Skip to main content
Erschienen in:

Open Access 01.06.2023

Asymptotic behavior of fractional-order nonlinear systems with two different derivatives

verfasst von: Liping Chen, Min Xue, António Lopes, Ranchao Wu, YangQuan Chen

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2023

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel untersucht das asymptotische Verhalten nichtlinearer Systeme mit gebrochener Ordnung, die durch zwei verschiedene Derivate gekennzeichnet sind. Es nutzt die Mittag-Leffler-Funktion und die Laplace-Transformation, um eine ausreichende Bedingung für asymptotische Stabilität abzuleiten. Die Studie unterstreicht die Herausforderungen und die Bedeutung der Stabilitätsanalyse in Systemen mit unangemessener Bruchordnung, die anspruchsvoller sind als ihre Pendants mit ganzzahliger Ordnung. Die theoretischen Ergebnisse werden durch numerische Beispiele gestützt, einschließlich der Bagley-Torvik-Gleichung, die die Wirksamkeit der vorgeschlagenen Stabilitätsbedingung demonstriert. Die Arbeit trägt zum Verständnis komplexer Systeme mit Gedächtnis- und Erbfaktoren bei und bietet eine Grundlage für zukünftige Forschungen über verzögerte Differentialgleichungen mit mehrzeitiger Bruchordnung.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Fractional calculus is a generalization of the standard integer calculus, extending the derivative and integral operators to non-integer orders [1]. In recent years, fractional calculus experienced a rapid development, and its applications became common in mechanics, physics, chemistry, and other disciplines. Fractional-order (FO) models can describe many real-world systems better than their integer-order counterparts [2], namely when phenomena like long-range correlations, memory, and heredity effects are present.
State-space models of FO systems can be divided into two categories, namely commensurate and incommensurate. In general, if the state variables are of the same order, the system is called commensurate, otherwise it is denoted incommensurate. Multi-order systems are usually incommensurate, while commensurate systems are just special cases of the incommensurate ones. Studying the stability problem of incommensurate FO systems is crucial, but also demanding.
Stability analysis is one of the most important issues when studying dynamical systems [35]. The stability analysis of FO systems, meaning those described by FO differential equations, is often more difficult than that of integer-order systems, since fractional derivatives are non-local and have weakly singular kernels [6, 7]. In the past decade, many results regarding the stability of commensurate FO systems were derived, including for linear [8], nonlinear [9], and delayed systems [10]. However, for incommensurate FO systems, fewer studies were reported in the literature, since their stability analysis is very demanding. The stability analysis of two-term FO differential equations was investigated in various papers [1115]. The necessary and sufficient stability and instability conditions for linear FO differential equations with three Caputo derivatives were considered in the work [16]. Robust stability of FO systems described in pseudo-state space with incommensurate FO was addressed in the references [17, 18].
We should note that all references mentioned previously, dealing with the stability of FO incommensurate systems, focus mainly on linear system [1118]. Indeed, to the best of the authors knowledge, the stability of multidimensional FO nonlinear systems was not explored so far. In this paper, by using the Mittag–Leffler function, the Laplace transform, and the generalized Gronwall inequality, an asymptotic condition for FO nonlinear systems with two different derivatives is proposed.
The structure of this paper is as follows. Section 2 gives some preliminaries on fractional calculus and basic definitions. Section 3 is dedicated to proving the main results of the paper. Section 4 presents numerical examples for illustrating the theoretical findings. Finally, Sect. 5 lists the conclusions of the study.

2 Preliminaries and basic tools

Definition 1
[19] The Riemann–Liouville fractional integral of order \(\alpha \in R^{+}\) of function x(t) is
$$\begin{aligned} D_{t_{0}, t}^{-\alpha } x(t)=\frac{1}{\Gamma (\alpha )} \int _{t_{0}}^{t}(t-\tau )^{\alpha -1} x(\tau ) \textrm{d}\tau , \end{aligned}$$
where \(\Gamma (\cdot )\) is the gamma function, \(\Gamma (\tau )=\int _{0}^{\infty } t^{\tau -1}\textrm{e}^{-t} \text {d}t\).
Definition 2
[19] The Caputo fractional integral of order \(\alpha \in R^{+}\) of function x(t) is
$$\begin{aligned} \begin{aligned} { }^{C} D_{t_{0}, t}^{-\alpha } x(t)= \frac{1}{\Gamma (\alpha )} \int _{t_{0}}^{t}(t-\tau )^{\alpha -1} x(\tau ) \textrm{d} \tau . \end{aligned} \end{aligned}$$
Definition 3
[19] The Caputo fractional derivative of order \(\alpha \in R^{+}\) of function x(t) is
$$\begin{aligned} \begin{aligned} { }^{C} D_{t_{0}, t}^{\alpha } x(t)= \frac{1}{\Gamma (n-\alpha )} \int _{t_{0}}^{t}(t-\tau )^{n-\alpha -1} x^{(n)}(\tau ) \textrm{d} \tau , n-1 \le \alpha <n \in Z^{+}, \end{aligned} \end{aligned}$$
where \(n=\lceil \alpha \rceil \), with \(\lceil \alpha \rceil \) being the smallest integer greater than or equal to \(\alpha \).
Proposition 1
[19] The Laplace transform of the Caputo fractional derivative is
$$\begin{aligned} L\left\{ { }^{C} D_{t}^{\alpha } x(t); s\right\} =s^{\alpha } X(s)-\sum _{k=0}^{n-1} s^{\alpha -k-1} x^{(k)}(0)\quad , n-1<\alpha \leqslant n, \end{aligned}$$
where X(s) represents the Laplace transform of function x(s).
Definition 4
[19] The multi-variant Mittag–Leffler function is defined as follows:
$$\begin{aligned} E_{\left( a_{1}, \ldots , a_{n}\right) , b}\left( z_{1}, \ldots , z_{n}\right) =\sum _{\begin{array}{c} k=0 \\ l_{1} \geqslant 0, \ldots l_{n} \geqslant 0 \end{array}}^{\infty } \sum _{\begin{array}{c} l_{1}+\cdots +l_{1}=k \end{array}} \frac{k !}{l_{1} ! \times \cdots \times l_{n} !} \frac{\prod _{i=1}^{n} z_{i}^{l_{i}}}{\Gamma \left( b+\sum _{i=1}^{n} a_{i} l_{i}\right) }, \end{aligned}$$
where \(b>0\), \(a_{i}>0\), \(|z_{i} |<\infty \), \(i=1, \ldots ,n\).
When \(n=1\), the Mittag–Leffler function with one parameter is obtained as follows:
$$\begin{aligned} E_{a_{1}, b}\left( z_{1}\right) =\sum _{k=0}^{\infty } \frac{z_{1}^{k}}{\Gamma \left( b+k a_{1}\right) } \quad a_{1}, b>0, |z_{1} |<\infty . \end{aligned}$$
Moreover, the Laplace transform of the Mittag–Leffler function is
$$\begin{aligned} \begin{aligned} L\left\{ t^{\alpha k+\beta -1} E_{\alpha , \beta }^{(k)}\left( \pm a t^{\alpha }\right) ; s\right\}&=\int _{0}^{\infty } \textrm{e}^{-st} t^{\alpha k+\beta -1} E_{\alpha , \beta }^{(k)}\left( \pm a t^{\alpha }\right) \textrm{d}t \\&=\frac{k ! s^{\alpha -\beta }}{\left( s^{\alpha } \mp a\right) ^{k+1}}, {\text {Re}}\{s\}> |a |^{\frac{1}{\alpha }}. \end{aligned} \end{aligned}$$
Lemma 1
[20] If \(\alpha \ge 1\), then for \(\beta =1, 2, \alpha \), we have
$$\begin{aligned} E_{\alpha , \beta }\left( A t^{\alpha }\right) \le \Vert \textrm{e}^{A t^{\alpha }} \Vert . \end{aligned}$$
Lemma 2
[21] Suppose that \(\alpha > 0\), a(t) is a nonnegative function locally integrable on \( 0\le t<T\) (some \( T \le +\infty \)), and g(t) is a nonnegative, nondecreasing continuous function defined on \(0\le t<T\), with \(g(t)\le M\) (constant). Also, suppose that u(t) is nonnegative and locally integrable on \(0\le t<T\), with
$$\begin{aligned} u(t)\le a(t)+g(t)\int _{0}^{t}(t-s)^{\alpha -1} u(s)\textrm{d}s \end{aligned}$$
on this interval. Then,
$$\begin{aligned} u(t) \le a(t)+\int _{0}^{t}\left[ \sum _{n=1}^{\infty } \frac{(g(t) \Gamma (\alpha ))^{n}}{\Gamma (n\alpha )}(t-s)^{n \alpha -1} a(s)\right] \textrm{d}s. \end{aligned}$$
Moreover, if a(t) is a nondecreasing function on [0, T), then
$$\begin{aligned} u(t) \le a(t) E_{\alpha , 1}\left( g(t) \Gamma (\alpha ) t^{\alpha }\right) . \end{aligned}$$
Lemma 3
[19] If \(0<\alpha <2\), \(\beta \) is an arbitrary real number, \(\mu \) satisfies \(\pi \alpha /2<\mu <\min \{\pi ,\pi \alpha \}\), and \(C_1\), \(C_2\) are real constants, then
$$\begin{aligned} \begin{aligned} |E_{\alpha , \beta }(z) |&\le C_{1}(1+|z |)^{(1-\beta ) / \alpha } \exp \left( {\text {Re}}\left\{ z^{1 / \alpha }\right\} \right) +\frac{C_{2}}{1+ |z |}, \end{aligned} \end{aligned}$$
where \(|\arg (z) |\le \mu , |z |\ge 0\).

3 Main results

The FO nonlinear system with two different derivatives is considered:
$$\begin{aligned} A{ }^{C} D_{t}^{p} x(t)+B{ }^{C} D_{t}^{q} x(t)=f(x(t)), \end{aligned}$$
(1)
where \(x(t)=\left( x_{1}(t), x_{2}(t), \ldots , x_{n}(t)\right) ^{T} \in R^{n}\) denotes the state vector, \(A, B \in R^{n \times n}\) are constant matrices, \(f(x(t))\in R^n\) represents a nonlinear vector, and satisfies \(f(0)=0\), and the Lipschitz condition with Lipschitz constant L, that is, \(\Vert f(x_1(t))-f(x_2(t))\Vert \le L\Vert x_1(t)-x_2(t)\Vert \), and the FO p, q belong to \(0<p<1<1+p \le q<2\).
The system (1) can be used to describe a standard heat diffusion process, the standard voltage equations for impedance at the drive of lossy transmission lines, as well as other phenomena useful in practical engineering.
Theorem 1
The system (1) has asymptotically stable behavior if \(Re\{\lambda (C)\}<0\) and \(w=-\max \{\text {Re}\{\lambda (C)\}>(L\Vert B^{-1}\Vert \Gamma (q))^{\frac{1}{q}}\), where \(C=B^{-1}A\).
Proof
Taking the Laplace transform on (1), one has
$$\begin{aligned} As^{p} X(s)-As^{p-1} x(0)+Bs^{q}X(s)-Bs^{q-1}x(0)-Bs^{q-2} x^{\prime }(0)=F(x(s)), \end{aligned}$$
where \(F(x(s))=L(f(x(t)))\). Thus, we can obtain
$$\begin{aligned} X(s)= & {} \frac{A s^{p-1} x(0)+Bs^{q-1} x(0)+Bs^{q-2} x^{\prime }(0)+F(x(s))}{As^{p}+Bs^{q}} \nonumber \\= & {} \frac{As^{p-1} x(0)}{As^{p}+Bs^{q}}+\frac{Bs^{q-1} x(0)}{As^{p}+Bs^{q}}+\frac{Bs^{q-2} x^{\prime }(0)}{As^{p}+Bs^{q}}+\frac{F(x(s))}{As^{p}+Bs^{q}}. \end{aligned}$$
(2)
Applying the inverse Laplace transform on (2), it yields
$$\begin{aligned} L^{-1}\bigg \{\frac{As^{p-1}x(0)}{As^{p}+Bs^{q}}; s\bigg \}= & {} B^{-1}Ax(0) t^{q-p} E_{q-p,q-p+1} \left( -B^{-1}At^{q-p}\right) ,\nonumber \\ L^{-1}\bigg \{\frac{F(x(s))}{As^{p}+Bs^{q}}; s\bigg \}= & {} f(x(t)) * \left[ B^{-1}t^{q-1}E_{q-p,q}\left( -B^{-1}At^{q-p}\right) \right] ,\nonumber \\ L^{-1}\bigg \{\frac{Bs^{q-1}x(0)}{As^{p}+Bs^{q}}; s\bigg \}= & {} x(0) E_{q-p,1} \left( -B^{-1}At^{q-p}\right) ,\nonumber \\ L^{-1}\bigg \{\frac{Bs^{q-2}x^{\prime }(0)}{As^{p}+Bs^{q}}; s\bigg \}= & {} x^{\prime }(0) t E_{q-p,2} \left( -B^{-1}At^{q-p}\right) . \end{aligned}$$
(3)
In view of (3), the solution of (2) can be obtained as follows:
$$\begin{aligned} x(t)= & {} B^{-1}Ax(0) t^{q-p} E_{q-p, q-p+1}\left( -B^{-1}At^{q-p}\right) \nonumber \\{} & {} +x(0) E_{q-p, 1}\left( -B^{-1}At^{q-p}\right) +x^{\prime }(0) t E_{q-p,2} \left( -B^{-1}At^{q-p}\right) \nonumber \\{} & {} +\int _{0}^{t}B^{-1}(t-\tau )^{q-1} E_{q-p, q}\left( -B^{-1}At^{q-p}\right) f(\tau )\text {d}\tau . \end{aligned}$$
(4)
It follows from Lemma 1 that
$$\begin{aligned} E_{q-p,q-p+1}\left( -B^{-1}At^{q - p}\right)\le & {} \Vert \textrm{e}^{-B^{-1}At^{q-p}}\Vert ,\\ E_{q-p,2}\left( -B^{-1}At^{q - p}\right)\le & {} \Vert \textrm{e}^{-B^{-1}At^{q-p}}\Vert , \\ E_{q-p,1}\left( -B^{-1}At^{q - p}\right)\le & {} \Vert \textrm{e}^{-B^{-1}At^{q-p}}\Vert ,\\ E_{q-p,q}\left( -B^{-1}At^{q - p}\right)\le & {} \Vert \textrm{e}^{-B^{-1}At^{q-p}}\Vert . \end{aligned}$$
Combining (4) and (5) and denoting \(C=B^{-1}A \), one obtain
$$\begin{aligned} \Vert x(t)\Vert\le & {} \Vert C\textrm{e}^{-Ct^{q-p}}\Vert \Vert x(0)\Vert t^{q - p}+\Vert \textrm{e}^{-Ct^{q-p}}\Vert \Vert x(0)\Vert +\Vert \textrm{e}^{-Ct^{q -p}}\Vert \Vert x^{\prime }(0)\Vert t\nonumber \\{} & {} +\Vert B^{-1}\Vert \int _{0}^{t}(t-\imath )^{q-1}\Vert \textrm{e}^{-C(t-\tau )^{q-p}}\Vert \cdot \Vert f(\tau )\Vert \textrm{d} \tau . \end{aligned}$$
(5)
Since C is a stability matrix, one has
$$\begin{aligned} \Vert \textrm{e}^{Ct^{q -p}}\Vert \le \textrm{e}^{-wt^{q -p}}. \end{aligned}$$
(6)
Substituting (6) into (5), it yields
$$\begin{aligned} \Vert x(t)\Vert\le & {} \Vert C\Vert \Vert \textrm{e}^{-wt^{q-p}}\Vert \Vert x(0)\Vert t^{q - p}+\Vert \textrm{e}^{-wt^{q-p}}\Vert \Vert x(0)\Vert +\Vert \textrm{e}^{-wt^{q -p}}\Vert \Vert x^{\prime }(0)\Vert t\nonumber \\{} & {} +\Vert B^{-1}\Vert \int _{0}^{t}(t-\imath )^{q-1} \Vert \textrm{e}^{-w(t-\tau )^{q-p}}\Vert \cdot \Vert f(\tau )\Vert \textrm{d} \tau . \end{aligned}$$
(7)
Multiplying both sides of (7) by \(\textrm{e}^{wt^{q-p}}\), one has
$$\begin{aligned} \begin{aligned} \textrm{e}^{wt^{q-p}}\Vert x(t)\Vert&\le \Vert C\Vert \Vert x(0)\Vert t^{q-p}+\Vert x(0)\Vert +t \Vert x^{\prime }(0)\Vert \\&\quad +\Vert B^{-1}\Vert \int _{0}^{t}(t-\tau )^{q-1}\cdot \textrm{e}^{w\tau ^{q-p}} \cdot \Vert f(\tau )\Vert \text {d}\tau . \end{aligned} \end{aligned}$$
(8)
Let us denote \(u(t)=\textrm{e}^{wt^{q-p}}\Vert x(t)\Vert \), \(g(t)=L\Vert B^{-1}\Vert \), and \(a(t)=t^{q-p}\Vert x(0)\Vert +\Vert x(0)\Vert +t \Vert x^{\prime }(0)\Vert \). Then, (8) can be rewritten as follows:
$$\begin{aligned} u(t)\le a(t)+L\Vert B^{-1}\Vert \cdot \int _{0}^{t}(t-\tau )^{q-1}u(\tau )\text {d}\tau . \end{aligned}$$
(9)
From Lemma 2, it yields
$$\begin{aligned} \textrm{e}^{wt^{q-p}}\Vert x(t)\Vert \le a(t)\cdot E_{q,1}(L\Vert B^{-1}\Vert \cdot \Gamma (q)t^q). \end{aligned}$$
(10)
It follows from Lemma 3 that there exist two real constants \(C_1, C_2 > 0 \) such that
$$\begin{aligned} \textrm{e}^{wt^{q-p}}\Vert x(t) \Vert \le a(t) \cdot C_{1} \cdot \textrm{e}^{\left[ L\Vert B^{-1}\Vert \cdot \Gamma (q) \cdot t^{q}\right] ^{\frac{1}{q}}} +\frac{C_{2} \cdot a(t)}{1+L\Vert B^{-1}\Vert \cdot \Gamma (q) \cdot t^{q}}. \end{aligned}$$
(11)
Multiplying both sides of (11) by \(\textrm{e}^{-wt^{q-p}}\), one has
$$\begin{aligned} \begin{aligned} \Vert x(t)\Vert&\le a(t) \cdot C_{1} \cdot \textrm{e}^{\left[ L\Vert B^{-1}\Vert \cdot \Gamma (q) \cdot t^{q}\right] ^{\frac{1}{q}}-wt^{q-p}}\\&\quad +\frac{C_{2} \cdot a(t)}{\left[ 1+L\Vert B^{-1}\Vert \cdot \Gamma (q) \cdot t^{q}\right] \cdot \textrm{e}^{wt^{q-p}}}. \end{aligned} \end{aligned}$$
(12)
According to the condition in Theorem 1, when \(t\rightarrow \infty \), \(\Vert x(t)\Vert \rightarrow 0 \), which implies that system (1) has asymptotically stable behavior. \(\square \)
Remark 1
Note that references [1118] focus on the stability condition, or region, of incommensurate FO systems expressed using state-space equations. Even though the nonlinear term in (1) turns into a linear one, the model considered in those works is different from (1).
Remark 2
Theorem 1 is also valid for FO systems with irrational order.

4 Numerical examples

Example 1
Let us consider the nonlinear FO system (1) with parameters \(p=\frac{\sqrt{3}}{3}\), \(q=\frac{\sqrt{3}}{3}+1\), \(A=B=\left[ \begin{array}{cc} 1 &{} 0 \\ 0 &{} -1 \\ \end{array}\right] \) and \(f(x)=\left[ \begin{array}{c} \sin (x_1) \sin (x_2) \\ \sin ^2(x_2) \end{array}\right] .\) By using simple calculations, one can verify that \(w=-\max \{{\text {Re}} \{\lambda ({C})\}\}=1>0.9296=(1\times \Gamma (\frac{\sqrt{3}}{3}+1)^{\frac{1}{\frac{\sqrt{3}}{3}+1 } }\). Therefore, the condition of Theorem 1 is satisfied and the system is stable.
Figure 1 depicts the time response of the system, when the initial states are chosen as \(x_{0}=[0; 0.1]\). Clearly, we verify that the system is stable.
Example 2
(The fractional Bagley–Torvik equation) The fractional Bagley-Torvik equation can be used in many scenarios, such as forced damping vibrations. Let us consider the equation:
$$\begin{aligned} A{ }^{C} D_{t}^{p} x(t)+B{ }^{C} D_{t}^{q} x(t)+x(t)= f(x(t)). \end{aligned}$$
We choose \(p=0.5\) and \(q=1.6\), which satisfy \(0<p<1<1+p \le q<2\). Herein, let \(A=\left[ \begin{array}{cc} 1 &{} 0 \\ 0 &{} -1 \\ \end{array}\right] \), \(B=\left[ \begin{array}{cc} -1 &{} 0 \\ 0 &{} 1 \\ \end{array}\right] \) and \(f(x(t))=\left[ \begin{array}{c} \sin (x_1(t)) \sin (x_2(t))+x_1(t) \\ \sin ^2(x_2(t))+x_2(t) \end{array}\right] \). The system of Example 2 is equivalent to (1). As such, by using simple calculations, one can verify that \(\omega = -\max \{Re\{\lambda (C)\}\} = 1>0.9320=(1\times 1 \times \Gamma (1.6))^{\frac{1}{1.6} } \). Thus, the condition of Theorem 1 is satisfied and the system is stable.
Figure 2 depicts the time response of the system, when the initial states are chosen as \(x_0= [0; 0.1]\). Clearly, we verify that the system is stable.

5 Conclusion

We investigated the asymptotic behavior of systems described by nonlinear differential equations with two fractional derivatives, p, q, verifying \(0<p<1<1+p \le q<2\). The Mittag–Leffler function, the Laplace transform and properties of fractional calculus were adopted to derive a sufficient asymptotic stability condition. Numerical examples illustrated the effectiveness of the theoretical condition. Possible generalizations to the case of multi-term FO delayed differential equations will be addressed in future work.

Declarations

Conflict of interest

The authors declare no conflicts of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Hilfer R (2000) Applications of fractional calculus in physics. World Scientific, SingaporeCrossRefMATH Hilfer R (2000) Applications of fractional calculus in physics. World Scientific, SingaporeCrossRefMATH
3.
Zurück zum Zitat Chen L, He Y, Chai Y, Wu R (2014) New results on stability and stabilization of a class of nonlinear fractional-order systems. Nonlinear Dyn 75(4):633–641MathSciNetCrossRefMATH Chen L, He Y, Chai Y, Wu R (2014) New results on stability and stabilization of a class of nonlinear fractional-order systems. Nonlinear Dyn 75(4):633–641MathSciNetCrossRefMATH
4.
Zurück zum Zitat Lu J-G, Chen G (2009) Robust stability and stabilization of fractional-order interval systems: an LMI approach. IEEE Trans Autom Control 54(6):1294–1299MathSciNetCrossRefMATH Lu J-G, Chen G (2009) Robust stability and stabilization of fractional-order interval systems: an LMI approach. IEEE Trans Autom Control 54(6):1294–1299MathSciNetCrossRefMATH
5.
Zurück zum Zitat Chen L, Wu R, He Y, Yin L (2015) Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties. Appl Math Comput 257:274–284MathSciNetMATH Chen L, Wu R, He Y, Yin L (2015) Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties. Appl Math Comput 257:274–284MathSciNetMATH
6.
7.
Zurück zum Zitat Wei Y, Cao J, Chen Y, Wei Y (2022) The proof of Lyapunov asymptotic stability theorems for Caputo fractional order systems. Appl Math Lett 129:107961MathSciNetCrossRefMATH Wei Y, Cao J, Chen Y, Wei Y (2022) The proof of Lyapunov asymptotic stability theorems for Caputo fractional order systems. Appl Math Lett 129:107961MathSciNetCrossRefMATH
8.
9.
Zurück zum Zitat Li Y, Chen Y, Podlubny I (2009) Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8):1965–1969MathSciNetCrossRefMATH Li Y, Chen Y, Podlubny I (2009) Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8):1965–1969MathSciNetCrossRefMATH
10.
Zurück zum Zitat Wu G-C, Baleanu D, Huang L-L (2018) Novel Mittag–Leffler stability of linear fractional delay difference equations with impulse. Appl Math Lett 82:71–78MathSciNetCrossRefMATH Wu G-C, Baleanu D, Huang L-L (2018) Novel Mittag–Leffler stability of linear fractional delay difference equations with impulse. Appl Math Lett 82:71–78MathSciNetCrossRefMATH
11.
Zurück zum Zitat Čermák J, Kisela T (2015) Stability properties of two-term fractional differential equations. Nonlinear Dyn 80(4):1673–1684MathSciNetCrossRefMATH Čermák J, Kisela T (2015) Stability properties of two-term fractional differential equations. Nonlinear Dyn 80(4):1673–1684MathSciNetCrossRefMATH
12.
Zurück zum Zitat Čermák J, Kisela T (2015) Asymptotic stability of dynamic equations with two fractional terms: continuous versus discrete case. Fract Calc Appl Anal 18(2):437–458MathSciNetCrossRefMATH Čermák J, Kisela T (2015) Asymptotic stability of dynamic equations with two fractional terms: continuous versus discrete case. Fract Calc Appl Anal 18(2):437–458MathSciNetCrossRefMATH
13.
Zurück zum Zitat Ky DG, Thinh LV, Tuan HT (2022) Existence, uniqueness and asymptotic behavior of solutions to two-term fractional differential equations. Commun Nonlinear Sci Numer Simul 115:106751MathSciNetCrossRefMATH Ky DG, Thinh LV, Tuan HT (2022) Existence, uniqueness and asymptotic behavior of solutions to two-term fractional differential equations. Commun Nonlinear Sci Numer Simul 115:106751MathSciNetCrossRefMATH
14.
Zurück zum Zitat Brandibur O, Kaslik E (2021) Exact stability and instability regions for two-dimensional linear autonomous multi-order systems of fractional-order differential equations. Fract Calc Appl Anal 24(1):225–253MathSciNetCrossRefMATH Brandibur O, Kaslik E (2021) Exact stability and instability regions for two-dimensional linear autonomous multi-order systems of fractional-order differential equations. Fract Calc Appl Anal 24(1):225–253MathSciNetCrossRefMATH
15.
Zurück zum Zitat Brandibur O, Kaslik E (2018) Stability of two-component incommensurate fractional-order systems and applications to the investigation of a FitzHugh–Nagumo neuronal model. Math Methods Appl Sci 41(17):7182–7194MathSciNetCrossRefMATH Brandibur O, Kaslik E (2018) Stability of two-component incommensurate fractional-order systems and applications to the investigation of a FitzHugh–Nagumo neuronal model. Math Methods Appl Sci 41(17):7182–7194MathSciNetCrossRefMATH
16.
Zurück zum Zitat Brandibur O, Kaslik E (2021) Stability analysis of multi-term fractional–differential equations with three fractional derivatives. J Math Anal Appl 495(2):124751MathSciNetCrossRefMATH Brandibur O, Kaslik E (2021) Stability analysis of multi-term fractional–differential equations with three fractional derivatives. J Math Anal Appl 495(2):124751MathSciNetCrossRefMATH
17.
Zurück zum Zitat Tavazoei M, Asemani MH (2020) On robust stability of incommensurate fractional-order systems. Commun Nonlinear Sci Numer Simul 90:105344MathSciNetCrossRefMATH Tavazoei M, Asemani MH (2020) On robust stability of incommensurate fractional-order systems. Commun Nonlinear Sci Numer Simul 90:105344MathSciNetCrossRefMATH
18.
Zurück zum Zitat Lu J-G, Zhu Z, Ma Y-D (2021) Robust stability and stabilization of multi-order fractional-order systems with interval uncertainties: an LMI approach. Int J Robust Nonlinear Control 31(9):4081–4099MathSciNetCrossRef Lu J-G, Zhu Z, Ma Y-D (2021) Robust stability and stabilization of multi-order fractional-order systems with interval uncertainties: an LMI approach. Int J Robust Nonlinear Control 31(9):4081–4099MathSciNetCrossRef
19.
Zurück zum Zitat Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoMATH Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoMATH
20.
Zurück zum Zitat De la Sen M (2011) About robust stability of Caputo linear fractional dynamic systems with time delays through fixed point theory. Fixed Point Theory Appl 2011:1–19MathSciNet De la Sen M (2011) About robust stability of Caputo linear fractional dynamic systems with time delays through fixed point theory. Fixed Point Theory Appl 2011:1–19MathSciNet
21.
Zurück zum Zitat Ye H, Gao J, Ding Y (2007) A generalized Gronwall inequality and its application to a fractional differential equation. J Math Anal Appl 328(2):1075–1081MathSciNetCrossRefMATH Ye H, Gao J, Ding Y (2007) A generalized Gronwall inequality and its application to a fractional differential equation. J Math Anal Appl 328(2):1075–1081MathSciNetCrossRefMATH
Metadaten
Titel
Asymptotic behavior of fractional-order nonlinear systems with two different derivatives
verfasst von
Liping Chen
Min Xue
António Lopes
Ranchao Wu
YangQuan Chen
Publikationsdatum
01.06.2023
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2023
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-023-10272-9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.