efficient \(3^\text{ He }/4^\text{ He }\) separation. J Phys Chem Lett 3(2):209CrossRef Hauser AW, Schwerdtfeger P (2012) Nanoporous graphene membranes for efficient \(3^\text{ He }/4^\text{ He }\) separation. J Phys Chem Lett 3(2):209CrossRef
9.
Zurück zum Zitat Jiang De, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9(12):4019CrossRef Jiang De, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9(12):4019CrossRef
10.
Zurück zum Zitat Sint K, Wang B, Král P (2008) Selective ion passage through functionalized graphene nanopores. J Am Chem Soc 130(49):16448CrossRef Sint K, Wang B, Král P (2008) Selective ion passage through functionalized graphene nanopores. J Am Chem Soc 130(49):16448CrossRef
11.
Zurück zum Zitat Suk ME, Aluru N (2010) Water transport through ultrathin graphene. J Phys Chem Lett 1(10):1590CrossRef Suk ME, Aluru N (2010) Water transport through ultrathin graphene. J Phys Chem Lett 1(10):1590CrossRef
12.
Zurück zum Zitat Dontschuk N, Stacey A, Tadich A, Rietwyk KJ, Schenk A, Edmonds MT, Shimoni O, Pakes CI, Prawer S, Cervenka J (2015) A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases. Nat Commun 6:1CrossRef Dontschuk N, Stacey A, Tadich A, Rietwyk KJ, Schenk A, Edmonds MT, Shimoni O, Pakes CI, Prawer S, Cervenka J (2015) A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases. Nat Commun 6:1CrossRef
13.
Zurück zum Zitat Duplock EJ, Scheffler M, Lindan PJ (2004) Hallmark of perfect graphene. Phys Rev Lett 92(22):225502CrossRef Duplock EJ, Scheffler M, Lindan PJ (2004) Hallmark of perfect graphene. Phys Rev Lett 92(22):225502CrossRef
14.
Zurück zum Zitat Fernández-Rossier J, Palacios JJ (2007) Magnetism in graphene nanoislands. Phys Rev Lett 99(17):177204CrossRef Fernández-Rossier J, Palacios JJ (2007) Magnetism in graphene nanoislands. Phys Rev Lett 99(17):177204CrossRef
15.
Zurück zum Zitat Martins T, Miwa R, Da Silva AJ, Fazzio A (2007) Electronic and transport properties of boron-doped graphene nanoribbons. Phys Rev Lett 98(19):196803CrossRef Martins T, Miwa R, Da Silva AJ, Fazzio A (2007) Electronic and transport properties of boron-doped graphene nanoribbons. Phys Rev Lett 98(19):196803CrossRef
16.
Zurück zum Zitat Lusk MT, Carr LD (2008) Nanoengineering defect structures on graphene. Phys Rev Lett 100(17):175503CrossRef Lusk MT, Carr LD (2008) Nanoengineering defect structures on graphene. Phys Rev Lett 100(17):175503CrossRef
17.
Zurück zum Zitat Murray JS, Politzer P (2011) The electrostatic potential: an overview. Encycl Comput Chem 1(2):153 Murray JS, Politzer P (2011) The electrostatic potential: an overview. Encycl Comput Chem 1(2):153
18.
Zurück zum Zitat Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdiscip Rev Comput Mol Sci 1(2):153CrossRef Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdiscip Rev Comput Mol Sci 1(2):153CrossRef
19.
Zurück zum Zitat Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J Mol Graph Model 38:314CrossRef Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J Mol Graph Model 38:314CrossRef
20.
Zurück zum Zitat Drahushuk LW, Strano MS (2012) Mechanisms of gas permeation through single layer graphene membranes. Langmuir 28(48):16671CrossRef Drahushuk LW, Strano MS (2012) Mechanisms of gas permeation through single layer graphene membranes. Langmuir 28(48):16671CrossRef
21.
Zurück zum Zitat Schrier J (2012) Carbon dioxide separation with a two-dimensional polymer membrane. ACS Appl Mater Interfaces 4(7):3745CrossRef Schrier J (2012) Carbon dioxide separation with a two-dimensional polymer membrane. ACS Appl Mater Interfaces 4(7):3745CrossRef
22.
Zurück zum Zitat Lin K, Yuan Q, Zhao YP (2017) Using graphene to simplify the adsorption of methane on shale in MD simulations. Comput Mater Sci 133:99CrossRef Lin K, Yuan Q, Zhao YP (2017) Using graphene to simplify the adsorption of methane on shale in MD simulations. Comput Mater Sci 133:99CrossRef
23.
Zurück zum Zitat Johnson ER, Keinan S, Morisanchez P, Contrerasgarcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498CrossRef Johnson ER, Keinan S, Morisanchez P, Contrerasgarcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498CrossRef
24.
Zurück zum Zitat Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787CrossRef Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787CrossRef
25.
Zurück zum Zitat Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456CrossRef Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456CrossRef
26.
Zurück zum Zitat Boys SF, Bernardi Fd (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553CrossRef Boys SF, Bernardi Fd (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553CrossRef
27.
Zurück zum Zitat Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford, CT Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford, CT
28.
Zurück zum Zitat Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580CrossRef Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580CrossRef
29.
Zurück zum Zitat Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33CrossRef Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33CrossRef
30.
Zurück zum Zitat Bader RF, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109(26):7968CrossRef Bader RF, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109(26):7968CrossRef
31.
Zurück zum Zitat Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338CrossRef Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338CrossRef
32.
Zurück zum Zitat Sun H, Ren P, Fried J (1998) The COMPASS force field: parameterization and validation for phosphazenes. Comput Theor Polym Sci 8(1/2):229CrossRef Sun H, Ren P, Fried J (1998) The COMPASS force field: parameterization and validation for phosphazenes. Comput Theor Polym Sci 8(1/2):229CrossRef
33.
Zurück zum Zitat Shan M, Xue Q, Jing N, Ling C, Zhang T, Yan Z, Zheng J (2012) Influence of chemical functionalization on the \(\text{ CO }_{2}/\text{ N }_{2}\) separation performance of porous graphene membrane. Nanoscale 4(17):5477CrossRef Shan M, Xue Q, Jing N, Ling C, Zhang T, Yan Z, Zheng J (2012) Influence of chemical functionalization on the \(\text{ CO }_{2}/\text{ N }_{2}\) separation performance of porous graphene membrane. Nanoscale 4(17):5477CrossRef
Metadaten
Titel
Asymmetrical semisphere nanopores on monolayer graphene for gas permeation
Publikationsdatum
05.10.2017
Erschienen in
Journal of Materials Science / Ausgabe 3/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1640-2

Weitere Artikel der Ausgabe 3/2018

Journal of Materials Science 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.