Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2018

16.01.2018

Atomic Layer-Deposited TiO2 Coatings on NiTi Surface

verfasst von: D. Vokoun, J. Racek, L. Kadeřávek, C. C. Kei, Y. S. Yu, L. Klimša, P. Šittner

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

NiTi shape-memory alloys may release poisonous Ni ions at the alloys’ surface. In an attempt to prepare a well-performing surface layer on an NiTi sample, the thermally grown TiO2 layer, which formed during the heat treatment of NiTi, was removed and replaced with a new TiO2 layer prepared using the atomic layer deposition (ALD) method. Using x-ray photoelectron spectroscopy, it was found that the ALD layer prepared at as low a temperature as 100 °C contained Ti in oxidation states + 4 and + 3. As for static corrosion properties of the ALD-coated NiTi samples, they further improved compared to those covered by thermally grown oxide. The corrosion rate of samples with thermally grown oxide was 1.05 × 10−5 mm/year, whereas the corrosion rate of the ALD-coated samples turned out to be about five times lower. However, cracking of the ALD coating occurred at about 1.5% strain during the superelastic mechanical loading in tension taking place via the propagation of a localized martensite band.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Duerig, A. Pelton, and D. Stöckel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 273–275, p 149–160CrossRef T. Duerig, A. Pelton, and D. Stöckel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 273–275, p 149–160CrossRef
2.
Zurück zum Zitat J.V. Humbeeck and R. Stalmans, Thermomechanical Properties of SMA, Shape Memory Materials, K. Otsuka and C.M. Wayman, Ed., Cambridge University Press, Cambridge, 1998, J.V. Humbeeck and R. Stalmans, Thermomechanical Properties of SMA, Shape Memory Materials, K. Otsuka and C.M. Wayman, Ed., Cambridge University Press, Cambridge, 1998,
3.
Zurück zum Zitat M. Es-Souni, M. Es-Souni, and H. Fischer-Brandies, Assessing the Biocompatibility of NiTi Shape Memory Alloys Used for Medical Applications, Anal. Bioanal. Chem., 2005, 381, p 557–567CrossRef M. Es-Souni, M. Es-Souni, and H. Fischer-Brandies, Assessing the Biocompatibility of NiTi Shape Memory Alloys Used for Medical Applications, Anal. Bioanal. Chem., 2005, 381, p 557–567CrossRef
4.
Zurück zum Zitat S. Shabalovskaya, G. Rondelli, and M. Rettenmayr, Nitinol Surfaces for Implantation, J. Mater. Eng. Perform., 2009, 18, p 470–474CrossRef S. Shabalovskaya, G. Rondelli, and M. Rettenmayr, Nitinol Surfaces for Implantation, J. Mater. Eng. Perform., 2009, 18, p 470–474CrossRef
5.
Zurück zum Zitat D.P. Aun, M. Houmard, M. Mermoux, L. Latu-Romain, J.-C. Joud, G. Berthomé, and V.T. Lopes Buono, Development of a Flexible Nanocomposite TiO2 Film as a Protective Coating for Bioapplications of Superelastic NiTi Alloys, Appl. Surf. Sci., 2016, 375, p 42–49CrossRef D.P. Aun, M. Houmard, M. Mermoux, L. Latu-Romain, J.-C. Joud, G. Berthomé, and V.T. Lopes Buono, Development of a Flexible Nanocomposite TiO2 Film as a Protective Coating for Bioapplications of Superelastic NiTi Alloys, Appl. Surf. Sci., 2016, 375, p 42–49CrossRef
6.
Zurück zum Zitat Y. Cheng, W. Cai, H.T. Li, and Y.F. Zheng, Surface Modification on NiTi Alloy with Tantalum to Improve Its Biocompatibility and Radiopacity, J. Mater. Sci., 2006, 41, p 4961CrossRef Y. Cheng, W. Cai, H.T. Li, and Y.F. Zheng, Surface Modification on NiTi Alloy with Tantalum to Improve Its Biocompatibility and Radiopacity, J. Mater. Sci., 2006, 41, p 4961CrossRef
7.
Zurück zum Zitat D. Starosvetsky and I. Gotman, Corrosion Behavior of Titanium Nitride Coated Ni–Ti Shape Memory Surgical Alloy, Biomaterials, 2001, 22, p 1853–1859CrossRef D. Starosvetsky and I. Gotman, Corrosion Behavior of Titanium Nitride Coated Ni–Ti Shape Memory Surgical Alloy, Biomaterials, 2001, 22, p 1853–1859CrossRef
8.
Zurück zum Zitat K.W.K. Yeung, R.W.Y. Poon, X.Y. Liu, J.P.Y. Ho, C.Y. Chung, P.K. Chu, W.W. Lu, D. Chan, and K.M.C. Cheung, Corrosion Resistance, Surface Mechanical Properties, and Cytocompatibility of Plasma Immersion Ion Implantation–Treated Nickel-Titanium Shape Memory Alloys, J. Biomed. Mater. Res. A, 2005, 75, p 256–267CrossRef K.W.K. Yeung, R.W.Y. Poon, X.Y. Liu, J.P.Y. Ho, C.Y. Chung, P.K. Chu, W.W. Lu, D. Chan, and K.M.C. Cheung, Corrosion Resistance, Surface Mechanical Properties, and Cytocompatibility of Plasma Immersion Ion Implantation–Treated Nickel-Titanium Shape Memory Alloys, J. Biomed. Mater. Res. A, 2005, 75, p 256–267CrossRef
9.
Zurück zum Zitat M. Chembath, J.N. Balaraju, and M. Sujata, Surface Characteristics, Corrosion and Bioactivity of Chemically Treated Biomedical Grade NiTi Alloy, Mater. Sci. Eng. C, 2015, 56, p 417–425CrossRef M. Chembath, J.N. Balaraju, and M. Sujata, Surface Characteristics, Corrosion and Bioactivity of Chemically Treated Biomedical Grade NiTi Alloy, Mater. Sci. Eng. C, 2015, 56, p 417–425CrossRef
10.
Zurück zum Zitat T.T. Zhao, Y. Li, Y. Liu, and X.Q. Zhao, Nano-Hardness, Wear Resistance and Pseudoelasticity of Hafnium Implanted NiTi Shape Memory Alloy, J. Mech. Behav. Biomed. Mater., 2012, 13, p 174–184CrossRef T.T. Zhao, Y. Li, Y. Liu, and X.Q. Zhao, Nano-Hardness, Wear Resistance and Pseudoelasticity of Hafnium Implanted NiTi Shape Memory Alloy, J. Mech. Behav. Biomed. Mater., 2012, 13, p 174–184CrossRef
11.
Zurück zum Zitat M. Leskelä and M. Ritala, Atomic Layer Deposition (ALD): From Precursors to Thin Film Structures, Thin Solid Films, 2002, 409, p 138–146CrossRef M. Leskelä and M. Ritala, Atomic Layer Deposition (ALD): From Precursors to Thin Film Structures, Thin Solid Films, 2002, 409, p 138–146CrossRef
12.
Zurück zum Zitat M. Leskelä and M. Ritala, Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges, Angew. Chem. Int. Ed., 2003, 42, p 5548–5554CrossRef M. Leskelä and M. Ritala, Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges, Angew. Chem. Int. Ed., 2003, 42, p 5548–5554CrossRef
13.
Zurück zum Zitat S.W. Choi, J.Y. Park, and S.S. Kim, Synthesis of SnO2–ZnO Core–Shell Nanofibers Via a Novel Two-Step Process and Their Gas Sensing Properties, Nanotechnology, 2009, 20, p 465603CrossRef S.W. Choi, J.Y. Park, and S.S. Kim, Synthesis of SnO2–ZnO Core–Shell Nanofibers Via a Novel Two-Step Process and Their Gas Sensing Properties, Nanotechnology, 2009, 20, p 465603CrossRef
14.
Zurück zum Zitat C.X. Shan, X. Hou, and K.L. Choy, Corrosion Resistance of TiO2 Films Grown on Stainless Steel by Atomic Layer Deposition, Surf. Coat. Technol., 2008, 202, p 2399–2402CrossRef C.X. Shan, X. Hou, and K.L. Choy, Corrosion Resistance of TiO2 Films Grown on Stainless Steel by Atomic Layer Deposition, Surf. Coat. Technol., 2008, 202, p 2399–2402CrossRef
15.
Zurück zum Zitat A.I. Abdulagatov, Y. Yan, J.R. Cooper, Y. Zhang, Z.M. Gibbs, A.S. Cavanagh, R.G. Yang, Y.C. Lee, and S.M. George, Al2O3 and TiO2 Atomic Layer Deposition on Copper for Water Corrosion Resistance, ACS Appl. Mater. Interfaces., 2011, 3, p 4593–4601CrossRef A.I. Abdulagatov, Y. Yan, J.R. Cooper, Y. Zhang, Z.M. Gibbs, A.S. Cavanagh, R.G. Yang, Y.C. Lee, and S.M. George, Al2O3 and TiO2 Atomic Layer Deposition on Copper for Water Corrosion Resistance, ACS Appl. Mater. Interfaces., 2011, 3, p 4593–4601CrossRef
16.
Zurück zum Zitat M. Basiaga, M. Staszuk, W. Walke, and Z. Opilski, Mechanical Properties of Atomic Layer Deposition (ALD) TiO2 Layers on Stainless Steel Substrates, Materialwiss. Werkstofftech., 2016, 47, p 512–520CrossRef M. Basiaga, M. Staszuk, W. Walke, and Z. Opilski, Mechanical Properties of Atomic Layer Deposition (ALD) TiO2 Layers on Stainless Steel Substrates, Materialwiss. Werkstofftech., 2016, 47, p 512–520CrossRef
17.
Zurück zum Zitat E. Marin, A. Lanzutti, L. Paussa, L. Guzman, and L. Fedrizzi, Long Term Performance of Atomic Layer Deposition Coatings for Corrosion Protection of Stainless Steel, Mater. Corros., 2015, 66, p 907–914CrossRef E. Marin, A. Lanzutti, L. Paussa, L. Guzman, and L. Fedrizzi, Long Term Performance of Atomic Layer Deposition Coatings for Corrosion Protection of Stainless Steel, Mater. Corros., 2015, 66, p 907–914CrossRef
18.
Zurück zum Zitat W. Walke, M. Kaczmarek, M. Staszuk, and M. Basiaga, Influence of Purge, Time of Waiting and TiCl4 Dosing Time in a Low-Pressure Atomic Layer Deposition (ALD) Reactor on Properties of TiO2 Layer, Metalurgija, 2017, 56, p 179–181 W. Walke, M. Kaczmarek, M. Staszuk, and M. Basiaga, Influence of Purge, Time of Waiting and TiCl4 Dosing Time in a Low-Pressure Atomic Layer Deposition (ALD) Reactor on Properties of TiO2 Layer, Metalurgija, 2017, 56, p 179–181
19.
Zurück zum Zitat M.R. Saleem, P. Silfsten, S. Honkanen, and J. Turunen, Thermal Properties of TiO2 Films Grown by Atomic Layer Deposition, Thin Solid Films, 2012, 520, p 5442–5446CrossRef M.R. Saleem, P. Silfsten, S. Honkanen, and J. Turunen, Thermal Properties of TiO2 Films Grown by Atomic Layer Deposition, Thin Solid Films, 2012, 520, p 5442–5446CrossRef
20.
Zurück zum Zitat C.C. Kei, Y.S. Yu, J. Racek, D. Vokoun, and P. Sittner, Atomic Layer-Deposited Al2O3 Coatings on NiTi Alloy, J. Mater. Eng. Perform, 2014, 23, p 2641–2649CrossRef C.C. Kei, Y.S. Yu, J. Racek, D. Vokoun, and P. Sittner, Atomic Layer-Deposited Al2O3 Coatings on NiTi Alloy, J. Mater. Eng. Perform, 2014, 23, p 2641–2649CrossRef
21.
Zurück zum Zitat C.C. Kei, Y.H. Yu, J. Racek, D. Vokoun, L. Kadeřávek, Corrosion and Mechanical Properties of Atomic Layer Deposited TiO2 Coatings on NiTi Implants. In 2016 IEEE International Conference Industrial Technology (ICIT) (2016), p 1328–1332 C.C. Kei, Y.H. Yu, J. Racek, D. Vokoun, L. Kadeřávek, Corrosion and Mechanical Properties of Atomic Layer Deposited TiO2 Coatings on NiTi Implants. In 2016 IEEE International Conference Industrial Technology (ICIT) (2016), p 1328–1332
22.
Zurück zum Zitat O. Takakuwa and H. Soyama, Effect of Residual Stress on the Corrosion Behavior of Austenitic Stainless Steel, Adv. Chem. Eng. Sci., 2015, 5, p 62–71CrossRef O. Takakuwa and H. Soyama, Effect of Residual Stress on the Corrosion Behavior of Austenitic Stainless Steel, Adv. Chem. Eng. Sci., 2015, 5, p 62–71CrossRef
23.
Zurück zum Zitat X. Zhao, P. Munroe, D. Habibi, and Z. Xie, Roles of Compressive Residual Stress in Enhancing the Corrosion Resistance of Nano Nitride Composite Coatings on Steel, J. Asian Ceram. Soc., 2013, 1, p 86–94CrossRef X. Zhao, P. Munroe, D. Habibi, and Z. Xie, Roles of Compressive Residual Stress in Enhancing the Corrosion Resistance of Nano Nitride Composite Coatings on Steel, J. Asian Ceram. Soc., 2013, 1, p 86–94CrossRef
24.
Zurück zum Zitat Y.C. Tsui and T.W. Clyne, An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings, Thin Solid Films, 1997, 306, p 23–33CrossRef Y.C. Tsui and T.W. Clyne, An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings, Thin Solid Films, 1997, 306, p 23–33CrossRef
25.
Zurück zum Zitat R. Karpagavalli, A. Zhou, P. Chellamuthu, and K. Nguyen, Corrosion Behavior and Biocompatibility of Nanostructured TiO2 Film on Ti6Al14V, J. Biomed. Mater. Res. A, 2007, 83, p 1087–1095CrossRef R. Karpagavalli, A. Zhou, P. Chellamuthu, and K. Nguyen, Corrosion Behavior and Biocompatibility of Nanostructured TiO2 Film on Ti6Al14V, J. Biomed. Mater. Res. A, 2007, 83, p 1087–1095CrossRef
26.
Zurück zum Zitat C. Trépanier, M. Tabrizian, L. Yahia, L. Bilodear, and D.L. Piron, Effect of Modification of Oxide Layer on NiTi Stent Corrosion Resistance, J. Biomed. Mater. Res. B, 1998, 43, p 433–440CrossRef C. Trépanier, M. Tabrizian, L. Yahia, L. Bilodear, and D.L. Piron, Effect of Modification of Oxide Layer on NiTi Stent Corrosion Resistance, J. Biomed. Mater. Res. B, 1998, 43, p 433–440CrossRef
27.
Zurück zum Zitat H. Tian, D. Schryvers, D. Liu, Q. Jiang, and J. Van Humbeeck, Stability of Ni in Nitinol Oxide Surfaces, Acta Biomater., 2011, 7, p 892–899CrossRef H. Tian, D. Schryvers, D. Liu, Q. Jiang, and J. Van Humbeeck, Stability of Ni in Nitinol Oxide Surfaces, Acta Biomater., 2011, 7, p 892–899CrossRef
28.
Zurück zum Zitat A. Undisz, R. Hanke, K.E. Freiberg, V. Hoffmann, and M. Rettenmayr, The Effect of Heating Rate on the Surface Chemistry of NiTi, Acta Biomater., 2014, 10, p 4919–4923CrossRef A. Undisz, R. Hanke, K.E. Freiberg, V. Hoffmann, and M. Rettenmayr, The Effect of Heating Rate on the Surface Chemistry of NiTi, Acta Biomater., 2014, 10, p 4919–4923CrossRef
29.
Zurück zum Zitat D. Vokoun, M. Svatuška, J. Olejníček, M. Kohout, J. Drahokoupil, M. Rameš, J. Vejpravová, A. Mantlíková, L. Fekete, J. Kopeček, L. Klimša, and O. Heczko, Ni–TiO2 Nanocomposite Films and Their Magnetic Properties, Physica B Condens. Matter, 2016, 503, p 44–50CrossRef D. Vokoun, M. Svatuška, J. Olejníček, M. Kohout, J. Drahokoupil, M. Rameš, J. Vejpravová, A. Mantlíková, L. Fekete, J. Kopeček, L. Klimša, and O. Heczko, Ni–TiO2 Nanocomposite Films and Their Magnetic Properties, Physica B Condens. Matter, 2016, 503, p 44–50CrossRef
30.
Zurück zum Zitat J.S. King, E. Graugnard, and C.J. Summers, TiO2 Inverse Opals Fabricated Using Low-Temperature Atomic Layer Deposition, Adv. Mater., 2005, 17, p 1010–1013CrossRef J.S. King, E. Graugnard, and C.J. Summers, TiO2 Inverse Opals Fabricated Using Low-Temperature Atomic Layer Deposition, Adv. Mater., 2005, 17, p 1010–1013CrossRef
31.
Zurück zum Zitat D. Chen, E.H. Jordan, M. Gell, and X. Ma, Dense TiO2 Coating Using the Solution Precursor Plasma Spray Process, J. Am. Ceram. Soc., 2008, 91, p 865–872CrossRef D. Chen, E.H. Jordan, M. Gell, and X. Ma, Dense TiO2 Coating Using the Solution Precursor Plasma Spray Process, J. Am. Ceram. Soc., 2008, 91, p 865–872CrossRef
32.
Zurück zum Zitat T. Fu, B.G. Liu, Y.M. Zhou, and X.M. Wu, Sol–gel Titania Coating on NiTi Alloy with a Porous Titania Film as Interlayer, J. Sol Gel. Sci. Technol., 2011, 58, p 307–311CrossRef T. Fu, B.G. Liu, Y.M. Zhou, and X.M. Wu, Sol–gel Titania Coating on NiTi Alloy with a Porous Titania Film as Interlayer, J. Sol Gel. Sci. Technol., 2011, 58, p 307–311CrossRef
33.
Zurück zum Zitat U. Backman, A. Auvinen, and J.K. Jokiniemi, Deposition of Nanostructured Titania Films by Particle-Assisted MOCVD, Surf. Coat. Technol., 2005, 192, p 81–87CrossRef U. Backman, A. Auvinen, and J.K. Jokiniemi, Deposition of Nanostructured Titania Films by Particle-Assisted MOCVD, Surf. Coat. Technol., 2005, 192, p 81–87CrossRef
34.
Zurück zum Zitat H.T. Siu and H.C. Man, Fabrication of Bioactive Titania Coating on Nitinol by Plasma Electrolytic Oxidation, Appl. Surf. Sci., 2013, 274, p 181–187CrossRef H.T. Siu and H.C. Man, Fabrication of Bioactive Titania Coating on Nitinol by Plasma Electrolytic Oxidation, Appl. Surf. Sci., 2013, 274, p 181–187CrossRef
35.
Zurück zum Zitat H. Morawiec, T. Goryczka, J. Lelątko, Z. Lekston, A. Winiarski, E. Rówiński, and F. Stergioudis, Surface Structure of NiTi Alloy Passivated by Autoclaving. Materials Science Forum, vol. 636–637, Trans Tech Publications, Switzerland, 2010, p 971–976 H. Morawiec, T. Goryczka, J. Lelątko, Z. Lekston, A. Winiarski, E. Rówiński, and F. Stergioudis, Surface Structure of NiTi Alloy Passivated by Autoclaving. Materials Science Forum, vol. 636–637, Trans Tech Publications, Switzerland, 2010, p 971–976
36.
Zurück zum Zitat Y.W. Gu, B.Y. Tay, C.S. Lim, and M.S. Yong, Characterization of Bioactive Surface Oxidation Layer on NiTi Alloy, Appl. Surf. Sci., 2005, 252, p 2038–2049CrossRef Y.W. Gu, B.Y. Tay, C.S. Lim, and M.S. Yong, Characterization of Bioactive Surface Oxidation Layer on NiTi Alloy, Appl. Surf. Sci., 2005, 252, p 2038–2049CrossRef
37.
Zurück zum Zitat L. Tan and W.C. Crone, Surface Characterization of NiTi Modified by Plasma Source Ion Implantation, Acta Mater., 2002, 50, p 4449–4460CrossRef L. Tan and W.C. Crone, Surface Characterization of NiTi Modified by Plasma Source Ion Implantation, Acta Mater., 2002, 50, p 4449–4460CrossRef
38.
Zurück zum Zitat B. Yuan, H. Li, Y. Gao, C.Y. Chung, and M. Zhu, Passivation and Oxygen Ion Implantation Double Surface Treatment on Porous NiTi Shape Memory Alloys and Its Ni Suppression Performance, Surf. Coat. Technol., 2009, 204, p 58–63CrossRef B. Yuan, H. Li, Y. Gao, C.Y. Chung, and M. Zhu, Passivation and Oxygen Ion Implantation Double Surface Treatment on Porous NiTi Shape Memory Alloys and Its Ni Suppression Performance, Surf. Coat. Technol., 2009, 204, p 58–63CrossRef
39.
Zurück zum Zitat Z.D. Cui, H.C. Man, and X.J. Yang, The Corrosion and Nickel Release Behavior of Laser Surface-Melted NiTi Shape Memory Alloy in Hanks, Solution, Surf. Coat. Technol., 2005, 192, p 347–353CrossRef Z.D. Cui, H.C. Man, and X.J. Yang, The Corrosion and Nickel Release Behavior of Laser Surface-Melted NiTi Shape Memory Alloy in Hanks, Solution, Surf. Coat. Technol., 2005, 192, p 347–353CrossRef
40.
Zurück zum Zitat C.L. Yaws, Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals, McGraw-Hill, New York, 1999 C.L. Yaws, Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals, McGraw-Hill, New York, 1999
41.
Zurück zum Zitat J.D.P. Counsell, A.J. Roberts, W. Boxford, C. Moffitt, and K. Takahashi, Reduced Preferential Sputtering of TiO2 Using Massive Argon Clusters, J. Surf. Anal., 2014, 20, p 211–215 J.D.P. Counsell, A.J. Roberts, W. Boxford, C. Moffitt, and K. Takahashi, Reduced Preferential Sputtering of TiO2 Using Massive Argon Clusters, J. Surf. Anal., 2014, 20, p 211–215
42.
Zurück zum Zitat J. Racek, M. Stora, P. Šittner, L. Heller, J. Kopeček, and M. Petrenec, Monitoring Tensile Fatigue of Superelastic NiTi Wire in Liquids by Electrochemical Potential, Shape Memory Superelasticity, 2015, 1, p 204–230CrossRef J. Racek, M. Stora, P. Šittner, L. Heller, J. Kopeček, and M. Petrenec, Monitoring Tensile Fatigue of Superelastic NiTi Wire in Liquids by Electrochemical Potential, Shape Memory Superelasticity, 2015, 1, p 204–230CrossRef
43.
Zurück zum Zitat J.L. Ong, L.C. Lucas, G.N. Raikar, R. Connatser, and J.C. Gregory, Spectroscopic Characterization of Passivated Titanium in a Physiologic Solution, J. Mater. Sci. Mater. Med., 1995, 6, p 113–119CrossRef J.L. Ong, L.C. Lucas, G.N. Raikar, R. Connatser, and J.C. Gregory, Spectroscopic Characterization of Passivated Titanium in a Physiologic Solution, J. Mater. Sci. Mater. Med., 1995, 6, p 113–119CrossRef
44.
Zurück zum Zitat K. Hirmanova, J. Pilch, J. Racek, L. Heller, P. Sittner, and P. Sedlak, Physical Simulation of the Random Failure of Implanted Braided NiTi Stents, J. Mater. Eng. Perform., 2014, 23, p 2650–2658CrossRef K. Hirmanova, J. Pilch, J. Racek, L. Heller, P. Sittner, and P. Sedlak, Physical Simulation of the Random Failure of Implanted Braided NiTi Stents, J. Mater. Eng. Perform., 2014, 23, p 2650–2658CrossRef
45.
Zurück zum Zitat C.M. Chan, S. Trigwell, and T. Duerig, Oxidation of an NiTi Alloy, Surf. Interface Anal., 1990, 15, p 349–354CrossRef C.M. Chan, S. Trigwell, and T. Duerig, Oxidation of an NiTi Alloy, Surf. Interface Anal., 1990, 15, p 349–354CrossRef
Metadaten
Titel
Atomic Layer-Deposited TiO2 Coatings on NiTi Surface
verfasst von
D. Vokoun
J. Racek
L. Kadeřávek
C. C. Kei
Y. S. Yu
L. Klimša
P. Šittner
Publikationsdatum
16.01.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3136-x

Weitere Artikel der Ausgabe 2/2018

Journal of Materials Engineering and Performance 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.